TOPOLOGY PROCEEDINGS

Volume 3, 1978
Pages 495-506
http://topology.auburn.edu/tp/

EXAMPLES OF HEREDITARILY STRONGLY INFINITE-DIMENSIONAL COMPACTA

by
R. M. Schori and John J. Walsh

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

EXAMPLES OF HEREDITARILY STRONGLY INFINITE-DIMENSIONAL COMPACTA ${ }^{1}$

R. M. Schori and John J. Walsh

Examples are given of strongly infinite dimensional compacta where each non-degenerate subcontinuum is also strongly infinite dimensional. These are by far the easiest of such examples in the literature and in addition a dimension theoretic phenomenon is identified which is used to verify this hereditary property.

1. Introduction

The first example of an infinite dimensional compactum containing no n-dimensional ($n \geq 1$) closed subsets was given by D. W. Henderson [He] in 1967; shortly thereafter, R. H. Bing [Bi] gave a simplified version. In 1971, Zarelua [Z-1], in a relatively unknown article ${ }^{2}$ (in Russian), gives probably the simplest construction of this type of example. Later, in 1974, Zarelua [Z-2] constructed more complicated examples which had the property that each non-degenerate subcontinuum was strongly infinite dimensional. In 1977, the authors together with L. Rubin $[R-S-W]$ developed an abstract dimension theoretic approach for constructing these types of examples; a significant feature of the latter approach was that the key concepts of essential families and continuum-wise separators were properly identified. The second author [Wa] used

[^0]this abstract approach to construct infinite dimensional compacta containing no n -dimensional ($\mathrm{n} \geq \mathrm{l}$) subsets (closed or not).

The examples presented in this paper have two important features: first, their construction is particularly simple and clearly illustrates the phenomena underlying all the previous constructions; and second, in spite of the simplicity of their construction, these examples have the property that every non-degenerate subcontinuum is strongly infinite dimensional. A phenomenon is isolated in $\S 7$ which shows that these examples are hereditarily strongly infinite dimensional and can be used to show that the "extra care" exercised in [$\mathrm{Z}-2$] and $[\mathrm{R}-\mathrm{S}-\mathrm{W}]$ in order to insure this hereditary property is not necessary. The second example in this paper, see §6, uses the same construction as in [$\mathrm{z}-1$] where rather technical proofs are used to verify the weaker condition that the example contains no n-dimensional ($n \geq 1$) closed subsets. This property follows rather automatically for us using the theory developed in [R-S-W].

2. Definitions and Basic Concepts

By a space we mean a separable metric space, by a compactum we mean a compact space, and by a continuum we mean a compact connected space. We follow Hurewicz and Wallman [H-W] for basic definitions and results in dimension theory. Specifically, by the dimension of a space X , denoted $\operatorname{dim} \mathrm{X}$, we mean either the covering dimension or inductive dimension (since these are equivalent for separable metric spaces). A space which is not finite dimensional is said to be infinite
dimensionat.
We collect below the definitions and results needed in this paper; the reader is referred to $[R-S-W]$ for a more thorough discussion.
2.1. Definition. Let A and B be disjoint closed subsets of a space X. A closed subset S of X is said to separate A and B in X if $\mathrm{X}-\mathrm{S}$ is the union of two disjoint open sets, one containing A and the other containing B. A closed subset S of X is said to continuum-wise separate A and B in X provided every continuum in X from A to B meets S.
2.2. Definition. Let X be a space and Γ be an indexing set. A family $\left\{\left(A_{k}, B_{k}\right): k \in \Gamma\right\}$ is essential in X if, for each $k \in \Gamma,\left(A_{k}, B_{k}\right)$ is a pair of disjoint closed sets in X such that if S_{k} separates A_{k} and B_{k} in X, then $\cap\left\{S_{k}: k \in \Gamma\right\}$ $\neq \varnothing$.
2.3. Theorem. [H-W, p. 35 and p. 78]. For a space X, $\operatorname{dim} \mathrm{X} \geq \mathrm{n}$ if and only if there exists an essential family $\left\{\left(A_{k}, B_{k}\right): k=1, \cdots, n\right\}$ in x.
2.4. Remark. Using the Hausdorff metric, the set of non-empty closed subsets of a compactum is a compactum. When we refer to a collection of closed subsets being dense, we mean dense with respect to the topology generated by this metric.
2.5. Proposition. [R-S-W; Proposition 3.4]. Let $\left\{\left(\mathrm{A}_{\mathrm{k}}, \mathrm{B}_{\mathrm{k}}\right): \mathrm{k}=1,2, \ldots, \mathrm{n}\right\}$ be a collection of pairs of nonempty, disjoint closed subsets of a compactum X . For each
$\mathrm{k}=1,2, \cdots, \mathrm{n}$, let S_{k} be a non-empty dense set of separators of A_{k} and B_{k} and let Y be a closed subset of X . If for each choice of separators $S_{k} \in S_{k}, k=1,2, \cdots, n$, we have that $\left(\cap\left\{S_{k}: k=1,2, \cdots, n\right) \cap Y \neq \varnothing\right.$, then $\left\{\left(A_{k} \cap Y, B_{k} \cap Y\right): k=\right.$ $1,2, \cdots, n\}$ is an essential family in Y and, therefore, $\operatorname{dim} \mathrm{Y} \geq \mathrm{n}$.
2.6. Definition. A space X is strongly infinite dimensional if there exists a denumerable essential family $\left\{\left(A_{k}, B_{k}\right): k=1,2, \cdots\right\}$ for x. A space X is hereditarily strongly infinite dimensional if each non-degenerate subcontinuum of x is strongly infinite dimensional.
2.7. Theorem. [R-S-W; Proposition 5.5]. Let X be a strongly infinite dimensional space with an essential family $\left\{\left(A_{k}, B_{k}\right): k=1,2, \cdots\right\}$. For $k=2,3, \cdots$, let S_{k} be a con-tinuum-wise separator of A_{k} and B_{k} in X . If $\mathrm{Y}=\Pi\left\{\mathrm{S}_{\mathrm{k}}: \mathrm{k}=\right.$ $2,3, \cdots\}$, then Y contains a continuum meeting A_{1} and B_{1}.

3. Outline of the Example

Let the Hilbert cube be denoted by $Q=\pi\left\{I_{k}: k=1,2, \ldots\right\}$ where $I_{k}=[0,1]$, let $\Pi_{k}: Q \rightarrow I_{k}$ denote the projection, and let $A_{k}=\Pi_{k}^{-1}(1)$ and $B_{k}=\Pi_{k}^{-1}(0)$. The family $\left\{\left(A_{k}, B_{k}\right): k=\right.$ $1,2, \ldots$) is an essential family in Q [H-W, p. 49].

For each $k=1,2, \ldots$, a space $Y_{k}=X_{3 k-1} \cap X_{3 k}$ will be constructed such that:
3.1. X_{j} continuum-wise separates A_{j} and B_{j}.
3.2. If C is a closed subset of Y_{k} and $\Pi_{k}(C)=I_{k}$, then
$\operatorname{dim} C \geq 2$; if fact, $\left\{\left(A_{3 k-1} \cap C, B_{3 k-1} \cap C\right),\left(A_{3 k} \cap C, B_{3 k} \cap C\right)\right\}$
is essential in C.
Thus, $Y^{\prime}=\cap\left\{Y_{k}: k=1,2, \cdots\right\}$ has the property guaranteed by Theorem 2.7 that Y^{\prime} contains a continuum meeting A_{1} and B_{1} (also $A_{3 k+1}$ and $B_{3 k+1}$) and if C is a closed subset of Y^{\prime} such that for some $k, \Pi_{k}(C)=I_{k}$, then $\operatorname{dim} C \geq 2$.

Also a space $X_{3 k+1}$ will be constructed such that 3.1 is satisfied as well as:
3.3. If C is a non-degenerate subcontinuum of $Y^{\prime \prime}=$ $n\left\{x_{3 k+1}: k=1,2, \cdots\right\}$, then there is an integer k such that $\Pi_{k}(C)=I_{k}$.

The space $Y=Y^{\prime} \cap Y^{\prime \prime}=\cap\left\{X_{k}: k=2,3, \ldots\right\}$ will be an example of a hereditarily strongly infinite dimensional space. We will now argue using conditions 3.1-3.3 that it is an infinite dimensional compactum that contains no n-dimensional ($\mathrm{n} \geq \mathrm{l}$) closed subsets. Theorem 2.7 guarantees that Y contains a continuum meeting A_{1} and B_{1} and hence $\operatorname{dim} Y \geq 1$, and 3.2 and 3.3 guarantee that x contains no l-dimensional subcontinua. Then the compactness insures that X contains no l-dimensional closed subsets since compact totally disconnected sets are 0 -dimensional. This is sufficient since, from the inductive definition of dimension, it is clear that each closed n-dimensional ($\mathrm{n} \geq 1$) set contains k-dimensional closed subsets for each $0 \leq \mathrm{k}<\mathrm{n}$ and in particular for $\mathrm{k}=1$. Thus, Y is infinite dimensional and contains no n-dimensional ($\mathrm{n} \geq \mathrm{l}$) closed subsets. In section 6 we prove that this example is hereditarily strongly infinite dimensional.

4. Constructing $\mathbf{Y}_{\mathbf{k}}$

Let $\left\{W_{i}: i=1,2, \cdots\right\}$ be the null sequence of open
intervals in I_{k} indicated in Figure 1 . Let $\left\{\mathrm{S}_{\mathrm{i}}^{3 \mathrm{k}-1}\right.$: $\mathrm{i}=$ $1,2, \ldots\}$ and $\left\{S_{i}^{3 k}: i=1,2, \ldots\right\}$ be a countable dense sets of separators of $\mathrm{A}_{3 \mathrm{k}-1}$ and $\mathrm{B}_{3 \mathrm{k}-1}$ and $\mathrm{A}_{3 \mathrm{k}}$ and $\mathrm{B}_{3 \mathrm{k}}$, respectively. Let $\alpha: N+N \times N$ be a bijection where N denotes the natural numbers and let α_{1} and α_{2} be α composed with projection onto the first and second factor, respectively.

Let $X_{3 k-1}=\Pi_{k}^{-1}\left(I_{k}-U\left\{W_{i}: i=1,2, \cdots\right\}\right) U\left(U\left\{S_{\alpha_{1}}^{3 k-1}(i) \quad \cap\right.\right.$ $\left.\left.\Pi_{k}^{-l}\left(W_{i}\right): i=1,2, \ldots\right\}\right)$ and $\operatorname{let} X_{3 k}=\Pi_{k}^{-l}\left(I_{k}-U\left\{W_{i}: i=\right.\right.$ $1,2, \ldots\}) \cup\left(U\left\{S_{\alpha_{2}}^{3 k}(i) \cap \pi_{k}^{-1}\left(W_{i}\right): i=1,2, \ldots\right\}\right)$; see Figure 2 where $k=1$. It is easily seen that $X_{3 k-1}$ and $X_{3 k}$ continuumwise separate $A_{3 k-1}$ and $B_{3 k-1}$ and $A_{3 k}$ and $B_{3 k}$, respectively. In addition, if $C \subseteq X_{3 k-1} \cap X_{3 k}$ with $\Pi_{k}(C)=I_{k}$ and $(i, j) \in$ $N \times N$, then $C \cap \pi_{k}^{-1}\left(W \alpha_{\alpha}^{-1}(i, j)\right) \subseteq S_{i}^{3 k-1} \cap S_{j}^{3 k}$; therefore, Proposition 2.5 guarantees that if C is a closed subset of $x_{3 k-1} \cap X_{3 k}$ with $\Pi_{k}(C)=I_{k}$, then $\operatorname{dim} C \geq 2$.

The nature of $X_{3 k+1}$ is different than that of $X_{3 k-1}$ and $x_{3 k}$; the role of $X_{3 k+1}$ is to insure that condition 3.3 will hold. Let $X_{3 k+1}=\Pi_{k, 3 k+1}^{-1}\left(R_{3 k+1}\right)$ where $\Pi_{k, 3 k+1}$ is the projection onto $I_{k} \times I_{3 k+1}$ and $R_{3 k+1} \subseteq I_{k} \times I_{3 k+1}$ is the "rooftop" in Figure 3.

Fig. 2

Fig. 3

5. Verifying Condition 3.3

If J is a subinterval of $[0,1]$, let $\ell(J)$ denote the

 length of $J . ~ L e t ~ C \subseteq Y$ be a non-degenerate subcontinuum, let i_{1} be such that $\Pi_{i_{1}}(C)$ is also non-degenerate, and let $\ell\left(\Pi_{i_{1}}(C)\right)=\varepsilon>0$. Note that since the slopes of the straight line segments of $R_{3 i+1}$ are ± 2, and $C \subseteq X_{3 i_{1}+1}$, then $\frac{1}{2} \& \Pi_{i_{1}}$ (C)```
implies that }\ell(\mp@subsup{\Pi}{3\mp@subsup{i}{1}{}+1}{}(C))=2\varepsilon. Inductively, let in m =
3i}\mp@subsup{n}{n-1}{}+1\mathrm{ , let }\mp@subsup{J}{n}{}=\mp@subsup{\Pi}{\mp@subsup{i}{n}{}}{}\mathrm{ (C) and observe that if }\frac{1}{2}&\mp@subsup{J}{n-1}{},\mathrm{ then
\ell(J_
exists an N such that }\frac{1}{2}\in\mp@subsup{J}{N}{
sponding properties of R R }\mp@subsup{\mp@code{3i+1}}{}{\prime}\mathrm{ , it follows that l }\in\mp@subsup{J}{N+1}{
that 0}\in\mp@subsup{J}{N+2}{}=[0,b] for some 0<b\leql. Following th
above argument we see that if \frac{1}{2}}\leq\textrm{b}<1\mathrm{ , then }\mp@subsup{J}{N+3}{}=[0,1
and if 0<b< < , then }\mp@subsup{J}{N+3}{}=[0,2b] and hence for som
j > 3, J J N+j = [0,1] which says that for some k, \Pi
```


## 6. A Generalization

Let X be a strongly infinite dimensional compactum with essential family $\left\{\left(A_{k}, B_{k}\right): k=1,2, \cdots\right\}$; let $\left\{\Pi_{k}: k=1,2, \ldots\right\}$ be a countable dense subset of the space of all mappings from $X$ to $I=[0,1]$; for each $k$, let $\left\{S_{i}^{k}: i=1,2, \ldots\right\}$ be a countable dense set of separators of $A_{k}$ and $B_{k}$, and let $\left\{W_{i}\right.$ : $i=$ $1,2, \cdots\}$ be the null sequence of open intervals in $\left[\frac{1}{4}, \frac{3}{4}\right]$ indicated in Figure 4.


Fig. 4

Let $\alpha_{1, \alpha_{1}, \alpha_{2}}$ be as before and, for each $k$, let $Y_{k}=X_{2 k}$ $n \mathrm{x}_{2 \mathrm{k}+1}$ where

$$
\begin{aligned}
x_{2 k} & =\Pi_{k}^{-1}\left(I_{k}-U\left\{W_{i}: i=1,2, \cdots\right\}\right) u \\
& \left(U\left\{S_{\alpha_{1}(i)}^{2 k} \cap \Pi_{k}^{-1}\left(W_{i}\right): i=1,2, \cdots\right\}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& x_{2 k+1}=\pi_{k}^{-1}\left(I_{k}-U\left\{W_{i}: i=1,2, \cdots\right\}\right) U \\
& \quad\left(U\left\{S_{\alpha_{2}}^{2 k+1}(i) \cap \Pi_{k}^{-1}\left(W_{i}\right): i=1,2, \cdots\right\}\right) .
\end{aligned}
$$

It is easily seen that condition 3.1 is true and the earlier argument shows that:
6.1. If $C$ is a closed subset of $Y_{k}$ and $\Pi_{k}(C) \geq\left[\frac{1}{3}, \frac{3}{3}\right]$, then $\operatorname{dim} C \geq 2$, if fact, $\left\{\left(A_{2 k} \cap C, B_{2 k} \cap C\right),\left\{A_{2 k+1} \cap C\right.\right.$, $\left.\left.B_{2 k+1} \cap C\right)\right\}$ is essential in $C$.

Letting $Y=\cap\left\{Y_{k}: k=1,2, \cdots\right\}=\cap\left\{X_{k}: k=2,3, \cdots\right\}$, Theorem 2.7 guarantees that $Y$ contains a continuum meaning $A_{1}$ and $B_{1}$. Since the $\Pi_{k}$ 's are a dense set of mappings the following holds:
6.2. If $C \subseteq Y$ is a non-degenerate subcontinuum of $Y$, then for some $k, \Pi_{k}(C) \supseteq\left[\frac{1}{4}, \frac{3}{4}\right]$.

Thus our previous argument shows that we have constructed in an arbitrary strongly infinite dimensional space $X$ a subcompactum $Y$ that is infinite dimensional and contains no n-dimensional ( $\mathrm{n} \geq 1$ ) closed subsets. We will show in the next section that in fact $Y$ is hereditarily strongly infinite dimensional.

## 7. Strong Infinite Dimensionality of Subcontinua

One reason for the additional complexity in the construction in [ $\mathrm{Z}-2$ ] and $[\mathrm{R}-\mathrm{S}-\mathrm{W}]$ was to be able to conclude that the examples had the additional property that each non-degenerate subcontinuum was strongly infinite dimensional. Although we made no effort to construct examples with this hereditary property, the following propositions isolate a phenomenon which forces them to have this property.

Proposition 7.1 gives conditions on a continuum that imply it is strongly infinite dimensional. Observe that conditions 3.2 and 3.3 (resp., 6.1 and 6.2) imply that each nondegenerate subcontinuum of the example constructed in sections 3 and 4 (resp., section 6) satisfies the hypothesis of Proposition 7.1 and thus these examples are hereditarily strongly infinite dimensional. An alternative argument for the example constructed in section 6 can be given using Proposition 7.2.
7.1. Proposition. Let $\left\{\left(\mathrm{A}_{\mathrm{k}}, \mathrm{B}_{\mathrm{k}}\right): \mathrm{k}=1,2, \ldots\right\}$ be a family of pairs of disjoint closed subsets of a continuum X . Suppose that, for each $k$, there are positive integers i and j such that, for each continum $\mathrm{C} \subseteq \mathrm{x}$ meeting $\mathrm{A}_{\mathrm{k}}$ and $\mathrm{B}_{\mathrm{k}}$, the $\operatorname{pair}\left\{\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{C}, \mathrm{B}_{\mathrm{i}} \cap \mathrm{C}\right),\left(\mathrm{A}_{\mathrm{j}} \cap \mathrm{C}, \mathrm{B}_{\mathrm{j}} \cap \mathrm{C}\right)\right\}$ is essential in C . If, for some $\mathrm{n}, \mathrm{A}_{\mathrm{n}} \neq \phi$ and $\mathrm{B}_{\mathrm{n}} \neq \phi$, then X is strongly infinite dimensional. Alternately, if for some $i$ and $j,\left\{\left(A_{i} \cap \mathrm{X}\right.\right.$, $\left.\left.B_{i} \cap \mathrm{X}\right),\left(\mathrm{A}_{\mathrm{j}} \cap \mathrm{X}, \mathrm{B}_{\mathrm{j}} \cap \mathrm{X}\right)\right\}$ is essential in X , then X is strongly infinite dimensional.

Proof. Let $i_{l}$ and $j_{l}$ be such that $\left\{\left(A_{i_{1}}, B_{i_{1}}\right),\left(A_{j_{1}}, B_{j_{1}}\right)\right\}$ is essential in $X$. Let $i_{2}$ and $j_{2}$ be such that for each continuum $C$ meeting $A_{j_{1}}$ and $B_{j_{1}},\left\{\left(A_{i_{2}} \cap C, B_{i_{2}} \cap C\right),\left(A_{j_{2}} \cap C\right.\right.$, $\left.\left.B_{j_{2}} \cap C\right)\right\}$ is essential in $C$. Recursively, for $n \geq 3$, let $i_{n}$ and $j_{n}$ be such that for each continuum $C$ meeting $A_{j_{n-1}}$ and $B_{j_{n-1}},\left\{\left(A_{i_{n}} \cap C, B_{i_{n}} \cap C\right),\left(A_{j_{n}} \cap C, B_{j_{n}} \cap C\right)\right\}$ is essential in c. We now show that the family $\left\{\left(A_{i_{n}}, B_{i_{n}}\right): n=1,2, \ldots\right\}$ is essential in $x$. For $n=1,2, \ldots$, let $S_{n}$ separate $A_{i_{n}}$ and $B_{i_{n}}$.

Since $\left\{\left(A_{i_{1}}, B_{i_{l}}\right),\left(A_{j_{1}}, B_{j_{1}}\right)\right\}$ is essential in $X, S_{1}$ contains a continuum from $A_{j_{1}}$ to $B_{j_{1}}$. Since $\left\{\left(A_{i_{2}}, B_{i_{2}}\right),\left(A_{j_{2}}, B_{j_{2}}\right)\right\}$ is essential in this continuum, $S_{1} \cap S_{2}$ contains a continuum from $A_{j_{2}}$ to $B_{j_{2}}$. Since $\left\{\left(A_{i_{3}}, B_{i_{3}}\right),\left(A_{j_{3}}, B_{j_{3}}\right)\right\}$ is essential in this continuum, $S_{1} \cap S_{2} \cap S_{3}$ contains a continuum from $A_{j_{3}}$ to $B_{j_{3}}$. Continuing this argument, for each $n \geq 1, S_{1} \cap \cdots \cap S_{n}$ contains a continuum from $A_{j_{n}}$ to $B_{j_{n}}$ and, therefore, $\cap\left\{S_{n}\right.$ : $n=$ $1,2, \cdots\} \neq \varnothing$.
7.2. Proposition. Let x be a compactum with dim $\mathrm{x} \geq 1$. Suppose that, for each pair of disjoint closed sets H and K , there is a family $\{(\mathrm{A}, \mathrm{B}),(\mathrm{D}, \mathrm{E})\}$ of pairs of disjoint closed sets such that $\{(\mathrm{A} \cap \mathrm{C}, \mathrm{B} \cap \mathrm{C}),(\mathrm{D} \cap \mathrm{C}, \mathrm{E} \cap \mathrm{C})$ ) is essential in each continuum $C$ from H to K . Then each non-degenerate subcontinuum of X is strongly infinite dimensional.

Proof. Since the hypotheses are satisfied by nondegenerate subcontinua of $X$, it suffices to assume that $X$ is a continuum and to show that X is strongly infinite dimensional. Let $\left\{\left(A_{1}, B_{1}\right),\left(D_{1}, E_{1}\right)\right\}$ be an essential family in X. Recursively, for $n \geq 2$, let $\left\{\left(A_{n}, B_{n}\right),\left(D_{n}, E_{n}\right)\right\}$ be such that $\left\{\left(A_{n} \cap C, B_{n} \cap C\right),\left(D_{n} \cap C, E_{n} \cap C\right)\right\}$ is essential in each continuum $C$ from $D_{n-1}$ to $E_{n-1}$. The argument used in the proof of Proposition 7.1 shows that $\left\{\left(A_{n}, B_{n}\right): n=1,2, \cdots\right\}$ is essential in X .

## Bibliography

R. H. Bing, A hereditarily infinite-dimensional space, General Topology and its relation to Modern Analysis and Algebra, II (Proc. Second Prague

Topological Sympos. 1966), Academia, Prague, 1967, 56-62.
[He] D. W. Henderson, An infinite-dimensional compactum with no positive-dimensional compact subset, Amer. J. Math 89 (1967), 105-121.
[H-W] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, N.J., 1941.
[R-S-W] L. Rubin, R. Schori, and J. Walsh, New dimensiontheory techniques for constructing infinite-dimensional examples.
[Wa] J. J. Walsh, Infinite dimensional compacta containing no n -dimensional ( $\mathrm{n} \geq 1$ ) subsets, Bull. Amer. Math. Soc. (to appear).
[Z-1] A. V. Zarelua, On hereditary infinite dimensional spaces (in Russian), Theory of Sets and Topology (Memorial volume in honor of Felix Hausdorff), edited by G. Asser, J. Flachsmeyer, and W. Rinow; Deutscher Verlay der Wissenschaften, Berlin, 1972, 509-525.
[2-2] $\qquad$ , Construction of strongly infinite-dimensional compacta using rings of continuous functions, Soviet Math. Dokl. (1) 15 (1974), 106-110.

Oregon State University
Corvallis, Oregon 97331
and
University of Tennessee
Knoxville, Tennessee 37916


[^0]:    ${ }^{1}$ The first author was partially supported on NSF Grant MCS 76-06522.
    ${ }^{2}$ The authors only became aware of $[2-1]$ during the final draft of this paper.

