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EXAMPLES OF HEREDITARILY STRONGLY
INFINITE-DIMENSIONAL COMPACTA!

R. M. Schori and John J. Walsh

Examples are given of strongly infinite dimensional
compacta where each non-degenerate subcontinuum is also
strongly infinite dimensional. These are by far the easiest
of such examples in the literature and in addition a dimension
theoretic phenomenon is identified which is used to verify

this hereditary property.

1. Introduction

The first example of an infinite dimensional compactum
containing no n-dimensional (n > 1) closed subsets was given
by D. W. Henderson [He] in 1967; shortly thereafter, R. H.
Bing [Bi] gave a simplified version. 1In 1971, Zarelua [Z-1],
in a relatively unknown article2 (in Russian), gives probably
the simplest construction of this type of example. Later, in
1974, Zarelua [Z-2] constructed more complicated examples
which had the property that each non-degenerate subcontinuum
was strongly infinite dimensional. In 1977, the authors to-
gether with L. Rubin [R-S-W] developed an abstract dimension
theoretic approach for constructing these types of examples;
a significant feature of the latter approach was that the
key concepts of essential families and continuum-wise separa-

tors were properly identified. The second author ([Wa] used

lThe first author was partially supported on NSF Grant
MCS 76~06522.

2The authors only became aware of [Z-1] during the final
draft of this paper.
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this abstract approach to construct infinite dimensional
compacta containing no n-dimensional (n > 1) subsets (closed
or not).

The examples presented in this paper have two important
features: first, their copstruction is particularly simple
and clearly illustrates the phenomena underlying all the pre-
vious constructions; and second, in spite of the simplicity
of their construction, these examples have the property that
every non-degenerate subcontinuum is strongly infinite di-
mensional. A phenomenon is isolated in §7 which shows that
these examples are hereditarily strongly infinite dimensional
and can be used to show that the "extra care" exercised in
[2-2] and [R-S-W] in order to insure this hereditary property
is not necessary. The second example in this paper, see §6,
uses the same construction as in [Z-1] where rather technical
proofs are used to verify the weaker condition that the ex-
ample contains no n-dimensional (n > 1) closed subsets. This
property follows rather automatically for us using the theory

developed in [R-S-W].

2. Definitions and Basic Concepts

By a space we mean a separable metric space, by a com-
pactum we mean a compact space, and by a continuum we mean a
compact connected space. We follow Hurewicz and Wallman
[H-W] for basic definitions and results in dimension theory.
Specifically, by the dimension of a space X, denoted dim X,
we mean either the covering dimension or inductive dimension
(since these are equivalent for separable metric spaces). A

space which is not finite dimensional is said to be infinite
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dimensional.
We collect below the definitions and results needed in
this paper; the reader is referred to [R-S-W] for a more

thorough discussion.

2.1. Definition. Let A and B be disjoint closed sub-
sets of a space X. A closed subset S of X is said to separate
A and B in X if X-S is the union of two disjoint open sets,
one containing A and the other containing B. A closed sub-
set S of X is said to continuum-wise separate A and B in X

provided every continuum in X from A to B meets S.

2.2. Definition. Let X be a space and T be an indexing
set. A family {(Ak,Bk): k € T} is essential in X if, for

each k € T, (Ak,B ) is a pair of disjoint closed sets in X

k
such that if Sk separates Ak and Bk in X, then ﬂ{Sk: k € T}
# 8.
2.3. Theorem. [H-W, p. 35 and p. 78]. For a space X,

dim X > n if and only if there exists an essential family

{(Ak,Bk): k =1,¢¢+,n} in X.

2.4. Remark. Using the Hausdorff metric, the set of
non-empty closed subsets of a compactum is a compactum. When
we refer to a collection of closed subsets being dense, we
mean dense with respect to the topology generated by this

metric.

2.5. Proposition. [R-S-W; Proposition 3.4). Let
{(Ak,Bk): k =1,2,+~+,n} be a collection of pairs of non-

empty, disjoint closed subsets of a compactum X. For each
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k =1,2,°++,n, let jk be a non-empty dense set of separators
of A and Bk and let Y be a closed subset of X. If for each
choice of separators Sk € jk, k =1,2,-+-,n, we have that

(n{sk: k =1,2,*»+,n) 0 Y # @B, then {(Ak ny,B, N¥): k =

k
1,2,+++,n} Zs an essential family in Y and, therefore,

dim ¥ > n.

2.6. Definition. A space X is strongly infinite di-
mensional if there exists a denumerable essential family
{(Ak,Bk): k =1,2,-++} for X. A space X is hereditarily
strongly infinite dimensional if each non-degenerate subcon-

tinuum of X is strongly infinite dimensional.

2.7. Theorem. [R-S-W; Proposition 5.5]. Let X be a
strongly infinite dimensional space with an essential family
{(Ak,Bk): k =1,2,++¢}. For k = 2,3,¢¢¢, let Sk be a con-
tinuum-wise separator of Ay and Bk in X. If Y= n{Sk: k =

2,3,+++}, then Y contains a continuum meeting Al and Bl‘

3. Outline of the Example
Let the Hilbert cube be denoted by Q = H{Ik: k =1,2,¢00}

where Ik = [0,1]1, let 0,: Q ~ Ik denote the projection, and

k
_ =1 _ =1 . . _
k = Hk (1) and Bk = Hk (0). The family {(Ak,Bk). kK =

1,2,+++} is an escential family in Q [H-W, p. 49].

let A

For each k = 1,2,+++, a space Yk = x3k—l n X3k will be

constructed such that:
3.1. Xj continuum-wise separates Aj and Bj.

3.2, If C is a closed subset of Y, and Hk(C) = then

Ik'
nec,B

k

dim ¢ > 2; if fact, {( nc,B nocy, nci

Agp-1 3k-1 (Agy 3k
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is essential in C.

Thus, Y' = N{y,: k =1,2,...} has the property guaranteed

k

by Theorem 2.7 that Y' contains a continuum meeting Ay and Bl

(also A and B and if C is a closed subset of Y' such

3k+1 3k+1)

that for some k, Hk(C) =1 then dim C > 2.

kl

Also a space X will be constructed such that 3.1

3k+1

is satisfied as well as:

3.3. If C is a non-degenerate subcontinuum of Y" =

n{ k =1,2,+++}, then there is an integer k such that

A3k+1’
Hk (c)y = Ik'

The space ¥ = Y' N ¥" = ﬂ{xk: k = 2,3,+++} will be an
example of a hereditarily strongly infinite dimensional space.
We will now argue using conditions 3.1-3.3 that it is an
infinite dimensional compactum that contains no n-dimensional
(n > 1) closed subsets. Theorem 2.7 guarantees that Y con-

tains a continuum meeting Ay and B, and hence dim Y > 1, and

1
3.2 and 3.3 guarantee that X contains no l-dimensional sub-
continua. Then the compactness insures that X contains no
l-dimensional closed subsets since compact totally discon-
nected sets are 0O-dimensional. This is sufficient since,

from the inductive definition of dimension, it is clear that
each closed n-dimensional (n > 1) set contains k-dimensional
closed subsets for each 0 < k < n and in particular for k = 1.
Thus, Y is infinite dimensional and contains no n-dimensional

(n > 1) closed subsets. In section 6 we prove that this

example is hereditarily strongly infinite dimensional.

4. Constructing Yk

Let {Wi: i=1,2,+++} be the null sequence of open
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x indicated in Figure 1. Let {sik'l: i=

3k
et

intervals in I

1,2,¢-<}and {S i=1,2,..-} be a countable dense sets of

separators of A and B and A3 and B

3k-1 3k-1 k 3k’

Let a: N+ N x N be a bijection where N denotes the natural

respectively.

numbers and let a be o composed with projection onto

1 and o,
the first and second factor, respectively.
_ q-=1 L v 3k~1
Let X ¢ = M7 (I, U{wi. i=1,2, 1) v (U{Sal(i) n
-1 .o = -1 _ . i=
Hk (wi). i=1,2,¢s¢}) and let X3k = Hk (Ik U{Wi. i=
3k -1 . . .
1,2,¢.-31) U (U{Saz(i) nm (W):i=1,2,--+}); see Figure 2
where k = 1. It is easily seen that x3k—l and X3kcont1nuum—
wise separate A3k—l and B3k-l and A3k and B3k’ respectively.
In addition, if C < X3k—l n X3k with Hk(C) = Ik and (i,j) €

c Sik_l n S?k; therefore,

N x N, then C N n;l(w )

~1,. .
03 (llj)
Proposition 2.5 guarantees that if C is a closed subset of

X3pop N X5y with m (€ =1

The nature of X

k' then dim C > 2.

is different than that of X and

3k+1 3k-1
the role of X3k+l is to insure that condition 3.3 will
1 (R
,3k+1 " 3k+1

3 (] -
I3k+l and R3k+l c Ik X I3k+l is the "roof

X3x’

hold. Let X ) where Hk,3k+l is the pro-

3k+1 Iy

jection onto I, x

k

top" in Figure 3.

%) Fig. 1
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o

Fig. 2
ooow3 w2 wl
(3,1)
Ryge1 T3k
Fig. 3
(0,0) I (1,0)

5. Verifying Condition 3.3
If J is a subinterval of [0,1], let 2(J) denote the
length of J. Let C £ Y be a non-degenerate subcontinuum,

let i1 be such that Hi (C) is also non-degenerate, and let
1

SL(Hi (C)) = € > 0. Note that since the slopes of the straight
1

line segments of R are *2, and C < X3i 1 then % £ Hi (C)

3i+1 1 1
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implies that 2(H3i +1(C)) = 2 e¢. Inductively, let in =

1
. _ A
31n_l+l, let Jn = Hin(C) and observe that if % £ Jn—l’ then

l(Jn) = ne. Since each In has length 1, it follows that there
exists an N such that % € Jye Thus, by observing the corre-
sponding properties of R3i+l’ it follows that 1 € JN+1 and
that 0 € JN+2 = [0,b] for some 0 < b j_l. Following the

above argument we see that if % i.b < 1, then JN+3 = [0,1]

and if 0 < b < %, then JN+3 = [0,2b] and hence for some

j> 3,3 = [0,1] which says that for some k, I, (C) = I~

N+j
8. A Generalization

Let X be a strongly infinite dimensional compactum with
essential family {(Ak,Bk): k =1,2,.¢¢}; let {Hk: k =1,2,+¢¢4}
be a countable dense subset of the space of all mappings from
X to I = [0,1]; for each k, let {SE: i=1,2,«++} be a counta-
ble dense set of separators of Ak and Bk’ and let {Wi: i=
1,2,+++} be the null sequence of open intervals in [%,3] in-

dicated in Figure 4.

0 3 Y Y Y % !
— HXX—X 7 + Fig. 4
oo-w w2 wl
Let Qyly 0y be as before and, for each k, let Yk = sz
n X2k+l where
- -1 _ . i =
sz - Hk (Ik U{wl' 1= 1121 }) U
2k -1 .
(U{Sal(i) ﬂka (wi). i=1,2, 1)

and
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= -1 s
Xppep = M (I = UlW 2 4 = 1,2,+-1)
2k+1 -1 o
(U{Saz(i) NI (W): i=1,2,-2-1).

It is easily seen that condition 3.1 is true and the earlier

argument shows that:

6.1. If C is a closed subset of Y, and Hk(C) > (3,41,

then dim C > 2, if fact, {(A2k n C,sz nc, {a nc,

2k+1

By N C)} is essential in C.

Letting ¥ = 0{Y, : k = 1,2,-+-} = N{X;: k = 2,3,.--},
Theorem 2.7 guarantees that Y contains a continuum meaning
Al and Bl' Since the Hk's are a dense set of mappings the

following holds:

6.2. If Cc Y is a non-degenerate subcontinuum of Y,
then for some k,Hk(C) > [%,31.

Thus our previous argument shows that we have constructed
in an arbitrary strongly infinite dimensional space X a sub-
compactum Y that is infinite dimensional and contains no
n-dimensional (n > 1) closed subsets. We will show in the
next section that in fact Y is hereditarily strongly infinite

dimensional.

7. Strong Infinite Dimensionality of Subcontinua

One reason for the additional complexity in the con-
struction in ([Z-2] and [R-S-W] was to be able to conclude that
the examples had the additional property that each non-degen-
erate subcontinuum was strongly infinite dimensional. Al-
though we made no effort to construct examples with this
hereditary property, the following propositions isolate a

phenomenon which forces them to have this property.
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Proposition 7.1 gives conditions on a continuum that
imply it is strongly infinite dimensional. Observe that con-
ditions 3.2 and 3.3 (resp., 6.1 and 6.2) imply that each non-
degenerate subcontinuum of the example constructed in sec-
tions 3 and 4 (resp., section 6) satisfies the hypothesis of
Proposition 7.1 and thus these examples are hereditarily
strongly infinite dimensional. An alternative argument for
the example constructed in section 6 can be given using Pro-

position 7.2.

7.1. Proposition. Let {(Ak,Bk): k=1,2,¢.¢} be a
family of pairs of disjoint closed subsets of a continuum X.
Suppose that, for each k, there are positive integers i and
j such that, for each continuum C < X meeting Ak and By, the
patr {(Ai n C,Bi n C),(Aj n C,Bj nNc)l is essential in C.

If, for some n,AAn# ¢ and Bn # ¢, then X is strongly infinite
dimensional. Alternately, if for some i and jJ, {(Ai n x,

B, n X),(Aj n X,Bj N X)} is essential in X, then X is strongly

infinite dimensional.

Proof. Let i, and j; be such that {(a; ,B; ), ( )}

A,
1 1 iy

B.
r jl
is essential in X. Let 12 and j2 be such that for each con-

tinuum C meeting A, and B. , {(A, nc)y,(a. nc,
J1 J1 12 2 I2

N C)} is essential in C. Recursively, for n > 3, let i

nc,B,
i

B.
Ja n
and jn be such that for each continuum C meeting A, and
n-1
B. , {(A, n¢c,B, nc),(A. NC,B, N C)} is essential in
Jn-1 1n 1n In In
C. We now show that the family {(Ai /B, ):n=1,2,¢¢-} is

n ln

essential in X. For n=1,2,«--, let Sn separate Ai and Bi .
n n
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Since {(Ai ,B. ),(A, ,B, )} is essential in X, S, contains a

1 11 1

continuum from A, to B, . Since {(A. ,B
1 i 1

essential in this continuum, Sl n 82

A, to B, . Since {(a, ,B., }),(A. ,B. )} is essential in this
12 I2 13 13 I3 33

continuum, S, N S, N S_ contains a continuum from A. to B. .
1 2 3 I3 I3

Continuing this argument, for each n > 1, Sl n -+ n S, con-

1

. ),{(A. ,B. )} is
1,

J2 J2

contains a continuum from

tains a continuum from Aj to Bj and, therefore, n{Sn: n =

n n
1,2,---} # p.

7.2. Proposition. Let X be a compactum with dim X > 1.
Suppose that, for each pair of disjoint closed sets H and K,
there is a family {(A,B),(D,E)} of pairs of disjoint closed
sets such that {(An C,BN C),(DN C,EN C)J s essential in
each continuum C from H to K. Then each non-degenerate sub-
continuum of X 18 strongly infinite dimensional.

Proof. Since the hypotheses are satisfied by non-
degenerate subcontinua of X, it suffices to assume that X
is a continuum and to show that X is strongly infinite di-
mensional. Let {(Al,Bl),(Dl,El)} be an essential family in
X. Recursively, for n > 2, 1et{(An,Bn),(Dn,En)} be such
that {(An nc,B n C),(Dn NC,E N C)} is essential in each

continuum C from D._1 to En The argument used in the proof

-1

of Proposition 7.1 shows that {(An,Bn): n=1,2,++} is es-

sential in X.
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