TOPOLOGY PROCEEDINGS

Volume 3, 1978 Pages 495–506

http://topology.auburn.edu/tp/

EXAMPLES OF HEREDITARILY STRONGLY INFINITE-DIMENSIONAL COMPACTA

by

R. M. Schori and John J. Walsh

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

EXAMPLES OF HEREDITARILY STRONGLY INFINITE-DIMENSIONAL COMPACTA¹

R. M. Schori and John J. Walsh

Examples are given of strongly infinite dimensional compacta where each non-degenerate subcontinuum is also strongly infinite dimensional. These are by far the easiest of such examples in the literature and in addition a dimension theoretic phenomenon is identified which is used to verify this hereditary property.

1. Introduction

The first example of an infinite dimensional compactum containing no n-dimensional ($n \ge 1$) closed subsets was given by D. W. Henderson [He] in 1967; shortly thereafter, R. H. Bing [Bi] gave a simplified version. In 1971, Zarelua [Z-1], in a relatively unknown article² (in Russian), gives probably the simplest construction of this type of example. Later, in 1974, Zarelua [Z-2] constructed more complicated examples which had the property that each non-degenerate subcontinuum was strongly infinite dimensional. In 1977, the authors together with L. Rubin [R-S-W] developed an abstract dimension theoretic approach for constructing these types of examples; a significant feature of the latter approach was that the key concepts of essential families and continuum-wise separators were properly identified. The second author [Wa] used

¹The first author was partially supported on NSF Grant MCS 76-06522.

²The authors only became aware of [Z-1] during the final draft of this paper.

this abstract approach to construct infinite dimensional compacta containing no n-dimensional (n \geq 1) subsets (closed or not).

The examples presented in this paper have two important features: first, their construction is particularly simple and clearly illustrates the phenomena underlying all the previous constructions; and second, in spite of the simplicity of their construction, these examples have the property that every non-degenerate subcontinuum is strongly infinite dimensional. A phenomenon is isolated in §7 which shows that these examples are hereditarily strongly infinite dimensional and can be used to show that the "extra care" exercised in [Z-2] and [R-S-W] in order to insure this hereditary property is not necessary. The second example in this paper, see §6, uses the same construction as in [2-1] where rather technical proofs are used to verify the weaker condition that the example contains no n-dimensional (n > 1) closed subsets. This property follows rather automatically for us using the theory developed in [R-S-W].

2. Definitions and Basic Concepts

By a space we mean a separable metric space, by a compactum we mean a compact space, and by a continuum we mean a compact connected space. We follow Hurewicz and Wallman [H-W] for basic definitions and results in dimension theory. Specifically, by the dimension of a space X, denoted dim X, we mean either the covering dimension or inductive dimension (since these are equivalent for separable metric spaces). A space which is not finite dimensional is said to be *infinite* dimensional.

We collect below the definitions and results needed in this paper; the reader is referred to [R-S-W] for a more thorough discussion.

2.1. Definition. Let A and B be disjoint closed subsets of a space X. A closed subset S of X is said to *separate* A and B in X if X-S is the union of two disjoint open sets, one containing A and the other containing B. A closed subset S of X is said to *continuum-wise separate* A and B in X provided every continuum in X from A to B meets S.

2.2. Definition. Let X be a space and Γ be an indexing set. A family $\{(A_k, B_k): k \in \Gamma\}$ is essential in X if, for each $k \in \Gamma$, (A_k, B_k) is a pair of disjoint closed sets in X such that if S_k separates A_k and B_k in X, then $\cap\{S_k: k \in \Gamma\} \neq \emptyset$.

2.3. Theorem. [H-W, p. 35 and p. 78]. For a space X, dim X \geq n if and only if there exists an essential family $\{(A_k, B_k): k = 1, \dots, n\}$ in X.

2.4. *Remark*. Using the Hausdorff metric, the set of non-empty closed subsets of a compactum is a compactum. When we refer to a collection of closed subsets being dense, we mean dense with respect to the topology generated by this metric.

2.5. Proposition. [R-S-W; Proposition 3.4]. Let $\{(A_k, B_k): k = 1, 2, \dots, n\}$ be a collection of pairs of nonempty, disjoint closed subsets of a compactum X. For each $k = 1, 2, \dots, n, let S_k be a non-empty dense set of separators of A_k and B_k and let Y be a closed subset of X. If for each choice of separators <math>S_k \in S_k$, $k = 1, 2, \dots, n$, we have that $(n\{S_k: k = 1, 2, \dots, n \) \ n \ Y \neq \emptyset$, then $\{(A_k \cap Y, B_k \cap Y): k = 1, 2, \dots, n\}$ is an essential family in Y and, therefore, dim $Y \ge n$.

2.6. Definition. A space X is strongly infinite dimensional if there exists a denumerable essential family $\{(A_k, B_k): k = 1, 2, \dots\}$ for X. A space X is hereditarily strongly infinite dimensional if each non-degenerate subcontinuum of X is strongly infinite dimensional.

2.7. Theorem. [R-S-W; Proposition 5.5]. Let X be a strongly infinite dimensional space with an essential family $\{(A_k, B_k): k = 1, 2, \cdots\}$. For $k = 2, 3, \cdots$, let S_k be a continuum-wise separator of A_k and B_k in X. If $Y = \bigcap\{S_k: k = 2, 3, \cdots\}$, then Y contains a continuum meeting A_1 and B_1 .

3. Outline of the Example

Let the Hilbert cube be denoted by $Q = \Pi \{I_k : k = 1, 2, \dots\}$ where $I_k = [0,1]$, let $\Pi_k : Q \to I_k$ denote the projection, and let $A_k = \Pi_k^{-1}(1)$ and $B_k = \Pi_k^{-1}(0)$. The family $\{(A_k, B_k) : k = 1, 2, \dots\}$ is an escential family in Q [H-W, p. 49].

For each k = 1,2,..., a space \textbf{Y}_k = \textbf{X}_{3k-1} \cap \textbf{X}_{3k} will be constructed such that:

3.1. X_{i} continuum-wise separates A_{i} and B_{i} .

3.2. If C is a closed subset of Y_k and $\Pi_k(C) = I_k$, then dim C ≥ 2 ; if fact, { $(A_{3k-1} \cap C, B_{3k-1} \cap C)$, $(A_{3k} \cap C, B_{3k} \cap C)$ } is essential in C.

Thus, $Y' = \bigcap \{Y_k : k = 1, 2, \dots\}$ has the property guaranteed by Theorem 2.7 that Y' contains a continuum meeting A_1 and B_1 (also A_{3k+1} and B_{3k+1}) and if C is a closed subset of Y' such that for some k, $\prod_k (C) = \prod_k$, then dim $C \ge 2$.

Also a space X_{3k+1} will be constructed such that 3.1 is satisfied as well as:

3.3. If C is a non-degenerate subcontinuum of Y" = $\Omega{X_{3k+1}: k = 1, 2, \dots}$, then there is an integer k such that $\Pi_k(C) = I_k$.

The space $Y = Y' \cap Y'' = \bigcap \{X_k : k = 2, 3, \dots\}$ will be an example of a hereditarily strongly infinite dimensional space. We will now argue using conditions 3.1-3.3 that it is an infinite dimensional compactum that contains no n-dimensional (n > 1) closed subsets. Theorem 2.7 guarantees that Y contains a continuum meeting A_1 and B_1 and hence dim Y > 1, and 3.2 and 3.3 guarantee that X contains no 1-dimensional subcontinua. Then the compactness insures that X contains no 1-dimensional closed subsets since compact totally disconnected sets are 0-dimensional. This is sufficient since, from the inductive definition of dimension, it is clear that each closed n-dimensional (n > 1) set contains k-dimensional closed subsets for each 0 < k < n and in particular for k = 1. Thus, Y is infinite dimensional and contains no n-dimensional $(n \ge 1)$ closed subsets. In section 6 we prove that this example is hereditarily strongly infinite dimensional.

4. Constructing Y₁,

Let $\{W_i: i = 1, 2, \dots\}$ be the null sequence of open

intervals in I_k indicated in Figure 1. Let $\{S_1^{3k-1}: i = 1, 2, \dots\}$ and $\{S_1^{3k}: i = 1, 2, \dots\}$ be a countable dense sets of separators of A_{3k-1} and B_{3k-1} and A_{3k} and B_{3k} , respectively. Let $\alpha: N \rightarrow N \times N$ be a bijection where N denotes the natural numbers and let α_1 and α_2 be α composed with projection onto the first and second factor, respectively.

Let $X_{3k-1} = \prod_{k}^{-1} (I_k - \bigcup\{W_i: i = 1, 2, \cdots\}) \cup (\bigcup\{S_{\alpha_1}^{3k-1} \cap \prod_{k}^{-1} (W_i): i = 1, 2, \cdots\})$ and let $X_{3k} = \prod_{k}^{-1} (I_k - \bigcup\{W_i: i = 1, 2, \cdots\}) \cup (\bigcup\{S_{\alpha_2}^{3k}(i) \cap \prod_{k}^{-1} (W_i): i = 1, 2, \cdots\})$; see Figure 2 where k = 1. It is easily seen that X_{3k-1} and X_{3k} continuum-wise separate A_{3k-1} and B_{3k-1} and A_{3k} and B_{3k} , respectively. In addition, if $C \subseteq X_{3k-1} \cap X_{3k}$ with $\prod_{k} (C) = I_k$ and $(i,j) \in N \times N$, then $C \cap \prod_{k}^{-1} (W_{\alpha^{-1}}(i,j)) \subseteq S_1^{3k-1} \cap S_j^{3k}$; therefore, Proposition 2.5 guarantees that if C is a closed subset of $X_{3k-1} \cap X_{3k}$ with $\prod_k (C) = I_k$, then dim $C \ge 2$.

The nature of X_{3k+1} is different than that of X_{3k-1} and X_{3k} ; the role of X_{3k+1} is to insure that condition 3.3 will hold. Let $X_{3k+1} = \pi_{k,3k+1}^{-1}(R_{3k+1})$ where $\pi_{k,3k+1}$ is the projection onto $I_k \times I_{3k+1}$ and $R_{3k+1} \subseteq I_k \times I_{3k+1}$ is the "roof-top" in Figure 3.

1978

5. Verifying Condition 3.3

If J is a subinterval of [0,1], let l(J) denote the length of J. Let $C \subseteq Y$ be a non-degenerate subcontinuum, let i_1 be such that $\Pi_{i_1}(C)$ is also non-degenerate, and let $\ell(\Pi_{i_1}(C)) = \varepsilon > 0$. Note that since the slopes of the straight line segments of R_{3i+1} are ±2, and $C \subseteq X_{3i_1+1}$, then $\frac{1}{2} \notin I_{i_1}$ (C)

implies that $\ell(\Pi_{3i_1+1}(C)) = 2 \epsilon$. Inductively, let $i_n = 3i_{n-1}+1$, let $J_n = \Pi_{i_n}(C)$ and observe that if $\frac{1}{2} \notin J_{n-1}$, then $\ell(J_n) = n\epsilon$. Since each I_n has length 1, it follows that there exists an N such that $\frac{1}{2} \in J_N$. Thus, by observing the corresponding properties of R_{3i+1} , it follows that $1 \in J_{N+1}$ and that $0 \in J_{N+2} = [0,b]$ for some $0 < b \le 1$. Following the above argument we see that if $\frac{1}{2} \le b < 1$, then $J_{N+3} = [0,1]$ and if $0 < b < \frac{1}{2}$, then $J_{N+3} = [0,2b]$ and hence for some j > 3, $J_{N+j} = [0,1]$ which says that for some k, $\Pi_k(C) = I_k$.

6. A Generalization

Let X be a strongly infinite dimensional compactum with essential family $\{(A_k, B_k): k = 1, 2, \dots\}$; let $\{\Pi_k: k = 1, 2, \dots\}$ be a countable dense subset of the space of all mappings from X to I = [0,1]; for each k, let $\{S_i^k: i = 1, 2, \dots\}$ be a countable dense set of separators of A_k and B_k , and let $\{W_i: i =$ $1, 2, \dots\}$ be the null sequence of open intervals in $[\frac{1}{4}, \frac{3}{4}]$ indicated in Figure 4.

Let $\alpha, \alpha_1, \alpha_2$ be as before and, for each k, let $Y_k = X_{2k}$ $\cap X_{2k+1}$ where

$$\begin{aligned} \mathbf{x}_{2k} &= \Pi_{k}^{-1} (\mathbf{I}_{k} - \cup \{ \mathbf{W}_{i} : i = 1, 2, \cdots \}) \ \cup \\ & (\cup \{ \mathbf{S}_{\alpha_{1}}^{2k}(i) \cap \Pi_{k}^{-1}(\mathbf{W}_{i}) : i = 1, 2, \cdots \}) \end{aligned}$$

and

$$\begin{aligned} \mathbf{x}_{2k+1} &= \Pi_{k}^{-1}(\mathbf{I}_{k} - \cup \{\mathbf{W}_{i}: i = 1, 2, \cdots\}) \cup \\ & (\cup \{\mathbf{S}_{\alpha_{2}}^{2k+1} \cap \Pi_{k}^{-1}(\mathbf{W}_{i}): i = 1, 2, \cdots\}). \end{aligned}$$

It is easily seen that condition 3.1 is true and the earlier argument shows that:

6.1. If C is a closed subset of Y_k and $\pi_k(C) \ge [\frac{1}{4}, \frac{3}{4}]$, then dim C ≥ 2 , if fact, {($A_{2k} \cap C, B_{2k} \cap C$), { $A_{2k+1} \cap C$, $B_{2k+1} \cap C$)} is essential in C.

Letting $Y = \bigcap \{Y_k : k = 1, 2, \dots\} = \bigcap \{X_k : k = 2, 3, \dots\}$, Theorem 2.7 guarantees that Y contains a continuum meaning A_1 and B_1 . Since the \prod_k 's are a dense set of mappings the following holds:

6.2. If $C \subseteq Y$ is a non-degenerate subcontinuum of Y, then for some $k, \Pi_{L}(C) \supseteq \left[\frac{1}{4}, \frac{3}{4}\right]$.

Thus our previous argument shows that we have constructed in an arbitrary strongly infinite dimensional space X a subcompactum Y that is infinite dimensional and contains no n-dimensional (n \geq 1) closed subsets. We will show in the next section that in fact Y is hereditarily strongly infinite dimensional.

7. Strong Infinite Dimensionality of Subcontinua

One reason for the additional complexity in the construction in [Z-2] and [R-S-W] was to be able to conclude that the examples had the additional property that each non-degenerate subcontinuum was strongly infinite dimensional. Although we made no effort to construct examples with this hereditary property, the following propositions isolate a phenomenon which forces them to have this property. Proposition 7.1 gives conditions on a continuum that imply it is strongly infinite dimensional. Observe that conditions 3.2 and 3.3 (resp., 6.1 and 6.2) imply that each nondegenerate subcontinuum of the example constructed in sections 3 and 4 (resp., section 6) satisfies the hypothesis of Proposition 7.1 and thus these examples are hereditarily strongly infinite dimensional. An alternative argument for the example constructed in section 6 can be given using Proposition 7.2.

7.1. Proposition. Let $\{(A_k, B_k): k = 1, 2, \dots\}$ be a family of pairs of disjoint closed subsets of a continuum X. Suppose that, for each k, there are positive integers i and j such that, for each continuum $C \subseteq X$ meeting A_k and B_k , the pair $\{(A_i \cap C, B_i \cap C), (A_j \cap C, B_j \cap C)\}$ is essential in C. If, for some n, $A_n \neq \phi$ and $B_n \neq \phi$, then X is strongly infinite dimensional. Alternately, if for some i and j, $\{(A_i \cap X, B_i \cap X), (A_j \cap X, B_j \cap X)\}$ is essential in X, then X is strongly infinite dimensional.

Proof. Let i_1 and j_1 be such that $\{(A_{i_1}, B_{i_1}), (A_{j_1}, B_{j_1})\}$ is essential in X. Let i_2 and j_2 be such that for each continuum C meeting A_{j_1} and B_{j_1} , $\{(A_{i_2} \cap C, B_{i_2} \cap C), (A_{j_2} \cap C, B_{j_2} \cap C)\}$ is essential in C. Recursively, for $n \ge 3$, let i_n and j_n be such that for each continuum C meeting $A_{j_{n-1}}$ and $B_{j_{n-1}}$, $\{(A_{i_n} \cap C, B_{i_n} \cap C), (A_{j_n} \cap C, B_{j_n} \cap C)\}$ is essential in C. We now show that the family $\{(A_{i_n}, B_{i_n}): n = 1, 2, \cdots\}$ is essential in X. For $n = 1, 2, \cdots$, let S_n separate A_{i_n} and B_{i_n} .

504

Since $\{(A_{i_1}, B_{i_1}), (A_{j_1}, B_{j_1})\}$ is essential in X, S_1 contains a continuum from A_{j_1} to B_{j_1} . Since $\{(A_{i_2}, B_{i_2}), (A_{j_2}, B_{j_2})\}$ is essential in this continuum, $S_1 \cap S_2$ contains a continuum from A_{j_2} to B_{j_2} . Since $\{(A_{i_3}, B_{i_3}), (A_{j_3}, B_{j_3})\}$ is essential in this continuum, $S_1 \cap S_2 \cap S_3$ contains a continuum from A_{j_3} to B_{j_3} . Continuing this argument, for each $n \ge 1$, $S_1 \cap \cdots \cap S_n$ contains a continuum from A_{j_n} to B_{j_n} and, therefore, $\cap\{S_n: n = 1, 2, \cdots\} \ne \emptyset$.

7.2. Proposition. Let X be a compactum with dim $X \ge 1$. Suppose that, for each pair of disjoint closed sets H and K, there is a family $\{(A,B), (D,E)\}$ of pairs of disjoint closed sets such that $\{(A \cap C, B \cap C), (D \cap C, E \cap C)\}$ is essential in each continuum C from H to K. Then each non-degenerate subcontinuum of X is strongly infinite dimensional.

Proof. Since the hypotheses are satisfied by nondegenerate subcontinua of X, it suffices to assume that X is a continuum and to show that X is strongly infinite dimensional. Let $\{(A_1, B_1), (D_1, E_1)\}$ be an essential family in X. Recursively, for $n \ge 2$, let $\{(A_n, B_n), (D_n, E_n)\}$ be such that $\{(A_n \cap C, B_n \cap C), (D_n \cap C, E_n \cap C)\}$ is essential in each continuum C from D_{n-1} to E_{n-1} . The argument used in the proof of Proposition 7.1 shows that $\{(A_n, B_n): n = 1, 2, \cdots\}$ is essential in X.

Bibliography

[Bi] R. H. Bing, A hereditarily infinite-dimensional space, General Topology and its relation to Modern Analysis and Algebra, II (Proc. Second Prague Topological Sympos. 1966), Academia, Prague, 1967, 56-62.

- [He] D. W. Henderson, An infinite-dimensional compactum with no positive-dimensional compact subset, Amer. J. Math 89 (1967), 105-121.
- [H-W] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, N.J., 1941.
- [R-S-W] L. Rubin, R. Schori, and J. Walsh, New dimensiontheory techniques for constructing infinite-dimensional examples.
- [Wa] J. J. Walsh, Infinite dimensional compacta containing no n-dimensional $(n \ge 1)$ subsets, Bull. Amer. Math. Soc. (to appear).
- [Z-1] A. V. Zarelua, On hereditary infinite dimensional spaces (in Russian), Theory of Sets and Topology (Memorial volume in honor of Felix Hausdorff), edited by G. Asser, J. Flachsmeyer, and W. Rinow; Deutscher Verlay der Wissenschaften, Berlin, 1972, 509-525.
- [2-2] _____, Construction of strongly infinite-dimensional compacta using rings of continuous functions, Soviet Math. Dokl. (1) 15 (1974), 106-110.

Oregon State University Corvallis, Oregon 97331 and University of Tennessee Knoxville, Tennessee 37916