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n-SHAPE FIBRATIONS

Sibe Mardesié! and T. B. Rushing?

1. Introduction

In [11] and [12] the authors introduced and studied a
class of maps between compact metric spaces called shape
fibrations. A shape fibration is a map p: E + B which is
induced by a level map of ANR-sequences p: E » B, p = lim p,
such that p has a certain homotopy lifting property with
respect to the class of all topological spaces. It is shown
in [11] that the approximate fibrations of Coram and Duvall
[1] are precisely shape fibrations between ANR's. Also, it
is shown in [11] that cell-like maps between finite-dimen-
sional metric compacta are shape fibrations. However, the
Taylor map [16] is an example of a cell-like map between
infinite-dimensional continua which fails to be a shape
fibration.

The purpose of this paper is to consider the homotopy
lifting property with respect to some other classes X of
spaces. In particular, if X consists of all topological
spaces of dimension <n, we obtain the notion of an n-shape
fibration. Maps which are n-~fibrations for all n are also
interesting. We call such maps weak shape fibrations. Most

of the results for shape fibrations obtained in [11] and [12]

lThis research was performed while the first author was
visiting the University of Utah on leave from the University
of Zagreb.

2The research of the second author was supported by a
David P. Gardner Faculty Fellowship and N.S.F. grant MCS77-
03978.
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remain true in appropriate formulations for n-shape fibrations
and for weak shape fibrations. For maps between ANR's, weak
shape fibrations coincide with approximate fibrations and
therefore also with shape fibrations. Furthermore, every
cell-like map between metric compacta (regardless of dimen-
sion) is a weak shape fibration. Consequently, the Taylor
map provides an example of a weak shape fibration which fails
to be a shape fibration.

The authors would like to point out that several of the
results of this paper are modeled on results of Coram and
Duvall in [2]. Also, the authors would like to thank Jerzy
Dydak for bringing to their attention Lemma 8.3 of [4] which

is referred to in Section 7 of this paper.

2. Shape Fibrations with Respect
to a Class of Spaces
We shall consider inverse sequences of metric compacta

p— p— )
E = (Ei,qii,), B = (Bi,rii,). If all Ei and Bi are ANR's,
we speak of ANR-sequences. Polyhedral sequences and Q-mani-
fold sequences are especially useful since polyhedra and

Q-manifolds are convenient ANR's. A level preserving map of

sequences p: E -~ B (abbreviated as level map) is a sequence

of maps p;: E.

-+ B. such that
i i

—_— 3 -l
(1) p;d = TPy for i < i'.

ii!

Definition 1. Let X be a class of spaces. A level map
p: E »~ B is said to have the homotopy Llifting property with
respect to X (X-HLP) provided each i admits a j > i such that
for any X € X and any maps h: X ~» Ej' H: X x I ~ Bj with

(2) psh = Hy.
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There is a homotopy H: X x I » Ei satisfying

(3) Hy = qijh, and

(4) piﬁ = rin.

Every such j is called a lifting index for i.

Definition 2. We say that p: E » B has the approximate
homotopy lifting property with respect to X (X-AHLP) provided
each i and each ¢ > 0 admit a j > i and a § > 0 such that for
any X € X and any h: X - Ej’ H: X x I » Bj with the distance

(5) d(pjh,H < 8,

o)

there is a homotopy H: X x I - Ei satisfying
(7) d(piH,rin) < g.

We call § a lifting mesh for (i,e).

Remark 1. If each Ei is an ANR and if p: E +» B has the
X-AHLP where all members of X are paracompact Hausdorff
spaces, then p also has the formally stronger property ob-
tained by replacing (6) by (3). This follows from the proof
of Proposition 1 of [11l]. (Paracompactness is needed in order

to construct the function ¢: X -+ (0,1] in that proof.)

Remark 2. If each Bi is an ANR and all the members of
X are paracompact Hausdorff spaces, then p: E > B has the
X-AHLP provided it has the formally weaker property obtained
by replacing (5) by (2). This follows from the proof of

Proposition 2 of [11].

Definition 3. Let p: E - B be a level map of inverse
sequences and let (E,qi) = lim E, (B,ri) = lim B. The unique

map p: E » B such that p;d; = r,p for all i, is said to be
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induced by p or to be thelimit of p, denoted by p = lim p.

Definition 4. Let X be a class of spaces. A map
p: E » B between metric compacta is called a shape fibration
with respect to X (X-shape fibration for short) provided
there exists a level map of ANR-sequences p: E - B such that

p = lim p and p has the X-AHLP.

Remark 3. Notice that whenever p is an X-shape fibra-

tion and X! < X, then p is a fortiori an X’-shape fibration.

The proof of Theorem 1 of [11l] applies in the present

situation and yields the following result.

Theorem 1, If p: E » B and p': E' » B' are two level

maps of ANR-sequences with the same limit p = lim p = lim p'

and if for some class X p has the X-AHLP, then so does p'.

The next result follows from the proof of Theorem 2 of

[11] together with Remark 1.

Theorem 2. FLet all members of X be paracompact Hausdorff
spaces. If p: E »~ B is a level map of ANR-sequences such that
limp = p: E > B and p has the X-AHLP, then there is a level
map p':s E' > B of ANR—sequences such that lim p' = p and p'

has the X-HLP.

Remark 4. If all of the members of X are paracompact
Hausdorff spaces and if p: E » B is an X-shape fibration,
then for every closed subset B' < B the restriction p' =
p|E': E' > B', E' = p_l(B'), is also an X-shape fibration.

This is obtained by following the proof of the analogous
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statement for shape fibrations ([11l], Proposition 4) and

applying Theorem 2 at the outset.

3. Shape Fibrations

Definition 5. A map p: E - B between metric compacta
is called a shape fibration if it is an X-shape fibration

where X is the class of all topological spaces.

Remark 5. The following theorem (Theorem 3) shows that
shape fibrations as defined above (Definition 5) coincide
with the shape fibrations as defined in [1l]. Therefore,
for ANR's, shape fibrations (in the sense of Definition 5)

agree with approximate fibrations (see [11], Corollary 1).

Theorem 3. Shape fibrations coincide with X-shape fibra-
tions where X is the class of all separable metric spaces.
Proof. Let p: E - B be a level map of ANR-sequences
such that p = 1lim p and p has the AHLP with respect to
separable metric spaces. For given i and g, let j > i and
§ be the lifting index and mesh respectively. Let X be an
arbitrary topological space and let h: X -» Ej and H: X x
I~ Bj be maps satisfying d(pjh,Ho) < 8. Consider the set
(1) & = {(e,w) €Ej x B:;: d(p(e),w(0)) < 6}, B:j[ is
given the compact-open topology]. Notice that A
is a separable metric space because B§ is one ([3],
Theorem 8.2(3), p. 270 and Theorem 5.2, p. 265).
We shall now define maps f: X > A, g: A ~» Ej and
G: A x I ~» Bj such that
(2) gf = h,

(3) G(f x 1) = H.
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(4) The diagram

AXT “——= XXI

£xI
commutes strictly (where io(y) = (y,0)), and
(5) the diagram
E —3 A
Pj 10

commutes up to 6§, i.e.,
(6) d(pyg(y), Gly,0)) <& for y € A.
We define f by
(7) £(x) = (h(x), ﬁ(x)), where [ﬁ(x)](t) = H(x,t).
The continuity of f follows from ([3], Theorem 3.1(1l),
p. 261). We define g and G by
(8) g(e,w) = e, and
(9) G((e,w),t) = w(t).
The map G is continuous because the evaluation map
(w,t) —— w(t) is continuous ([3], Theorem 2.4(2), p. 260).
By the choice of j and § there is a map é: A x I - Ei
such that
(19) d(éo,qijg) < ¢, and
(11) d(pié,rijc) < e.

Now the map H: X x I » E, given by
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(12) H=G o (f x 1)
has the desired properties, i.e., it satisfies 2.(6) and

2.(7).

Theorem 4. Shape fibrations coincide with X-shape
fibrations where X is the class of all separable, locally

compaet polyhedra.

We shall now prove the theorem by using the following

lemma the proof of which we postpone until the next section.

Lemma 1. Let E and B be ANR's, let X be a separable

metric space and let the following diagram commute

E X
(13) P| ‘10
B x..

I
Then for any n > 0 and § > 0 there exists a separable, locally

h

~-—

— X

H

compact polyhedron P and there exist maps £: X » P, g: P » E,
G: P x I ~ B such that image of £ is a dense subset of P and
(14) d(gf,h) < n
(15) d(G(f x 1),H) < §.

If dim X < n, then one can achieve that dim P < n also.

Proof of Theorem 4. Let j and § be the lifting index
and the lifting mesh for i and ¢/2 with respect to separable,
locally compact polyhedra. We also assume that § is so small
that §-close points in Ej and Bj map by qij and rij respec-
tively to e¢/2-close points in E; and B;. Let X be a separable
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metric space and let h: X » Ej' H: X x I » Bj be maps such
that pjh = HO' Apply Lemma 1 to h, H, pj, §/2 and 7, where
n < § is so small that n-close points map under pj onto
§/2-close points. We obtain a separable, locally compact
polyhedron P and maps f: X - P, g: P » Ej' G: P x I » Bj such
that f(X) is a dense subset of P and (14) and (15) hold.
(Moreover, if dim X < n, then dim P < n. We shall use this
fact in the proof of Theorem 5.)

Since pjh = HO, (14) and (15) imply

(16) d(pjgf,Giof) < §.
Since f(X) is dense in P, (16) implies

(17) d(pjg,Gio) < 8.

In other words, the diagram

(18) P. i0

commutes up to §. By the choice of § and j there is a homotopy
G: P x I » E, such that
(19) d(GO,qijg) < g¢/2 and
(20) d(piG,rijG) < g/2.
We now put
(21) H=G o (f x 1): X x I ~» E;.
Clearly,
(22) d(HO,qijh) < g and

(23) d(piﬁ,rijn) < .

4. The Proof of Lemma 1
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Let us first recall that a map f of a space X into the
nerve |N(V)| of a locally finite open covering V of X is
called a canonical map for V provided

(1) £ Hsew,n)) v

for all v € V. Equivalently, if x € V +++ NV, then

L
f(x) is contained in the closed simplex spanned by the

vertices VO,--~,Vn.

Remark 6. For every map f: X » |K| of X onto a dense
subset of the carrier of a locally finite simplicial complex
K there is a star-finite open covering / of X such that
N(/) = K and f is a canonical map for /. It suffices to
consider the star-finite covering w formed by all St(q,K)
where q € KO. With every g associate the open set V =
f_l(St(q,K)). These sets form a star-finite open covering

of X. Clearly, V, Nl s« N Vn # ¢ if and only if St(qO,K) n

0
eee N St(qn,K) # ¢, i.e., if and only if the vertices
dys°**+9, Span a simplex in K. 1In other words N(V/) = K.
Furthermore, for each vertex g and for the corresponding
v € V one has

(2) £ (st(q,x) = v
which shows that £ is indeed a canonical map f: X » |N(V)| =
|K| for V.

The next lemma will be used in the proof of Lemma 1.

Lemma 2. Let X be a separable metric space. Then every
open covering of X admits a countable star-finite refinement
V and a canonical map £: X » |N(V)| such that £(X) is dense
in |[N(V)|. If dim X < n one can also achieve that dim N(V)

< n.
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Proof. Separable metric spaces are regular and Lindeldf
and therefore strongly paracompact ({15], V. 4.B, p. 172),
i.e., every open covering {/’ admits a star-finite refinement
Ud. 1f dim X < n, then every open covering admits a refinement
U/ of order <n + 1 (which is a fortiori star-finite). Notice
that every star-finite covering {/ of X must be countable.

This is true since {/ admits a countable refinement §/ =
(wl’WZ"") and each Wi is contained in at most finitely
many members of /.

Let g: X +» |N({)| be a canonical map and let {( =
(Ul,U2,°~-). For a highest dimensional simplex S in
St(Ul,N(U)), whose interior is not entirely contained in
Cl(g(X)), one composes g with a projection of S\y into 3S,
where y € Int S\Cl(g(X)). By repeating this procedure finitely
many times, we obtain a modified map f1 such that every sim-
plex S in St(Ul,N(U)) is either entirely contained in
Cl(fl(X)) or its interior is disjoint with fl(x). We now

modify £, over St(Uz,N(U)) to obtain f2’ etc. Because of

1
local finiteness, £ = lim fn exists and Cl(f(X)) = |K| for
some subcomplex K of N({/).

Notice that if for some x € X the point f(x) belongs to
St(Ui,N(U)), then also g(x) € St(Ui,N(U)). By Remark 6,
f: X + |K| is a canonical map for the star-finite covering
V which consists of sets V, = f_l(St(Ui,K)) where U; is a
vertex of K. If x € V;, then f(x) € St(U;,K) € St(U;,N({))
and therefore g(x) € St(u;,,N()), i.e., x € g T (St(U;,N(/).
Since g is a canonical map for {/, the set g-l(st(Ui,N(U)) is

contained in the member Ui of (/. Hence, Vi < Ui and we see

that V refines (/ and thus also {’.
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If dim X < n, then N(J/) = K € N({) and dim N({/) < n

imply that dim N(/) < n.

Proof of Lemma 1. It follows from ([6], Theorem 8.1,
p. 146) that there exists an open covering {// of X x I such
that for any locally finite refinement { of {// there exist
maps G: |N({)| » B and g: |N({/|X x 0)| » E such that for any
canonical map ¢: X x I » |N({)| one has

(3) d(G¢, H) < § and

(4) dlg(s|x x 0)ig,h) < n.
Notice that the restriction U|X x 0 of {/ to X x 0 consists of
the sets U N (X x 0) where U € {. The nerve N({/|X x 0) can
be viewed as a subcomplex of N({/) if one identifies the vertex
U N (X x 0) of N({/|X x 0) with the vertex U of N({/), U € (.
Consequently, if (x,0) € Yy N ees N U, then ¢(x,0) is con-
tained in the closed simplex spanned by the vertices UO,.--,U

r
and therefore ¢(x,0) < |N({/|X x 0)

. The composition
g(¢|X x 0) is thus well-defined.

It is well-known (e.g. [5], IX Theorem 5.6, p. 241)
that one can refine (' by a stacked covering of X x I over
a covering V of X. By Lemma 2 one can assume that / is a
countable star-finite covering which admits a canonical map
f: X > |N(/)| = P such that £(X) is dense in P. (Moreover,
if dim X < n, one can achieve that dim P < n.) By the defiﬁi—
tion of stacked coverings, for each V ¢ Y/ there is a finite
collection of open intervals JY,---,JX(V) which covers I and
whose nerve is a triangulation of I. Furthermore, each
Vv x JY is contained in a member of {’.

Now consider all of the sets St(v,N(V)) x JY. They form
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an open covering w of P x I. Let (L,L') be a countable
locally finite triangulation of (P x I, P x 0) such that the
sets St(q,L), q € LO, refine w. Then we put

(5) U= {(€£ x 1)"H(st(q,L): q e L0}.
This is a countable star-finite covering of X x I. For each

vertex q € L0 there is a Vv € V/ and an i < n(V) such that

(6) St(q,L) € St(V,K) x J}.

Therefore,

(7) (£ x 1) (st(q,L)) < (£ x l)—l[St(V,N(V)) y JZJ

f'l[St(v,N(V)) x Jz].

Since f: X » |N(/)| is a canonical mapping for V, one has
f_l(St(V,N(V)) < V and therefore

(8) (£ x 1) M (st(q,1) €V x I},
which proves that { refines {’.

We now identify q € L¥ with U = (£ x 1) 1(st(q,1)) € (
and conclude by Remark 6 that N({) = L and that £ x 1: X x I ~»
P x I = |N({)| 1is a canonical map for the covering /.

The proof will be complete if we show that

(9) |N(U|Xx x 0)] =P x 0.

Indeed, by the choice of (/’, we then obtain maps G: P x I - B
and g: P x 0 - E such that conditions (14) and (15) of Lemma
1 hold.

Notice that (9) is equivalent to the follnwing asser-
tions:

(i) U N (X x 0) # ¢ implies that q € L',

(ii) g € L' implies that U N (X x 0) # ¢,

(iii) U

0 N ses N u,n (X x 0) # ¢ implies that <q0,---,qn> €

L', and
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(iv) ¢ dgr**°09,) € L' implies that U, N oese N Un n

(1)

(ii)

(iii)

(iv)

(X x 0) # ¢.

If g § L', then St(q,L) N |L'| = ¢. Thus

(f x 1)"1(St(q,L)) n (£ x l)_l(IL'I) = ¢ or
UnN(Xx0)=¢.

If g € L', then St(q,L) N |L'| is a nonempty, open
subset of |L'|. Since f(X) is dense in |L'|, there
exists an x € X such that f£(x) € St(q,L) N |L'].
Thus (x,0) € (£ x 1) 1(st(q,L)) n (£ x 1) (L))
or (x,0) € U N (X x 0).

If (x,0)€ U, N «ce N Un’ then (f x 1) (x,0) €

0
(£ x 1)(Ug) N eee N (£ x 1)(U) N jn'| < St(qy,L) N
+e+ N st(q,,L) N |L'| = St(qgy,L') N +++ N St(q,L").
Therefore, 9gr°°°sd, Span a simplex in L'.

If dgr°**r9, SPan a simplex in L', then St(qo,L') N

cee N St(qn,L') is a nonempty open subset of |L'

By denseness of £(X) in |L'|, there exists an x € X
such that (£ x 1) (x,0) = (£(x),0) € St(qgy,L') N

s+ N St(q,L'). Thus (x,0) € (£ x l)_l(St(qo,L')) n
see 0 (E x 7St L) £ (F x D)7H(st(Qy, L) N
“ee N (£ x 1)7H(SE(g L)) N (X x 0) = Uy N eee N

0

U, N ... N U, n (X x 0).

5. n-Shape Fibrations

Definition 6. A map p: E » B between metric compacta

is called an n-shape fibration if it is an X-shape fibration

where X is the class of all topological spaces X of dimension

<n.

Here we are using covering dimension based on numerable
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coverings.

Theorem 5. A map p: E » B i{s an n-shape fibration if
and only if it is an X-shape fibration where X is either of
the following two classes:

(a) X is the-class of separable metric space X with

dim X < n,
(b) X is the class of separable, locally compact poly-
hedra P with dim P < n.

Proof. We shall first show that p is an n-shape fibra-
tion whenever (a) holds. Let j and § be a lifting index and
a lifting mesh for i and ¢ with respect to separable metric
spaces of dimension <n. Let X be a topological space,
dim X < n, and let h: X -» Ej’ H: X x I > Bj satisfy

(1) d(pjh,H io) < 6.
We introduce the separable metric space A and the maps
f: X > A, g: A ~> Ej' G: A x I ~»> Bj as in the proof of
Theorem 3. Then the diagram 3. (5) commutes up to §. By a
well-known factorization theorem (e.g., [14], Lemma 2.2,
p. 34) the map f factors through a separable metric space
Y where dim Y < dim X < n, i.e., there are maps f': X » Y,
f": Y » A such that

(2) £"f' = £.
One can also achieve that f' be surjective.

Now consider the diagram

(3) P. i

%3 grEmn Y
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which commutes up to 6§ since f': X - Y is onto. By the
choice of j and § there exists a map G: ¥ x I » Ei such that
(4) d(ao,qijgf") < g, and
(5) d(p;G,ry G(E" x 1)) < e.
We now define H: X x I - E; by
(6) H = G(£' x 1).
It is readily seen that
(7) d(ﬁo,qijh) < g, and
(8) d(piﬁ,rijn) < e.
The proof that (b) implies (a) follows the proof of
Theorem 4 with the single modification of using the case

dim X < n in Lemma 1.

We now further reduce the defining class X for n-shape

fibrations.

Theorem 6. A map p: E + B is an n-shape fibration if
and only if it is an X-shape fibration where X is either of
the following two classes:

(a) X is the collection of all k-cells with k < n, t.e.,

X = {10,11,---,In},

(b) X is the class of compact polyhedra of dimension <n.
We precede the proof of Theorem 6 by a lemma.

Lemma 3. Let p: E ~ B be a level map which has the
X-AHLP where X = {IO,Il,---,In}. Then for every i and & > 0
there is a j > 1 and a § > 0 such that the following approxi-
mate partial homotopy lifting property holds: Let X be a
compact polyhedron with dim X < n and let A € X be a sub-

polyhedron. Let h: (X x 0) U (A x I) ~» Ej’ and H: X x I > Bj
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be maps such that

(9) d(pjh,Hl(X x 0) U (A x I)) < 8.
Then, there is a homotopy H: X x I » Ei such that

(10) H[(X x 0) U (A x I) = a; 5h, and

(11) d(psH,r; H) < .

Proof. The proof proceeds by induction on dim(X - A).
If dim(X - A) = 0, let j and § be a lifting index and a
lifting mesh for i and €. Then we extend qijh to a map
H: xx0) U ((Aauzx% x1) E; where for any vertex
X € XO\A the restriction ﬁx = ﬁlx x I is a homotopy satisfy-
ing

(12) ﬁx(x,O) = q;4h(x) (see Remark 1), and

(13) d(piﬁx,rin|(x x I)) < €.

We now assume the assertion true for dim(X - A) < k < n.

For a given i and ¢ choose a lifting index i' and a lifting

mesh ¢' for {IO,Il,---,In}. Now choose j and § in accordance

with the inductive hypothesis for the integer k - 1 and for

i' and e'. We also require that §-close points map by ri'j

into €'-close points.
Now assume that dim(X - A) = k and that we are given h

and H satisfying (9). By the inductive hypothesis there is

k-1

a map H': (X x 0) U ((X U a) x I) - Ei' such that

(14) H'|[(X x 0) U (A x I) = g;,5h[(X x 0) U (A xI)

and

1

(15) d(p; d',ry 58] (X x 0) (XXl ya) x1) <e'.

For each k-simplex C of X\A we consider the maps ﬁ'|(C x 0) u

(3C x I) and ri,jHIC x I. By the choice of i' and €', by

(15) and by Remark 1, there is a map ﬁ Cx I ~+ Ei such

C:
that
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(16) Ho|(C x 0) U (3C x I) = gy, H'[(C x 0) U (3C x I)

and
(17) d(leC'rl]ch X I) < €.

Now the desired homotopy H: X x I » Ei is given by
(18) H| (x x 0) v (X7 ya) x 1) = q, i and

(19) H|C x I = H.

This completes the proof of Lemma 3.

Proof of Theorem 6. It suffices (by Theorem 4) to show
that (a) implies that p is an X-shape fibration for the class
of all locally compact separable polyhedra X with dim X < n.

For a given i and € choose j > i and § > 0 in accordance
with Lemma 3. Once again apply Lemma 3, this time to j and
§, to obtain j' and §'. Let X = |K|, where K is a countable
locally finite simplicial complex, dim X < n, and let
h: X ~» Ej’ and H: X x I ~ Bj' be such that d(pj,h,HO) < 8'.
By a standard construction, one can find two sequences of

finite subpolyhedra X Y <X, k=1,2,-+-, which cover X

k'’ "k
W N X0 =6, Y, N Y, =¢ for k # k' and

—_ S A ) ]
Yk n (u Xi) = Yk n (Xk_l U Xk)' By the choice of j' and §

there is a homotopy H': (U Xk) x I - Ej such that

and are such that X

(20) H'| (U X)) x 0= qjj,h|(u X,) and
(21) d(ij',rjj,H|(U xk) x I) < &.

Again we apply Lemma 3, this time to each pair (Yk,
K’ Yk x I - Ei which
extends q, 4H | (v, 0 (X _; U X)) x I and qithYk and is such

Y, N (X_; U X)) to obtain a homotopy H

that

(22) d(piH j,H[Yk x I) < g.

r.
k’"1i

Clearly, the map H: X x I - E, given by H| (U X)) x I.= qijﬁ'
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and ﬁlYk x I = ﬁk has all of the desired properties.

Example 1. For every n there is a map p: E -~ B which is
an n-shape fibration, but which fails to be an (n + 1)-shape

n+l 2

fibration. 1Indeed, let E = S c ™ be the unit sphere

and let B be the segment 0 x ¢++ x 0 x [-1,1] < En+2 whose
end-points are the south-pole e, and the north-pole el of
Sn+l. Let p: E » B be the projection defined by p(xl,--',

(0,°-,0 ). Then p fails to have the AHLP

xn+1'xn+2) rXn+2
n+l

for X = 8 and is not an (n + 1)-shape fibration. One can
see this by considering the maps h = identity and H defined

by H(xl,-o-,xn+l,xn+2,t) = (0,++¢,0,(1 - t)xn+2). However,

the trivial level map p (i.e., p = (pi) and p; = p) does

have the AHLP with respect to compact polyhedra X where

dim X < n. This is an easy consequence of the following

facts: For an arbitrary ¢ > 0 each map h: X +~ E is e-homotopic
to a map X — E\{eo,el},o X eee x 0 x [g -1,1 - ¢] is a
strong deformation retract of B, and p[E\{eO,el}: E\{eo,el} -
B\{eo,el} is a product map and therefore has the homotopy

lifting property.

Theorem 7. Let p: E »~ B be an n-shape fibration, let
e € E, b=ple), and F = p_l(b). Then, p induces an 180-
morphism of the homotopy pro-groups

(23) py: pro - ﬂk(E,F,e) -+ pro - nk(B,b) for all k < n.

Theorem 2 of [12] is the analogue of Theorem 7 and its
proof applies without change to establish Theorem 7. Notice
that one can use Theorem 2 of the present paper to achieve

that p be induced by a level map having the n-HLP.
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Again by arguing as in [12], one obtains the following

theorem.

Theorem 8. If p: E » B is an n-shape fibration, e € E,
b = pl(e), F = p_l(b), then the following (finite) sequence is
exact:
Lk Px
(24) pro - n_(F,e) — pro = n_(E,e) — pro - w_(B,b)
s n n n

—» pro - Mooy (Fre) > eeel

The above sequence is obtained from the exact pro-homotopy
sequence of the pointed pair (E,F,e) (see [10]) by replacing
pro - ﬂk(E,F,b) by pro - wk(B,b), k < n (using Theorem 6).

This also explains the morphisms i,, p, and §.

6. Weak Shape Fibrations

Definition 7. A map p: E » B is called a weak shape

fibration if it is an n-shape fibration for every n.

Notice that for the corresponding level maps p and for
given i and ¢ the lifting index and lifting mesh depend on n.

The next corollary follows from Theorems 7 and 8.

Corollary 2. For a weak shape fibration p: E -~ B the
morphism
Px: Pro - nk(E,F,e) — pro - nk(B,b)
is an isomorphism of pro-groups for all k and one has an

(infinite) exact sequence corresponding to (24).

Theorem 9. Let p: E - B be a weak shape fibration and
let the points X,y € B belong to the same path component. If
dim E < = and dim B < ©, then the fibers X = p Y(x) and Y =

P_l(y) have the same shape.
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Proof. The proof of Theorem 9 will follow from the
scheme of proof of Theorem 3 of [11l] once we establish the
following fact: There exist an integer r and a level map
pP': E' - B of polyhedral sequences such that

(1) dim Ei <r for each i,

(2) p = lim p', and

(3) p' has the HLP with respect to metric compacta of

dimension <r + 1.

In order to establish this fact, embed E and B in
Euclidean spaces R® and Rm, respectively. One now obtains
p: E ~ B by extending p to a map p: R® » R™ and by consider-
ing suitable decreasing sequences of polyhedral neighborhoods
of E and B respectively. It follows from Theorem 1 that for
each k, p has the X-AHLP where X is the class of metric com-
pacta of dimension <k. The proof of Theorem 2 now yields
p': E' > B such that for each k (in particular, for k = r + 1
defined below), p' has the X-HLP where X is the class of
metric compacta of dimension <k. Furthermore, the proof of
Theorem 2 allows one to assume that the members Ei of E' are

subpolyhedra of Ei X Bi which implies that dim Ei <n+m-=r.

Theorem 10. If E and B are compact ANR's, then p: E > B
18 a weak shape fibration if and only if it 1is an approximate
fibration, or equivalently a shape fibration.

Proof. An approximate fibration between compact ANR's
is a shape fibration and thus also a weak shape fibration.

Conversely, if p is a weak shape fibration, then for
each n the trivial level map of ANR-sequences p has the AHLP

1

with respect to {IO,I ,---,In} by Theorems 1 and 6. This
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implies that p has the AHLP for all Ik, k=20,1,.... Hence,

by Theorem 2.6 of [2], p is an approximate fibration.

7. Cell-like Maps are Weak Shape Fibrations

Theorem 11, Every cell-like map p: E -~ B between metric

compacta is a weak shape fibration.

By specializing Lemma 8.3 of [4] one obtains the follow-
ing lemma. (This Lemma can also be proved by using the tech-

niques of Lemma 2.3 of [7].)

Lemma 4. Let p: Q » Q be a map, let B < Q be a compact
subset of Q, let E = pul(B) and let Sh(p_l(b)) = 0 for each
b € B. Then for any two neighborhoods U 2 E, V 2 B with
p_l(v) C U and for any n € N and ¢ > 0 there exist neighbor-
hoods U' o E, V' o B with U' €U, V' €V, pul(V') < U' having
the following property: If X is a compact polyhedron,

dim X < n, and A € X a compact subpolyhedron and if h: A » U',

g: X » V' are maps such that ph = g|A, then there exists a

map §: X > U such that §|A = h and d(pg,q) < €.

Proof of Theorem 11l. Let p: E ~ B be a cell-like map
between metric compacta. We embed E in Q and consider the
quotient space 6 = Q/{p-l(b): b € B} and the quotient map w.
One can identify B with w(E) so that ﬂ|E = p. Since 6 is a
compact metric space, it can be embedded in Q. Notice that
for m: Q > Q € Q one has T T (B) = E. Applying Lemma 4 to
m one can construct by induction compact ANR-neighborhoods Ui
and Vi of E and B respectively such that v_l(Vi) c Ui' the
neighborhoods Ui and Vi i € N, form inclusion ANR-sequences

with limits E and B respectively and U' = Ui' v' = Vi satisfy
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V =V, n =1 and ¢ = F+.

Lemma 4 for U= U '
i-1 i

i-1'

The maps p; = ﬂIUi: U,

I Vi form a level map p, which

induces p. Furthermore, for given i, n € N and ¢ > 0 one

can choose j € N such that j > ﬁax{i,n,%}. If X is a compact
polyhedron, dim X <n, and if h: X » Uj and H: X x I > Vj
satisfy Hj = pjh = th, then there is a homotopy H: X x I -

o Ui such that H, = h and d(nﬁ,H) < % < g. In view of

Ui 0
Theorem 6 and Remark 2 this completes the proof.

Example 2. The Taylor map is a weak shape fibration
(Theorem 11), which fails to be a shape fibration (Example 6

of [11]).

8. Shape Cell-bundles

In this section we exhibit for every cell-like map
p: E » B a level map p between ANR-sequences which induces p
and which has a certain local factorization property. This
yields an alternate proof of Theorem 11 and is of some inde-

pendent interest.

Definition 8. A map p: E » B between metric compacta is
called a shape disk-bundle (shape Q-bundle) if there is a
level map of ANR-sequences p: E + B which induces p and which
has the following property: For each i there is a j > i such
that for each b € Bj there exists an open neighborhood V of
b in Bj and an open set U & Bi with rij(V) < U such that for
F the n-cell (the Hilbert cube Q) we have the following fac-
torization diagram where m: F x V - V is the second projection.
We call shape disk-bundles and shape Q-bundles jointly shape

ecell-bundles.
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- 9,4 -
Py (V) 13 ;W
\ ‘4
q' FxV
% I %3
U T v
ij

Theorem 12. Every shape cell-bundle is a weak shape
fibration.

Proof. Let p: E + B be a level map as in Definition 8.
Notice that it will more than suffice to establish the fol-
lowing: given i,n € N there exists j > i such that for any
compact polyhedron X, dim X < n, and subpolyhedron A < X,
and for any maps H: X - Bj' h: A » Ej with pjh = H|A, there
is a map H: X » Ei such that

(1) H|A = qijh, and

(2) piﬁ H.

r..
1]
In order to prove this fact choose integers i = i0 < il <

e < in+1 = j such that ik satisfies Definition 8 with re-

i
Notice that we can find open covers V k of
i
V k+1

spect to lk—l'

, k=0,1,++,n + 1, such that any V € admits a

B.
1k
1k . . c i
U € /™ satisfying Definition 8.

Suppose we are given the maps H: X ~» Bj’ h: A » Ej with

pjh = H|A. Let K be a triangulation of X of fine enough mesh

i
that simplices of K are mapped into elements of V/ n+l under
H. Let L' denote the set of all simplices from K of dimension

<r which are not contained in A. One can easily find a map

8% au L0 » E, such that

n
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~0 _
(3) H |A = qinjh, and

~0 0
(4) P, H = r. .HIA U |L7|.
(A= g gila v e
Inductively, suppose that H': A U |Lr| > E; is such
n-r
that
(5) ﬁr|A = q, .h, and
~r ‘n-r) r
(6) P, H = r, .H|A U |L7|.
) in-r in-r] I |
In order to define Hr+l: AU |Lr+l| - Ei 1 we extend
n-r-

1

q " to all (r + 1)-simplices A of Lr+ as follows.

in-r-1in-r
Since H': 3A ~ Ein—r is already defined, one can consider the
map

(7) m'q"HEY: A ~ F,
where w': F x V » F is the first projection. Since F is con-
tractible, the map (7) can be extended to a map g: A - F.

~r+1

Then we define H |a: A > E by

+1 ipn-r-1
~r
8) H A =q! X r, H|A) .
(8) | q'lg inoi )

It is easy to check that ﬁr+l so defined has all the pro-
perties needed in the inductive step. Finally, # = B™: X » E;

is the required map satisfying (1) and (2).

Theorem 13. Every cell-like map p: E » B between finite-

dimenstional metric compacta is a shape disk-bundle.
We shall prove two preliminary lemmas.

Lemma 5. Let p: E » B be a cell-like map between finite
dimensional metric compacta. Then, there exist m,n € N and
embeddings j: B ~ Rn, i: E > R™ x R" such that the projection
m: R x R" > g satisfies the following conditions:

(9) mi = jp, and

(10) for each b € B the set ip L(b) is cellular in the
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hyperplane ﬂ_lj(b) = R" x j(b).

Proof. For n > 2 dim B + 1 there is an embedding

j: B » R". For r > 2 dim E + 1 there is an embedding

k: E > R°. An easy general position argument enables one
to verify that for each b ¢ B, kp—l(b) S r x 0 satisfies

3 r R3 provided

1]
o)
X

the cellularity criterion [13] in rR°Y
r > 2 {(e.g., p. 600 of [8]). Letm=1r + 3 > 5 and let
i: E » R" x R" be given by

(11) i(x) = (k(x),jp(x)).
Then, i is an embedding because k is an embedding. Further-
more, mi = jp and for each b € B the set ip T(b) = kp T(b) x
j(b) is cellular in R™ x j(b) by Theorem 3 of [13]. This

completes the proof of Lemma 5.

Remark 7. From now on we shall identify x € E with i(x)
and b € B with j(b). Therefore, p: E ~ B can be viewed as
the restriction 7|E of the projection 7: rR™ x rR® > R".

Notice that p_l(b) is now cellular in R® x b for each b € B.

Definition 9. A finite collection (" of pairs (Bk,Dk),
k =1,2,-++,r, will be called an admissible collection for
p if it satisfies the following conditions:

. n r
(12) B1'°'°’Br are PL n-cells in R” and B ¢ Uk=lInt Bk

(13) B NB#¢ for k =1,---,r
(14) Dl,-u,Dr are PL m-cells in R™ such that for
k = ll"'lrl
-1

p "(B N B ) < (Int Dy) x B, .
With each admissible collection C we associate two poly-

hedra

r n
= R, and

(15) BC = Ui=1Bk =
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m n

(16) EC‘= US_. (D, x Bk) SR x R .

i=1""k

Notice that n(Ecﬁ = ch where m: R® x R" » R® is the second
projection. Also notice that BC‘is a neighborhood of B by
(12), and that EC is a neighborhood of E since for e € E

X such that p(e) € Int Bk and so by

x Int Bk = Ec. However by the invariance of

there exists by (12) a B

(14) e € Int Dk

domain Int Dk x Int Bk is open in R™ x R™ and therefore

e € Int EC.

Remark 8. An admissible collection always exists. In

particular, if Bl is a PL n-cell in R® with B c Int B1 and D

is a PL m-cell in R™ with 7' (E) c Int D

1

1 (where 7' is the

first projection), then the single pair (Bl'Dl) forms an

admissible collection.

r .
Lemma 6. Let C\— {(Bk,Dk)}k=l be an admissible collec-
tion for p: E » B, let X € EC be an open neighborhood of E
in R* x R™ and let Y € U Int B be a compact neighborhood of
B in R®. Let 6 be the Lebesgue number for the open cover

{Int B, N Y}§=l of Y. Then, there exists an admissible col-

k
lection C” = {(Bi"Di')}i:=l for p such that

(17) Bcl Y,

(18) diam By, < §/3, k' = 1,---,x',

(19) Dﬁ, X Bi, S X, k' = 1,+-,r", hence Ecl € X, and

(20) p!, x B!, € (Int D) x B!, for all k such that
k k k k
B, S Int B.

Proof. Let b € B and let A(b) denote the set of all

indices k € {1,+++,r} such that b € Int B Then, by (14)

k*

-1
(21) p ~(b) ((Int Dk) x By) .

S Meen(b)
Therefore,
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(22) 7'p T(b) <

S Nxen(p) 10t Dk~
By Lemma 5 we may choose a PL m-cell Dg c R™ such that
l_l ' '
(23) w'p " (b) < Int Db c Db c nkEA(b)Int Dk'

Since p—l(b) < X, one can also achieve that

(24) Dé

Now choose a PL n-cell neighborhood B

x b < X.

é of b in Y so small

that

4 ]
(25) diam Bb

(26) p Y8 n B

< §8/3,

') < (Int D') x B

b Int Dk)

b X By S (Neep (v

x B!, and

bl

(27) D} x B} < X.

b
Since B is compact, the covering {Int B$|b € B} of B
admits a finite subcover. Thus, we obtain a finite collec-
tion Bi,
D{,+++,D}, of PL m-cells. Then (’ = {(Bi,,Dﬁ.)};:=l is an

--o,Bé, of PL n-cells and a corresponding collection

admissible collection which satisfies (17)-(20). Notice in

particular that (14) and (20) follow from (26).

Proof of Theorem 13. Let p: E » B be a cell-like map
between finite-dimensional compacta. Then we identify p with
T|E as described in Remark 7.

We shall now define by induction a sequence of admissible
collections Ci’ i=1,2,+++. We choose for Cl an arbitrary
admissible collection (Remark 8). Given Ci = {(Bk'Dk)};=l
i:=l by applying Lemma 6 to
C = Ci' X = Xi contained in the 1l/i-neighborhood N(E,1/i),

we define Ci+1 = {(B;,,Dy.)}

Y=Y, contained in N(B,1/i) and to 6§ = 6i the Lebesgue num-

ber for {Int B, N Yi}i=l' We obtain in this way a level map

k
p = (pi) of polyhedral inclusion sequences with p; = ﬂ|Ec_
= i
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where lim p = p = 7|E:

ECi ECé cee

Py I,

B, 4 eee
°G Gy

We claim that p satisfies all the conditions of Defini-
tion 8 with j = i + 1 and F an m-cell Dk (depending on b ¢ B).

Indeed, if b € B, one can choose by (12) a ké such that

b € Int Bﬁé = V. Then by (16) we have
-1 _r!
(28) (pi+l) (V) = Uk'=lDﬁ' x (VN Bi,).

Let J = {k': v N Bﬁ, # ¢}. Then by (18) there exists a k

such that
) -
(29) U, 4By, S Int B = U.
Notice that ké ¢ J and therefore
(30) v = (.

By (20) and (29)

(31) U (Di. x Bi.) C (Int Dk) x U

k'ed
and so by definition of J and V
r' '

(32) Up.,_yDy,

By (28) and (32) we have

x (Vv N B}'c,) < (Int Dk) x V.

(33) (py,) "tV e b, x v,
and by (29), (30) and (16) we have
x (Un B = (p) .

(34) D, x VU

r
k k=1
Consequently, V,U,F = Dk and the inclusions r', g", q' given
by (30), (33) and (34) respectively satisfy all the condi-

tions of Definition 8.

Theorem 14. Every cell-like map p: E » B between metric

compacta is a shape Q-bundle.
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The proof of Theorem 14 is the same as the proof of
Theorem 13 except that Lemma 7 plays the role of Lemma 5.
The roles of the PL-cells in R™ is taken by PL-Hilbert

cubes in Q = Hj=l[—l,l] defined as compacta of the form

(35) D x [-1,11 = 9Q,

Hj>i
where D € I}_, [-1,1] € R' is a PL i-cell.

Notice that the union of a finite collection of PL-
Hilbert cubes is an ANR. (In fact, it is a Q-manifold.)

The role of cellular sets in R© is taken by cellular
sets X € Q defined as intersections of sequences

(36) Q; 2 Int Q) 20, 2+,

where each Qi is a PL-Hilbert cube, i.e., is of the form (35).

Remark 9. The proof of Theorem 1 of [9] shows that
every continuum X of trivial shape which is contained in

0" = 15_,10,1] is a cellular set in Q.

Lemma 7. Let p: E > B be a cell-like map between metric
compacta. Then, there exist embeddings j: B » Q and i: E >
Q x Q such that the second projection m: Q x Q > Q satisfies
the following conditions:

(37) 7i = jp,

(38) For each b € B, the set ip_l(b) is cellular in

) =0 x jb).

Proof. Let j: B » Q and k: E ~» Q+ < Q be arbitrary em-
beddings. Consequently, by Remark 9 kp_l(b) c Q+ is cellular
in Q. Let i: E - Q x Q be given by

(39) i(x) = (k(x),jp(x)).

Clearly, (37) and (38) hold because ip “(b) = kp L(b) x 3(b)

is cellular in Q x j(b).
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Example 3. By Theorem 14, the Taylor map p, [16], is a
shape Q-bundle and therefore a weak shape fibration. However,
the Taylor map is not a shape fibration (Example 6 of [11]).
Consequently, if p = lim p, the maps <] cannot be bundle

maps.

In spite of Example 3, we may pose the following ques-

tions for the finite-dimensional case.

Question 1. Is every cell-like map between finite-
dimensional metric compacta induced by a level map of ANR-
sequences p: E >~ B such that each p;: Ei - Bi is a disk-
bundle?

An affirmative answer to this question was answered by
T. B. Rushing in "A characterization of inverse limits of
n-disk bundle maps," Notices, A.M.S. 193, V. 26, no. 3,

abstract 765-627.

Question 2. Is there a notion of a "shape bundle" which
satisfactorily generalizes the notion of a shape cell-bundle?

This question has been answered affirmatively by Sime

Ungar in "Shape Bundles" (to appear).
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