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n-SHAPE FIBRATIONS 

Sibe Marde8i~1 and T. B. Rushing2 

1. Introduction 

In [11] and [12] the authors introduced and studied a 

class of maps between compact metric spaces called shape 

fibrations. A shape fibration is a map p: E ~ B which is 

induced by a level map of ANR-sequences £: E ~ ~, P = lim £' 

such that £ has a certain homotopy lifting property with 

respect to the class of all topological spaces. It is shown 

in [11] that the approximate fibrations of Coram and Duvall 

[1] are precisely shape fibrations between ANR's. Also, it 

is shown in [11] that cell-like maps between finite-dimen­

sional metric compacta are shape fibrations. However, the 

Taylor map [16] is an example of a cell-like map between 

infinite-dimensional continua which fails to be a shape 

fibration. 

The purpose of this paper is to consider the homotopy 

lifting property with respect to some other classes X of 

spaces. In particular, if X consists of all topological 

spaces of dimension 2n, we obtain the notion of an n-shape 

fibration. Maps which are n-fibrations for all n are also 

interesting. We call such maps weak shape fibrations. Most 

of the results for shape fibrations obtained in [11] and [12] 

lThis research was performed while the first author was 
visiting the University of Utah on leave from the University 
of Zagreb. 

2The research of the second author was supported by a 
David P. Gardner Faculty Fellowship and N.S.F. grant MCS77­
03978. 
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remain true in appropriate formulations for n-shape fibrations 

and for weak shape fibrations. For maps between ANR's, weak 

shape fibrations coincide with approximate fibrations and 

therefore also with shape fibrations. Furthermore, every 

cell-like map between metric compacta (regardless of dimen­

sion) is a weak shape fibration. Consequently, the Taylor 

map provides an example of a weak shape fibration which fails 

to be a shape fibration. 

The authors would like to point out that several of the 

results of this paper are modeled on results of Coram and 

Duvall in [2]. Also, the authors would like to thank Jerzy 

Dydak for bringing to their attention Lemma 8.3 of [4] which 

is referred to in Section 7 of this paper. 

2. Shape FibratioDs with Respect 

to a Class of Spaces 

We shall consider inverse sequences of metric compacta 

E = (Ei,qii')' ~ = (Bi,rii ,). If all Ei and Bi are ANR's, 

we speak of ANR-sequences. Polyhedral sequences and Q-mani­

fold sequences are especially useful since polyhedra and 

Q-manifolds are convenient ANR's. A level preserving map of 

sequences E: ~ ~ ~ (abbreviated as level map) is a sequence 

~ B. such that 
1 

Definition 1. Let X be a class of spaces. A level map 

E: ~ ~ B is said to have the homotopy lifting property with 

respect to X (X-HLP) provided each i admits a j ~ i such that 

for any X E X and any maps h: X ~ E., H: X x I ~ B. with 
J J 
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'" 
There is a homotopy H: X x I ~ E satisfyingi 

(3) H = q .. h, and 
o 1J 

(4) p.H = r .. H. 
1 1J 

Every such j is called a lifting index for i. 

Definition 2. We say that E: ~ ~ ~ has the approximate 

homotopy lifting property with respect to X (X-AHLP) provided 

each i and each s > ° admit a j > i and a ° > ° such that for 

any X E X and any h: X ~ E., H: X x I ~ B. with the distance 
J J 

(5) d(p.h,H ) < 0,
J O -

there is a homotopy H: X x I ~ E. satisfying
1 

(6) d(Ho,qijh) < s 

(7) d(p.H,r .. H) < s. 
1 1J 

We call ° a lifting mesh for (i,s). 

Remark 1. If each E is an ANR and if E: ~ ~ ~ has thei 

X-AHLP where all members of X are paracompact Hausdorff 

spaces, then E also has the formally stronger property ob­

tained by replacing (6) by (3). This follows from the proof 

of Proposition 1 of [11]. (Paracompactness is needed in order 

to construct the function ~: X ~ (0,1] in that proof.) 

Remark 2. If each B. is an ANR and all the members of 
1 

X are paracompact Hausdorff spaces, then E: ~ ~ ~ has the 

X-AHLP provided it has the formally weaker property obtained 

by replacing (5) by (2). This follows from the proof of 

Proposition 2 of [11]. 

Definition 3. Let E: E ~ ~ be a level map o~ inverse 

sequences and let (E,qi) = lim~, (B,r i ) = lim~. The unique 

map p: E ~ B such that Piqi = riP for all i, is said to be 
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induced by E or to be the limi t of E' denoted by p = lim E.. 

Definition 4. Let X be a class of spaces. A map 

p: E + B between metric compacta is called a shape fibration 

with respect to X (X-shape fibration for short) provided 

there exists a level map of ANR-sequences E.: ~ + ~ such that 

p = lim E and E has the X-AHLP. 

Remark 3. Notice that whenever p is an X-shape fibra­

tion and X' ~ X, then p is a fortiori an X'-shape fibration. 

The proof of Theorem 1 of [11] applies in the present 

situation and yields the following result. 

Theorem 1. If E: ~ + ~ and E': ~' + B' are two level 

maps of ANR-sequences with the same limit p = lim E = lim E' 

and if for some class X E has the X-AHLP~ then so does E.'. 

The next result follows from the proof of Theorem 2 of 

[11] together with Remark 1. 

Theorem 2. bet all members of X be paracompact Hausdorff 

spaces. If e.: E + B is a level map of ANR-sequences such that 

lim e. = p: E + B and e. has the X-AHLP~ then there is a level 

map E' : E' + B of ANR-sequences such that lim e.' = p and E.' 

has the X-HLP. 

Remark 4. If all of the members of X are paracompact 

Hausdorff spaces and if p: E + B is an X-shape fibration, 

then for every closed subset B' ~ B the restriction p' = 

pIE': E' + B', E' = p-l(B'), is also an X-shape fibration. 

This is ob:tained by following the proof of the analogous 
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statement for shape fibrations ([11], "Proposition 4) and 

applying Theorem 2 at the outset. 

3. Shape FibratioDS 

Definition 5. A map p: E ~ B between metric compacta 

is called a shape fibration if it is an X-shape fibration 

where X is the class of all topological spaces. 

Remark 5. The following theorem (Theorem 3) shows that 

shape fibrations as defined above (Definition 5) coincide 

with the shape fibrations as defined in [11]. Therefore, 

for ANR's, shape fibrations (in the sense of Definition 5) 

agree with approximate fibrations (see [11], Corollary 1). 

Theorem 3. Shape fibrations coincide with X-shape fibra­

tions where X is the class of all separable metric spaces. 

Proof. Let E: E ~ B be a level map of ANR-sequences 

such that p = lim E and E has the AHLP with respect to 

separable metric spaces. For given i and s, let j > i and 

o be the lifting index and mesh respectively. Let X be an 

arbitrary topological space and let h: X ~ E. and H: X x 
] 

I ~ B. be maps satisfying d(Pjh,H O) < 8. Consider the set 
J 

(1) 11 = {(e,w) E E. x B:: d(p. (e) ,w(O)) < 8}, [BJ~ is
] ] J ­

given the compact-open tOPOlOgy]. Notice that ~ 

is a separable metric space because B: is one ([3],
J 

Theorem 8.2(3), p. 270 and Theorem 5.2, p. 265). 

We shall now define maps f: X ~ 11, g: 11 ~ E. and 
J 

G:	 11 x I ~ B. such that 
J 

(2) gf = h, 

(3) G(f x 1) H. 
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(4) The diagram 

commutes strictly (where iO(y) (y, 0)), and 

(5) the diagram 

g
E.	 ( ~ 

J 

Pjj lio 

B.	 ~xI 
J ~ 

commutes up to 0, i.e., 

(6) d (Pj g (y), G (y, 0)) < ° for y E ~.
 

We define f by
 

(7) f(x) = (h(x), H(x)), where [H(x)] (t) = H(x,t). 

The continuity of f follows from ([3], Theorem 3.1(1), 

p. 261). We define g and G by 

(8) g(e,w) = e, and 

(9) G( (e,w) ,t) = w(t). 

The map G is continuous because the evaluation map 

(w,t) ~ w(t) is continuous ([3], Theorem 2.4(2), p. 260). 

By the choice of j and ° there is a map G: ~ x I ~ Ei 

such that 

(10) d (GO ,qijg) < €, and 

(11) d(p.G,r .. G) < € . 
1 1J 

Now the map H: X x I ~ E given byi 
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(12) H G 0 (f x 1) 

has the desired properties, i.e., it satisfies 2. (6) and 

2. (7) • 

Theorem 4. Shape fibrations coincide with X-shape 

fibrations where X is the class of all separable~ locally 

compact polyhedra. 

We shall now prove the theorem by using the following 

lemma the proof of which we postpone until the next section. 

Lemma 1. Let E and B be ANR's~ let X be a separable 

metric space and let the following diagram commute 

E -t-(_h__ 

(13) Pj 
B +<--H-- XxI . 

Then for any n > a and 8 > a there exists a separable~ locally 

compact polyhedron P and there exist maps f: X ~ P~ g: P ~ E~ 

G: P x I ~ B such that image of f is a dense subset of P and 

(14) d(gf,h) < 11 

(15) d(G(f x 1) ,H) < 8. 

If dim X < n~ then one can achieve that dim P < n also. 

Proof of Theorem 4. Let j and 8 be the lifting index 

and the lifting mesh for i and €/2 with respect to separable, 

locally compact polyhedra. We also assume that 8 is so small 

that 8-close points in E. and B. map by q .. and r . . respec-
J J 1J 1 J 

tively to €/2-close points in E and B Let X be a separable
i

.i 
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metric space and let h: X ~ E., H: X x I ~ B. be maps such 
J J 

that Pjh = HO. Apply Lemma 1 to h, H, Pj' 8/2 and n, where 

n < 8 is so small that n-close points map under p. onto 
J 

8/2-close points. We obtain a separable, locally compact 

polyhedron P and maps f: X ~ P, g: P ~ E., G: P x I ~ B. such 
J J 

that f(X) is a dense subset of P and (14) and (15) hold. 

(Moreover, if dim X < n, then dim P < n. We shall use this 

fact in the proof of Theorem 5.) 

Since Pjh = HO' (14) and (15) imply 

(16) d(Pjgf,GiOf) < 8. 

Since f(X) is dense in P, (16) implies 

(17) d(Pjg,Gi O) < 8. 

In other words, the diagram 

9E. ( P 
J 

(18 ) Pjj liO 

B. ( pxI
GJ 

commutes up to o. By the choice of 0 and j there is a homotopy 
..... 
G: P x I ~ E. such that 

1 

(19) d(GO,q .. g) < s/2 and
1J 

(20) d(p.G,r .. G) < s/2.
1 1J 

We now put 

(21) H G 0 (f x 1): X x I ~ E .• 
1 

Clearly, 

(22) d(Ho,q .. h) < sand
1J 

(23) d(p.H,r .. H) < s. 
1 1J 

4. The Proof of Lemma 1 
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Let us first recall that a map f of a space X into the 

nerve IN(V) I of a locally finite open covering V of X is 

called a canonical map for V provided 

(1) f-l(St(V,N(V))) ~ V 

for	 all V E V. Equivalently, if x E Va n ••• n V ' then n 

f(x) is contained in the closed simplex spanned by the 

Remark 6. For every map f: X + IKI of X onto a dense 

subset of the carrier of a locally finite simplicial complex 

K there is a star-finite open covering V of X such that 

N(V) = K and f is a canonical map for V. It suffices to 

consider the star-finite covering w formed by all St(q,K) 

where q E K.a With every q associate the open set V = 

f-l(St(q,K)). These sets form a star-finite open covering 

of X. Clearly, V n ... n V ~ ¢ if and only if St(qa,K) n o n 

••• n St(qn,K) ~ ¢, i.e., if and only if the vertices 

qo,···,qn span a simplex in K. In other words N(V) = K. 

Furthermore, for each vertex q and for the corresponding 

V E V one has 

(2) f- l (st (q,K)) = V 

which shows that f is indeed a canonical map f: X + IN(V) I 

IKI	 for V. 

The next lemma will be used in the proof of Lemma 1. 

Lemma 2. Let X be a separable metric space. Then every 

open covering of X admits a countable star-finite refinement 

V and a canonical map f: X + \N(V) I such that f(X) is dense 

in /N(V) I. If dim X < n one can also achieve that dim N(V) 

< n. 
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Proof. Separable metric spaces are regular and Lindelof 

and therefore strongly paracompact ([15], V. 4.B, p. 172), 

i.e., every open covering /I' admits a star-finite refinement 

/I. If dim X ~ n, then every open covering admits a refinement 

/I of order <n + 1 (which is a fortiori star-finite). Notice 

that every star-finite covering /I of X must be countable. 

This is true since /I admits a countable refinement W= 

(Wl ,W2 ,---) and each Wi is contained in at most finitely 

many members of /I. 

Let g: X ~ IN(/I) I be a canonical map and let /I = 

(U ,U ,---). For a highest dimensional simplex S inl 2

St(Ul,N(/I», whose interior is not entirely contained in 

Cl(g(X», one composes g with a projection of S\y into as, 

where y E Int S\Cl(g(X». By repeating this procedure finitely 

many times, we obtain a modified map f such that every sim­l 

plex S in St(Ul,N(/I» is either entirely contained in 

Cl(fl(X» or its interior is disjoint with fl(X). We now 

modify f over St(U ,N(/I» to obtain f etc. Because of2 ,l 2 

local finiteness, f = lim f exists and Cl(f(X» = IKI for n 

some subcomplex K of N(/I). 

Notice that if for some x E X the point f(x) belongs to 

St (U . , N (/I) ), then also g (x) E St (U . , N (/I) ). By Remark 6,
1 1 

f: X ~ IKI is a canonical map for the star-finite covering 

V which consists of sets V. = f-l(St(U.,K» where U. is a 
111 

vertex of K. If x E V., then f(x) E St(U.,K) ~ St(U.,N(/I»
1 1 1 

-1and therefore g(x) E St(Ui,N(/I», i.e., x E g (St(Ui,N(/I». 

Since g is a canonical map for /I, the set g-l(St(U.,N(/I» is 
1 

contained in the member U of /I. Hence, Vi ~ Ui and we seei 

that V refines /I and thus also /I'. 



TOPOLOGY PROCEEDINGS Volume 3 1978 439 

If dim X ~ n, then N(V) K ~ N(lj) and dim N(lj) < n 

imply that dim N(V) < n. 

Proof of Lemma 1. It follows from ([6], Theorem 8.1, 

p. 146) that there exists an open covering ljl of X x I such 

that for any locally finite refinement lj of ljl there exist 

maps G: IN(lj) I ~ Band g: IN(ljlx x 0) I ~ E such that for any 

canonical map ¢: X x I ~ IN(lj) lone has 

( 3) d (G¢, H) < 0 and 

(4) d(g(¢IX x O)iO,h) < n. 

Notice that the restriction lj\x x 0 of lj to X x 0 consists of 

the sets U n (X x 0) where U E lj. The nerve N(ljlx x 0) can 

be viewed as a subcomplex of N(lj) if one identifies the vertex 

u n (X x 0) of N(ljlx x 0) with the vertex U of N(lj), U E lj. 

Consequently, if (x,O) E Uo n ••• n Ur' then ¢(x,O) is con­

tained in the closed simplex spanned by the vertices UO'···'U r 

and therefore ¢(x,O) ~ IN(ljlx x 0) I. The composition 

g(¢lx x 0) is thus well-defined. 

It is well-known (e.g. [5], IX Theorem 5.6, p. 241) 

that one can refine ljl by a stacked covering of X x lover 

a covering V of x. By Lemma 2 one can assume that V is a 

countable star-finite covering which admits a canonical map 

f: X ~ IN(V) I = P such that f(X) is dense in P. (Moreover, 

if dim X ~ n, one can achieve that dim P < n.) By the defini­

tion of stacked coverings, for each V E V there is a finite 

collection of open intervals Ji,···,J~(V) which covers I and 

whose nerve is a triangulation of I. Furthermore, each 

V x J~ is contained in a member of ljl.
1 

Now consider all of the sets St(V,N(V)) x Jr. They form 
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an open covering w of P x I. Let (L,L') be a countable 

locally finite triangulation of (P x I, P x 0) such that the 

Osets St(q,L), q E L , refine w. Then we put 

(5) {j = {(f x l)-l(St(q,L.)): q E LO}. 

This is a countable star-finite covering of X x I. For each 

vertex q E L
O

there is a V E V and an i < n(V) such that 

(6) St(q,L) ~ St(V,K) x Jr. 
Therefore, 

(7) (f x l)-l(St(q,L)) ~ (f x l)-l[St(V,N(V)) x JrJ 
f-1(St(V,N(V)) x JrJ. 

Since f: X ~ IN(V) I is a canonical mapping for V, one has 

f-l(St(V,N(V)) ~ V and therefore 

-1 V
(8) (f x 1) (St(q,L)) ~ V x J 

i
, 

which proves that {j refines {jl. 

OWe now identify q E L with U (f x l)-l(St(q,L)) E (j 

and conclude by Remark 6 that N({j) L and that f x 1: X x I ~ 

P x I = IN({j) I is a canonical map for the covering (j. 

The proof will be complete if we show that 

(9) IN({jlx x 0) I = P x o. 

Indeed, by the choice of {jl, we then obtain maps G: P x I ~ B 

and g: P x 0 ~ E such that conditions (14) and (15) of Lemma 

1 hold. 

Notice that (9) is equivalent to the fol10wing asser­

tions: 

(i) U n (X x 0) ~ ~ implies that q E L', 

(ii) q E L' implies that U n (X x 0) ~ ~, 

(iii) U n ••• n Un n (X x 0) ~ ~ implies that (qo,···,qn> E o 

L', and 
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(iv)	 < '1 , ••• ,qn) E L I implies that U n ••• n Un n
0 o
 

(X x 0) "I <t>.
 

(i)	 If q f L I , then St(q,L) n ILl I = <t>. Thus 

(f x l)-l(St(q,L)) n (f x l)-l(\LII) = <t> or 

U n	 (X x 0) = <t>. 

(ii)	 If q ELI, then St(q,L) n ILl I is a nonempty, open 

subset of IL'I. Sinqe f(X) is dense in IL' I, there 

exists an x E X such that f(x) E St(q,L) niL' I. 

Thus (x, 0 ) E (f xl) -1 (S t (q , L)) n (f xl) -1 ( IL' I ) 

or (x, 0) E U n (X x 0). 

(iii)	 If (x,O) E Uo n ... nUn' then (f x 1) (x,O) E 

(f x 1) (UO) n ... n (f x 1) (Un) n IL' I ~ St(qO,L) n 

... n St(qn,L) n ILl I = St(qO,L') n ... n St(qn,L'). 

Therefore, qo,···,qn span a simplex in L'. 

(iv)	 If qo,···,qn span a simplex in L', then St(qO,L') n 

... n St (qn' L I) is a nonempty open subset of IL' I • 
By denseness of f(X) in IL I I , there exists an x E X 

s uch that (f xl) (x, 0 ) = (f (x) , 0 ) ESt (q0 ' L I) n 

n St (qn ' L ' l. Thus (x, 0 l E ( f x 1 l -1 (St (q 0 ' L '» n 

n (f x 1l-1(St(qn,L 1 » ~ (f x 1l-1(St(QO,L» n 
n ( f x 1) -1 (s t (qn ' L» n (x x 0 ) = U0 n ••• n 

Un n	 ••• n Un n (X x 0). 

5. D-Shape FibratioDS 

Definition 6. A map p: E ~ B between metric compacta 

is called an n-shape fibration if it is an X-shape fibration 

where X is the class of all topological spaces X of dimension 

<n. 

Here we are using covering dimension based on numerable 
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coverings. 

Theorem 5. A map p: E ~ B is an n-shape fibration if 

and only if it is an X-shape fibration where X is either of 

the following two classes: 

(aJ X is the-class of separable metric space X with 

dim X ~ n, 

(bJ X is the class of separable, tocally compact poly­

hedra P with dim P < n. 

Proof. We shall first show that p is an n-shape fibra­

tion whenever (a) holds. Let j and 0 be a lifting index and 

a lifting mesh for i and £ with respect to separable metric 

spaces of dimension <n. Let X be a topological space, 

dim X 2 n, and let h: X ~ E., H: X x I ~ B. satisfy
J J 

(1) d(Pjh,H i ) 2 o. o 

We introduce the separable metric space ~ and the maps 

f: X ~ ~, g: ~ ~ E., G: ~ x I ~ B. as in the proof of 
J J 

Theorem 3. Then the diagram 3. (5) commutes up to o. By a 

well-known factorization theorem (e.g., [14], Lemma 2.2, 

p. 34) the map f factors through a separable metric space 

Y where dim Y < dim X < n, i.e., there are maps f': X ~ Y, 

f": Y ~ ~ such that 

(2) f"f l = f. 

One can also achieve that f' be surjective. 

Now consider the diagram 

gf"E. ( Y 
J 

(3) Pjj jio 

B.
J G(f"Xl)YX 1 
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which commutes up to 0 since f': X ~ Y is onto. By the 

choice of j and 0 there exists a map G: Y x I ~ E. such that 
1 

(4)	 d(GO,qijgf") < E, and 

(5)	 d(p.G,r .. G(fll x 1) ) < E. 
1	 1J 

We now define H: X x I ~ E by
i 

(6)	 H = G(f' xl). 

It is readily seen that 

(7)	 d(HO,q .. h) < E, and 
1J 

(8)	 d(p.H,r .. H) < E. 
1	 1J 

The proof that (b) implies (a) follows the proof of 

Theorem 4 with the single modification of using the case 

dim X < n in Lemma 1. 

We now further reduce the defining clas's X for n-shape 

fibrations. 

Theorem 6. A map p: E ~ B is an n-shape fibration if 

and only if it is an X-shape fibration where X is either of 

the following two classes: 

(aJ	 X is the collection of all k-cells with k < n~ i.e.~ 

X = {IO,Il, ,In}~ 

(b)	 X is the class of compact polyhed~a of dimension <n. 

We precede the proof of Theorem 6 by a lemma. 

Lemma 3. Let E: E -+ B be a level map which has the 

o 1X-AHLP where X {I ,I ,---,In} . Then for every i and E > 0 

there is a j > 1 and a 0 > 0 such that the following approxi­

mate partial homotopy lifting property holds: Let X be a 

compact polyhedron with dim X < n and let A ~ X be a sub-

polyhedron. Let h: (X x 0) U (A x I) ~ Ej~ and H: X x I ~ Bj 
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be maps such that 

(9) d(p.h,HI (X x 0) U (A x I» < a. 
J 

Then, there is a homotopy H: X x I ~ E. such that 
1 

(10) if I (X x 0) U (A x I) q .. h, and 
1J 

(11) d(p.ii,r .. H) < E. 
1 1-J 

Proof. The proof proceeds by induction on dim(X - A). 

If dim(X - A) = 0, let j and 0 be a lifting index and a 

lifting mesh for i and E. Then we extend q .. h to a map
1J 

OH: (X x 0) U «A U X ) x I) ~ E where for any vertexi 

x E XO\A the restriction H Hlx x I is a homotopy satisfy­x 

ing 

(12) H (x,O) = q .. h (x) (see Remark 1), and 
x 1J 

(13) d(p.H ,r .. HI (x x I» < E. 
1 X 1J 

We now assume the assertion true for dim(X - A) < k < n. 

For a given i and E choose a lifting index i' and a lifting 

o 1 nmesh E' for {I ,I ,---,I}. Now choose j and a in accordance 

with the inductive hypothesis for the integer k - 1 and for 

i' and E'. We also require that a-close points map by ri'j 

into sf-close points. 

Now assume that dim(X - A) = k and that we are given h 

and H satisfying (9) • By the inductive hypothesis there is 

1 a map H' : (X x 0) U ( (Xk - U A) x I) ~ E
i 

, such that 

(14) H'I (X x 0) U (A x I) = q.,.hl(XX 0) U (A x I)
1 J 

and 

1(15) d (p. ,H' , r. , .HI (X x 0) U ( (Xk - U A) x I) < E' • 
1 1 J 

For each k-simp1ex C of X\A we consider the maps H' I (C x 0) U 

(ac x I) and r., .Hlc x I. By the choice of i' and E', by
1 J 

(15) and by Remark 1, there is a map H : C x I ~ E suchC i 

that 
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(16) Hcl (C x 0) u (aC x I) qii' H'I(c x 0) u (aC x I) 

and 
'" 

(1 7 ) d (p . H ' r. .H Ic x I) < E.1 C 1J 

Now the desired homotopy H: X x I ~ E is given byi 

(18) HI (X x 0) u «X
k

-
l 

U A) x I) = qii,H' and 

(19) Hlc x I = HC . 

This completes the proof of Lemma 3. 

Proof of Theorem 6. It suffices (by Theorem 4) to show 

that (a) implies that p is an X-shape fibration for the class 

of all locally compact separable polyhedra X with dim X < n. 

For a given i and E choose j ~ i and 6 > 0 in accordance 

with Lemma 3. Once again apply Lemma 3, this time to j and 

6, to obtain j' and 6'. Let X = IKI, where K is a countable 

locally finite simplicial complex, dim X 2 n, and let 

h: X ~ E., and H: X x I ~ B., be such that d(p.,h,H ) < 6'.
J J J O

By a standard construction, one can find two sequences of 

finite subpolyhedra X Y ~ X, k = 1,2,---, which cover Xk ' k 

and are such that Xk n Xk ' ¢, Y n Yk , = ¢ for k ~ k' andk 

Y n (U Xi) = n (Xk u Xk ) · By the choice of j , and o' k Yk - l 

there is a homotopy H': (U Xk ) 
x I ~ E. such that 

J 

(20) if'l (u X ) x o = q .. ,hi (U X ) andk JJ k 

(21) d(p.R' ,r .. ,HI (U Xk ) x I) < 6.
J JJ 

Again we apply Lemma 3, this time to each pair (Y
k

, 

Y n (X u X to obtain a homotopy H Y x I ~ E whichk k - l k » k : k i 

extends qijH 1 I (Yk n (Xk - 1 U Xk » x I and qijhlYk and is such 

that 

( 2 2 ) d (p ,R
k

, r. . ,H IY x I) < E.
1 1J k 

Clearly, the map H: X x I ~ Ei given by HI (u Xk ) x I q 1J.. H' 
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...., 

Hk has all of the desired properties. 

Example 1. For every n there is a map p: E + B which is 

an n-shape fibration, but which fails to be an (n + I)-shape 

En 2fibration. Indeed, let E = sn+l ~ + be the unit sphere 

n+2and let B be the segment Ox ••• x ° x [-1,1] ~ E whose 

end-points are the south-pole eO and the north-pole e ofl 

Sn+l. Let p: E + B be the projection defined by p(x '.'"
1 

x +l 'x + ) (O, ••• ,O,x + ). Then p fails to have the AHLP n n 2 n 2 

for X = Sn+l and is not an (n + I)-shape fibration. One can 

see this by considering the maps h = identity and H defined 

by H(xl' • • • , x +l ' x +2 ' t) = (0,···, 0, (1 - t) X +2 ). However,n n n

the trivial level map E (i.e., E = (Pi) and Pi = p) does 

have the AHLP with respect to compact polyhedra X where 

dim X < n. This is an easy consequence of the following 

facts: For an arbitrary £ > ° each map h: X + E is £-homotopic 

x ° x [£ - 1,1 - £] is a 

strong deformation retract of B, and pIE,{eO,el }: E,{eO,el } + 

B\{eO,e1 } is a product map and therefore has the homotopy 

lifting property. 

Theorem 7. Let p: E + B be an n-shape fibration~ let 

e E E~ b = p(e)~ and F = p-l(b). Then~ p induces an iso­

morphism of the homotopy pro-groups 

Theorem 2 of [12] is the analogue of Theorem 7 and its 

proof applies without change to establish Theorem 7. Notice 

that one can use Theorem 2 of the present paper to achieve 

that p be induced by a level map having the n-HLP. 
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Again by arguing as in [12], one obtains the following 

theorem. 

Theorem 8. If p: E + B is an n-shape fibration, e E E, 

b = p(e), F = p-l(b), then the following (finite) sequence is 

exact: 

!.*(24)	 pro - TI (F,e) --+
 
8 n
 

~ pro - TI - l (F ,e) + n 

The above sequence is obtained from the exact pro-homotopy 

sequence of the pointed pair (E,F,e) (see [10]) by replacing 

pro - TIk(E,F,b) by pro - TIk(B,b), k 2 n (using Theorem 6). 

This	 also explains the morphisms ~*' ~* and 8. 

6. Weak Shape FibratioDS 

Definition 7. A map p: E + B is called a weak shape 

fibration if it is an n-shape fibration for every n. 

Notice that for the corresponding level maps ~ and for 

given i and E the lifting index and lifting mesh depend on n. 

The next corollary follows from Theorems 7 and 8. 

Corollary 2. For a weak shape fibration p: E + B the 

morphism 

E*: pro - TI k (E , F , e) --+ pro - TI k (B , b) 

is an isomorphism of pro-groups for all k and one has an 

(infinite) exact sequence corresponding to (24). 

Theorem 9. Let p: E + B be a weak shape fibration and 

let the- points x,y E B belong to the same path component. If 

dim E < 00 and dim B < then the fibers X = p-l{x) and Y00, 

P-1 
(y) have the same shape. 
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Proof. The proof of Theorem 9 will follow from the 

scheme of proof of Theorem 3 of [11] once we establish the 

following fact: There exist an integer r and a level map 

E': E' ~ ~ of polyhedral sequences such that 

(1)	 dim El ~ r for each i, 

(2)	 P = lim E', and 

(3)	 E' has the HLP with respect to metric compacta of 

dimension <r + 1. 

In order to establish this fact, embed E and B in 

Euclidean	 spaces Rn and Rm, respectively. One now obtains 

Rn RmE: ~ ~ ~ by extending p to a map p: ~ and by consider­

ing suitable decreasing sequences of polyhedral neighborhoods 

of E and B respectively. It follows from Theorem 1 that for 

each k, E has the X-AHLP where X is the class of metric com­

pacta of dimension <k. The proof of Theorem 2 now yields 

E': ~' ~ B such that for each k (in particular, for k = r + 1 

defined below), E' has the X-HLP where X is the class of 

metric compacta of dimension <k. Furthermore, the proof of 

Theorem 2 allows one to assume that the members E! of E' are 
1 

subpolyhedra of Ei x Bi which implies that dim Ei ~ n + m = r. 

Theorem 10. If E and B are compact ANR'S3 then p: E ~ B 

is a weak shape fibration if and only if it is an approximate 

fibration 3 or equivalently a shape fibration. 

Proof. An approximate fibration between compact ANR's 

is a shape fibration and thus also a weak shape fibration. 

Conversely, if P is a weak shape fibration, then for 

each n the trivial level map of ANR-sequences E has the AHLP 

o	 1 nwith respect to {I ,I ,···,1 } by Theorems 1 and 6. This 
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kimplies that p has the AHLP for all I , k = 0,1, •••. Hence, 

by Theorem 2.6 of [2], P is an approximate fibration. 

7. Cell-like Maps are Weak Shape Fibrations 

Theorem 11. Every cell-like map p: E + B between metric 

compacta is a weak shape fibration. 

By specializing Lemma 8.3 of [4] one obtains the follow­

ing lemma. (This Lemma can also be proved by using the tech­

niques of Lemma 2.3 of [7].) 

Lemma 4. Let p: Q + Q be a map~ let B ~ Q be a compact 

subset of Q~ let E p-l(B) and let Sh(p-l(b)) = 0 for each 

b E B. Then for any two neighborhoods U ~ E, V :=> B with 

p-l(V) c U and for any n E N and E > 0 there exist neighbor­

hoods U' ::: E~ V' :2 B with U' ~ U" V' c V" p-l (V') ~ U' having 

the following property: If X is a compact polyhedron" 

dim X ~ n~ and A ~ X a compact subpolyhedron and if h: A + U', 

g: X + V' are maps such that ph = glA, then there exists a 

map g: X + U such that glA hand d(pg,g) < E. 

Proof of Theorem 11. Let p: E + B be a cell-like map 

between metric compacta. We embed E in Q and consider the 

quotient space Q Q/{p-l(b): b E B} and the quotient map TI. 

One can identify B with TI(E) so that TIlE = p. Since Q is a 

compact metric space, it can be embedded in Q. Notice that 

for TI: Q + Q ~ Q one has TI-l(B) = E. Applying Lemma 4 to 

TI one can construct by induction compact ANR-neighborhoods U

-1
and Vi of E and B respectively such that TI (Vi) ~ Ui' the 

neighborhoods U and Vi' i E, N, form inclusion ANR-sequencesi 

with limits E and B respectively and U' = Ui , V' = Vi satisfy 

i 
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Lemma 4 for U = Ui-l' V = Vi-I' n = i and E = t. 
The maps p. = nIU.: U. ~ V. form a level map _p, which 

111 1 

induces p. Furthermore, for given i, n E Nand E > 0 one 

can choose j E N such that j > fuaX{i,n,~}. If X is a compact 

polyhedron, dim X 2 n, and if h: X ~ U. and H: X x I ~ V. 
J J 

satisfy H
O

= Pjh = nh, then there is a homotopy H: X x I ~ 

U _ ~ U such that HO = hand d(nH,H) < I < E. In view ofj 1 i 

Theorem 6 and Remark 2 this completes the proof. 

Example 2. The Taylor map is a weak shape fibration 

(Theorem 11), which fails to be a shape fibration (Example 6 

of [Ill). 

8. Shape Cell-bundles 

In this section we exhibit for every cell-like map 

p: E ~ B a level map E between ANR-sequences which induces p 

and which has a certain local factorization property. This 

yields an alternate proof of Theorem 11 and is of some inde­

pendent interest. 

Definition 8. A map p: E ~ B between metric compacta is 

called a shape disk-bundle (shape Q-bundle) if there is a 

level map of ANR-sequences E: ~ ~ ~ which induces p and which 

has the following property: For each i there is a j ~ i such 

that for each b E B. there exists an open neighborhood V of 
J 

b in B. and an open set U ~ B . with r .. (V) c U such that for
] 1 1J ­

F the n-cell (the Hilbert cube Q) we have the following fac­

torization diagram where n: F x V ~ V is the second projection. 

We call shape disk-bundles and shape Q-bundles jointly shape 

cell-bundles. 
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-1	 qij -1 
p. (U) c	 p. (V)

1.	 ____ ~J 

~FXV q 
P. P.tn1. J 

~V~ 
U (	 V 

r .. 
1.J 

Theorem 12. Every shape cell-bundle is a weak shape 

fibration. 

Proof. Let E: ~ + ~ be a level map as in Definition 8. 

Notice that it will more than suffice to establish the fol­

lowing: given i,n E N there exists j ~ i such that for any 

compact polyhedron X, dim X ~ n, and subp01yhedron A ~ X, 

and for any maps H: X + B., h: A + E. with p.h = HIA, there 
J J J 

"" 
is a map H: X + E such that

i 

(1) iliA	 q .. h, and 
1.J 

r .. H. 
1.J
 

In order to prove this fact choose integers i
 

< i + = j such that i satisfies Definition 8 with re­n l	 k 
ik 

spect to i 
k 

- l . Notice that we can find open covers V of 

ik+l
B. , k = O,l,···,n + 1, such that any V E V admits a 

1.k . 

U E V1.k satisfying Definition 8. 

Suppose we are given the maps H: X + B., h: A + E. with 
J J 

p.h = HIA. Let K be a triangulation of X of fine enough mesh 
J 

in+l
that simplices of K are mapped into elements of V under 

H. Let Lr denote the set of all simplices from K of dimension 

<r which are not contained in A. One can easily find a map 

E. such tha.t 
l.n 
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(3) fiO IA = q ..h, and 
lnJ 

(4) P. H 
~O 

= r ..HIA U IL 
0 I.

ln lnJ
 
r
Inductively, suppose that H : A U ILr , + E. is such 

In-r 
that 

( 5) Hr IA = q. .h, and 
In-r J 

r
( 6 ) P. H = r. .H IA U IL r I • 

In-r In-rJ 
In order to define fir+l: A U ILr+ll + E. we extend 

In-r-l 
"'r . l' f r+lq. . H to all (r + 1) -slmp lces ~ 0 L as follows. 

In-r-lln-r 

Since fir: a~ + E. is already defined, one can consider the 
In-r 

map 

(7) TIlqlfH
~r 

: a~ + F, 

where TIl: F x V + F is the first projection. Since F is con­

tractible, the map (7) can be extended to a map g: ~ + F. 

Then we define lir+ll~: ~ + E. by
In-r-l 

(8) Hr+ll~ = q' (g x r. .HI~). 
In-kJ 

It is easy to check that Hr +l so defined has all the pro­

perties needed in the inductive step. Finally, H = lin: X + E. 
1 

is the required map satisfying (1) and (2). 

Theorem 13. Every cell-like map p: E + B between finite-

dimensional metric compacta is a shape disk-bundle. 

We shall prove two preliminary lemmas. 

Lemma 5. Let p: E + B be a cell-like map between finite 

dimensional metric compacta. Then~ there exist m,n E Nand 

embeddings j: B + Rn~ i: E + x such that the projectionRm Rn
 

Rm Rn Rn
TI: x + satisfies the following conditions: 

(9) TIi = jp~ and 

(10) for each b E B the set ip-l(b) is cellular in the 
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-1 mhyperplane n j(b) = R x j(b). 

Proof. For n > 2 dim B + 1 there is an embedding 

j: B	 ~ R
n

. For r > 2 dim E + 1 there is an embedding 

k: E ~ R
r 

. An easy general position	 argument enables one 

to	 verify that for each b E B, kp-l(b) ~ rr x 0 satisfies 

3the	 cellularity criterion [13] in Rr + Rr 
x R3 provided 

r > 2 (e.g., p. 600 of [8]). Let m = r + 3 > 5 and let 

Rm Rni: E	 ~ x be given by 

(11) i(x) = (k(x),jp(x)). 

Then, i is an embedding because k is an embedding. Further­

more, ni = jp and for each b E B the set ip-l(b) = kp-l(b) 

j(b) is cellular in Rm 
x j(b) by Theorem 3 of [13]. This 

completes the proof of Lemma 5. 

Remark 7. From now on we shall identify x E E with i(x) 

and b E B with j(b). Therefore, p: E ~ B can be viewed as 

Rm Rn Rnthe restriction nlE of the projection n: x ~ . 

Notice that p -1 (b) is now cellular in R
m 

x b for each b E B. 

Definition 9. A finite collection Cof pairs (Bk,Dk ), 

k 1,2,···,r, will be called an admissible collection for 

P if it satisfies the following conditions: 

r
(12) Bl , • • • , Br are PL n-cells in Rn and B ~ Uk=lInt Bk 

(13)	 B n B t- <P for k = 1, • • • , r k 

(14)	 Dl ,··· ,Dr are PL m-cells in Rm such that for 

k = l,···,r, 

p-1(B n B ) ~ (Int D ) x B .
k k k 

With each admissible collection Cwe associate two poly­

hedra 

(15)	 Be 

x 
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m n 
(16) EC = U~=l (Ok x Bk ) ~ R x R . 

Notice that TI (EC) = BC' where TI: R
m 

x R
n 

-+ Rn is the second 

projection. Also notice that BC is a neighborhood of B by 

(12), and that EC is a neighborhood of E since for e E E 

there exists by (12) a B such that p(e) E Int B and so by
k k 

(14) e E Int Ok x Int B ~ EC. However by the invariance ofk 

domain Int Ok x Int Bk is open in Rm 
x Rn and therefore 

e E Int EC. 

Remark 8. An admissible collection always exists. In 

particular, if Bl is a PL n-cell in R
n 

with B =Int Bl and 01 

is a PL m-cell in Rm with TI' (E) ~ Int 01 (where TI' is the 

first projection), then the single pair (Bl,Ol) forms an 

admissible collection. 

Lemma 6. Let C= {(Bk,Ok)}~=l be an admissible collec­

tion for p: E -+ B, let X ~ EC be an open neighborhood of E 

m
in R x R

n and let Y =U Int Bk be a compact neighborhood of 

n
B in R . Let 0 be the Lebesgue number for the open cover 

{Int B n r 
of Y. Then, there exists an admissible col­

lection C' = {(Bk"Ok')}~:=l for p such that 

k Y}k=l 

(17) ~ Y,BC' 
(18) diam Bk, < 0/3, k' = l,---,r', 

(19) Ok' x B
k

, ~ X, k' = l,---,r', hence EC' ~ x, and 

(20) x B ~ (Int Ok) x B for all k such thatOk' k
, 

k , 

Bk, ~ Int Bk · 

Proof· Let b E B and let ~(b) denote the set of all 

indices k E {l,---,r} such that b E Int B Then, by (14)k . 

(21) P-1 (b) ~ n (b) «Iut Ok) x B ).
kElI k 

Therefore, 
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(22)	 rr'p-l(b) ~ nkE~(b)Int Dk .
 

Rm
By Lemma 5 we may choose a PL m-cell	 Db ~ such that 

-1 
(23) nip (b) ~ Int Db ~ Db ~ nkE~(b)Int Dk . 

-1
Since p (b) ~ X, one can also achieve that 

(24) Db x b c X. 

Now choose a PL n-cell neighborhood B of b in Y so small
b 

that 

(25) diam B < 8/3,
b 

(26) p-l(B n Bb ) ~ (Int Db) x Bb C Db	 x Bb ~ (nkE~(b)IntDk) 

x Bb, and 

(27) Db x Bb ~ X. 

Since B is compact, the covering {Int Bblb E B} of B 

admits a finite subcover. Thus, we obtain a finite collec­

tion Bi,···,B;, of PL n-cells and a corresponding collection 

Di,···,D;, of PL m-cells. Then [' = {(Bk"Dk')}~:=l is an 

admissible collection which satisfies (17)-(20). Notice in 

particular that (14) and (20) follow from (26). 

Proof of Theorem 13. Let p: E + B be a cell-like map 

between finite-dimensional compacta. Then we identify p with 

nlE as described in Remark 7. 

We shall now define by induction a sequence of admissible 

collections Ci , i = 1,2, •••. We choose for C an arbitraryl 

admissible collection (Remark 8). Given C = {(Bk,Dk)}~=li 

we define Ci +l = {(Bk"Dk')}~:=l by applying Lemma 6 to 

C Ci , X = Xi contained in the Iii-neighborhood N(E,l/i), 

Y Y contained in N(B,l/i) and to 8 = 0i the Lebesgue num­i 
r

ber for {Int B n Yi}k=l. We obtain	 in this way a level mapk 

E (Pi) of polyhedral inclusion sequences with Pi = n\EC 
i 
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where lim	 E p TIlE: 

We claim that E satisfies all the conditions of Defini­

tion 8 with j i + 1 and F an m-cell D (depending on b E B) . 
k 

Indeed, if b E B, one can choose by (12) a k O such that 

b E Int B = V. Then by (16) we have 
ko 

-1 
(28) (Pi+l) (V) 

Let J = {k': V n B ~ ¢}. Then by (18) there exists a kk , 

such that 

(29) Uk'EJBk' ~ Int Bk = U. 

Notice that k OE J and therefore 

(30) V ~ 11. 

By (20) and (29) 

(31) Uk'EJ(Dk , x Bk ,) ~ (Int Dk ) x U 

and	 so by definition of J and V 

r'(32) Uk'=lDk, x (V n Bk,) ~ (Int Dk ) x V. 

By (28) and (32) we have 

-1(33) (Pi+l) (V) ~ Dk 
x V, 

and	 by (29) , (30) and (16) we have 

r -1
(34) D x V~ Uk=lDk x (U n B ) = (Pi) (U) •k k 

Consequently, V,U,F = D and the inclusions r', q", q' givenk 

by (30), (33) and (34) respectively satisfy all the condi­

tions of Definition 8. 

Theorem 14. Every cell-like map p: E ~ B between metpic 

compacta is a shape Q-bundle. 
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The proof of Theorem 14 is the same as the proof of 

Theorem 13 except that Lemma 7 plays the role of Lemma 5. 

The roles of the PL-cells in Rm is taken by PL-Hilbert 

cubes in Q rrj=l[-l,l] defined as compacta of the form 

(35)	 D x II .. [-1,1] cQ,
J >1 ­

i
where 0 ~ rr~=l[-l,l] ~ R is a PL i-cell. 

Notice that the union of a finite collection of PL-

Hilbert cubes is an ANR. (In fact, it is a Q-manifold.) 

The role of cellular sets in R
m 

is taken by cellular 

sets	 X ~ Q defined as intersections of sequences 

(36)	 Ql ~ Int Ql == Q =: ••• , 2 

where each Q is a PL-Hilbert cube, i.e., is of the form (35).
i 

Remark 9. The proof of Theorem 1 of [9] shows that 

every continuum X of trivial shape which is contained in 

+ 00 [ ].	 •Q =	 rri=l 0,1 1S a cellular set 1n Q. 

Lemma 7. Let p: E ~ B be a cell-like map between metric 

compacta. Then, there exist embeddings j: B ~ Q and i: E ~ 

Q x Q such that the second projection n: Q x Q ~ Q satisfies 

the following conditions: 

(37)	 7Ti = jp, 

(38)	 For each b E B, the set ip-l(b) is cellular in 

n-lj (b) = Q x j (b) • 

Proof. Let j: B ~ Q and k: E ~ Q+ ~ Q be arbitrary em-

beddings. Consequently, by Remark 9 -1kp (b) ~ 
+Q is cellular 

in Q. Let i: E ~ Q x Q be given by 

(39) i (x) (k (x) ,jp (x» . 

Clearly, (37) and (38) hold because 
-1

ip (b) 
-1kp (b) x j (b) 

is cellular in Q x j(b). 
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Example 3. By Theorem 14, the Taylor map p, [16], is a 

shape Q-bundle and therefore a weak shape fibration. However, 

the Taylor map is not a shape fibration (Example 6 of [11]). 

Consequently, if p = lim E' the maps Pi cannot be bundle 

maps. 

In spite of Example 3, we may pose the following ques­

tions for the finite-dimensional case. 

Question 1. Is every cell-like map between finite-

dimensional metric compacta induced by a level map of ANR-

sequences E: E + B such that each Pi: Ei + Bi is a disk­

bundle? 

An affirmative answer to this question was answered by 

T. B. Rushing in "A characterization of inverse limits of 

n-disk bundle maps," Notices, A.M.S. 193, V. 26, no. 3, 

abstract 765-627. 

Question 2. Is there a notion of a "shape bundle" which 

satisfactorily generalizes the notion of a shape cell-bundle? 

This question has been answered affirmatively by Sime 

Ungar in "Shape Bundles" (to appear) . 
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