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SOME REMARKS ON M-EMBEDDING 

L. I. Sennott 

Section 1 

There are four main results in this paper: (1) a 

necessary condition for the product of a space with any metric 

space to be normal, (2) a characterization of compact T
2 

spaces, (3) a complete analogue of the Morita-Hoshina Homotopy 

Extension Theorem (3.7 [13]) for ANR spaces, and (4) a char­

acterization of spaces for which every metric space is an AE. 

Each of these results involves the notion of M-embedding, 

which was introduced in [17]. (See also [8], [15]) 

In what follows, Y will denote an infinite cardinal 

number, R will denote the reals, p the irrationals, and I 

the unit interval; all functions and pseudometrics will be 

assumed continuous. No separation axioms will be assumed 

unless stated. 

We say a subspace S of a topological space X is MY-em­

bedded (PY-embedded) in X if every function from S to a 

y-separable (complete) metrizable AE extends to X. By an 

AE or ANR we mean an AE or ANR for metric spaces. By drop­

ping the separability condition, we obtain definitions of 

P- and M-ernbedding. P-embedding has been extensively studied, 

for example, see [1, 2, 13, 14]. For definitions of C*- and 

C-embedding see [6]. 

There are certain results we will frequently use, and 

we list them here. 

(a) S is pY-embedded (MY-embedded) in X iff every function 
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from S to a y-separab1e Banach space (normed linear space) 

extends to X (p. 227 [1], Th. 1 [17]). 

(S) X is y-co11ectionwise normal iff every closed sub­

set is pY-embedded in X (p. 189 [1]). 

(0) S is pHo-embedded in X iff S is C-embedded in X (p. 

200 [1]). 

(n) S is MY-embedded in X iff S is PY-embedded in X and 

given a y-separab1e pseudometric d on X, there exists a zero 

set Z of X such that S c Z c {x E X: d(x,xo ) = 0 for some 

X E S} (Th. 1 [17]).o 

(8) S is MY-embedded in X iff S is pY-embedded in X and 

given a function f from X to a y-separab1e metric space, 

-1there exists a zero set Z of X such that S c Z C f f(S) 

(Th • 1 [1 7] ) • 

(K) S is PY-embedded in X iff S x Y is PY-embedded in 

X x Y for every compact T2 space Y with w(Y) < Y (p. 234 [1] 

(X need not be T )).
3i

(A) S is PY-embedded in X iff S x Y is C*-embedded in 

x x Y for every compact T2 space Y with w(Y) < y (p. 234 [1]-­

for a sharpened version see [14]). 

Removing the cardinality restrictions on each of these 

(except (0)) produces characterizations of p- and M-embedding 

and of co11ectionwise normality. 

Section 2 

Since MHo-embedding (pHO-embedding) is equivalent to the 

extendability of every function into a separable (complete) 

metrizable AE and since pHo-embedding is equivalent to C-em­

bedding (fact (0) of Section 1), one might wonder whether S 
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is M~o-embedded in X iff (*): every function from S into an 

AE embedded in R extends to X. Note that a subset of R is 

an AE iff it is an interval. 2.1 will show that the above 

conjecture is false as (*) is equivalent to C-ernbedding. 

Example 2.4 of [8] (identical with the example on p. 224 of 

[17]) shows that C-embedding is strictly weaker than MHO-em­

bedding. (2.1 was first shown by R. Arens for closed sub­

sets of normal spaces [2].) 

2.1 Proposition. If 8 is C-embedded in X, every function 

from S to an intervaZ K of R extends to X with vaZues in K. 

Proof. There is an extension g of f with g(X) c K. 

Assuming that K is not closed, K - K consists of 1 or 2 points 

and hence is a zero set of R. Hence g-l(K - K) is a zero set 

of X disjoint from 8. Hence there exists h: X ~ [0,1] such 

-1 ­that	 h(8) :: 1 and h(g (K - K)) :: 0 (p. 19 [6]). Fix r E K 

and define f* = hg + (1 - h)r. 

This same idea will work if 8 is PY-embedded in X and f 

is a function from 8 to a convex subset K of a y-separable 

Banach space B such that K - K is a zero set in B. (See 4.1 

[2] ) 

Fact (8) of Section 1 with y = ~o tells us that S is 

M~O-ernbedded in X iff it is p~O-ernbedded and given a function 

f from X to a separable metric space, there exists a zero set 

Z of X such that 8 c Z c f- l f(8). One might ask whether 

MHo~embedding is equivalent to C-embedding plus (**): Given 

f: X ~ R, there exists a zero set Z of X such that 8 c Z c 

£-1£(8).	 The answer is again no. 

To see this, let X be the unit disc in the plane (as a 
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2 2 2 2set) .and S = {(x,y): x + y < 1, or x + y 1 and x is 

rational}. Let X have the topology that makes the points of 

X - S discrete. Hence open sets of X are of the form U U V, 

where U is an open neighborhood in the ordinary metric 

topology and V is a subset of X - S. Any space formed in 

this way is hereditarily paracompact (see [10] ) • Hence S is 

a closed C-embedded subset of X. Since S is an AR that is 

not an absolute Go (see p. 382 [7]), we can show that S is 

not a zero set of X. Since X is submetrizable (i.e. its 

topology contains a metric topology), it is clear from (n) in 

Section 1 that S is not MHo-embedded in X. (To see this, let 

d be the metric topology on X.) However, let f: X + Rand 

observe that since S is connected, f(S) is an interval and 

hence is a Go. Therefore f-lf(S) is a Go set of X contain­

ing S; since X is normal, there exists a zero set Z such that 

S c Z c f-lf (S) . 

Section 3 

There is considerable interest in spaces whose product 

with every metric space is normal. A characterization of this 

class was given by Morita [11, 12]. A theorem due to Morita, 

Rudin, and Starbird states that if Y is metric and X normal 

and countably paracompact, then X x Y is normal iff X x Y is 

countably paracompact [16]. 

This section will produce a necessary condition for the 

product of a normal space X with every y-separable metric 

space to be normal. If S is a subspace of X, we say that 

(X,S) has the y-Zero-Set Interpolation Property {y-ZIP} if 

whenever d is a y-separable pseudometric on X, there exists 
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a zero set Z of X such that: 

S c Z c {x E X: d(x,x ) = 0 for some X E S}.o o 

By (n) in Section 1, we see that S is MY-embedded in X iff S 

is PY-embedded and (x,S) has the y-ZIP. Hence the y-ZIP is 

what needs to be added to pY-embedding to produce MY-embedding. 

By dropping the separability condition on d, we obtain a de­

finition of the Zero-Set Interpolation Property (ZIP), and 

observe that S is M-embedded in X iff S is P-embedded in X 

and (X,S) has the ZIP. The following proposition is a slight 

generalization of an example communicated to the author by 

E. Michael (the example is written up in Section 3 of [18]). 

3.1 Proposition. Let S be a closed subset of a normal 

space X such that S x Y is C-embedded in X x Y for every 

y-separable metric space Y. Then (X,S) has the y-ZIP. 

Proof. Let d be a y-separable pseudometric on X and 

let A = {x E X: d(x,x ) = 0 for some X E S}. Let (Y,d) be o o 

the y-separable metric space associated with the pseudometric 

space (X - A,d). For notational ease we will identify points 

of Y with those of X-A. Define f: S x Y ~ R by f(x,y) = 

l/d(x,y). The map f is well-defined and continuous hence ex­

tends to g: X x Y ~ R. 

Let H {x E X - A: d(x,y) < lin ~ g(x,y) < n}. We n 

claim X - A U H. Let X E X - A and choose m such that o 

g(xo'x ) < m. Since g is continuous there exists an open set 
n n 

o 

U of X containing X and an E > 0 such that if x E U and o 

d(xo'y) < E, then g(x,y) < m. Choose n such that n > m and 

lin < E. Then X E H • o n 

Hence we have H = n (X - H ) C A. We claim that. S c H. n n 
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This will finish the proof, for since S is closed, X is nor­

mal, and H is a Go' we will be able to find a zero set Z such 

that S c Z c A. To show that S c H, argue by contradiction. 

Assume there exists X E S n H for some n. Choose Yo E X - A o n 

(We can do this since the topology 

generated by d is contained in the topology on X and x E H .)o	 n 

Then g(xo'yo) > 2n. Since g is continuous, there exists an 

open U containing X and E > 0 such that x E U and y E Y with o 

d(y,yo) < E implies g(x,y) > n. 

Choose x E U n H such that d(x,x ) < l/2n. Then n o 

d(x,yo) ~ d(x,x ) + d(xo'yo) < lin, hence g(x,yo) < n (sinceo 

x E H ). However, x E U and hence g(x,yo) > n, which is the n 

desired contradiction. 

There are a number of corollaries of this result. For 

example: 

3.2 Corollary. If X x Y is normal for every metric Y, 

then every closed subset of X has the ZIP with respect to x. 

3.3 Corollary. If X x Y is normal for every separable 

metric	 Y, then every closed subset of X is MKO-embedded in X. 

Proof. Use (0) and (n) of Section 1. 

3.4 Corollary. Let X be a collectionwise normal space 

whose product with every metric space is normal. Then every 

closed subset of X is M-embedded in X. 

Proof. Use (S) and (n) of Section 1. 

3.5 Corollary (Michael). The following are equivalent 

for a submetrizable space x: 
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(a) X is perfectly normal. 

(b) X x Y is perfectly normal for every metric Y. 

(c) X x Y is normal for every metric Y. 

Proof· (b) => (c) is clear and (a) => (b) is known [9]. 

Hence we need only show (c) => (a). Assume (c) but suppose 

(a) fails. This implies that X is normal and submetrizable, 

but not perfectly normal. From the definition of the ZIP, 

it is clear that a subset of a submetrizable space X has the 

ZIP with respect to X iff it is a zero set. (One may see 

this by letting d be the metric whose topology is contained 

in that of X.) Hence X contains a closed subset S such that 

(X,S) fails to have the ZIP, so by 3.1 there exists a metric 

space Y such that X x Y is not normal, giving a contradiction. 

In fact, it is clear from the above that if X contains 

a y-separable metric topology and fails to be perfectly nor­

mal, then there exists a y-separable metric Y such that 

X x Y is not normal. More specifically, if m is a continuous 

metric on X and S is a closed non-Go subset of X, then S x Y 

fails to be C-embedded in X x Y, where Y is the metric space 

(X - S,m). This shows immediately that X x P fails to be 

normal, where X is the Michael line and P the irrationals 

with their usual topology. A different proof was originally 

given in [10]. 

It is an open question whether the converse of 3.1 is 

true. 4.5 of Section 4 will shed some light on this question. 

Section 4 

Morita and Hoshina (Theorem 3.7 [13]) proved the 
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following generalization of the Homotopy Extension Theorem: 

4.1 Theorem. For a subspace S of a topological space 

X the following are equivalent: 

(1)	 S is PY-embedded in X. 

(2)	 (8 x Y) U (X x B) is PY-embedded in X x Y for every 

compact T space Y with w(Y) < Y and its closed2
 

subset B.
 

(3)	 (S x I) U (X x {a}) is PY-embedded in X x I. 

(4)	 (X,S) has the HEP with respect to every complete 

ANR space of weight 2 y. 

The	 analogue of 4.1 for MY-embedding is the following: 

4.2	 Theorem. The following are equivalent: 

(1)	 S is MY-embedded in X. 

(2)	 (S x Y) U (X x B) is MY-embedded in X x Y for every 

compact T space Y with w(Y) < Y and its closed2
 

subset B.
 

(3)	 (S x I) U (X x {O}) is MY-embedded in X x I. 

(4)	 (X, S) has the HEP with respect to every ANR space 

of weight .2. y. 

Proof. The equivalence of (1), (3), and (4) is Theorem 

2 of [17]. To complete the proof it remains to show (1) ~ 

(2). We state and prove the next theorem, then use it to 

show (1) => (2). 

4.3 Theorem (L. Sennott, R. Levy, M. D. Rice). The fol­

lowing are equivalent for a T space Y:2 

(1)	 The space Y is compact. 



TOPOLOGY PROCEEDINGS Volume 3 1978 515 

(2)	 If Y is embedded in a T3! space Z and X is any space~ 

then X x Y is M-embedded in X x z. 

(3)	 If Y is embedded in a space Z and X is any space~T3! 

then X x Y is C*-embedded in X x z. 

Proof. To show (1) ~ (2) let Y be a compact space 

embedded in a T3! space Z, let X be any space, and let 

f: X x Y ~ L be a continuous function into a normed linear 

space L. By (a) of Section 1, it is sufficient to extend f 

to X x Z. Define g: X ~ C*(Y,L) by g(x) (y) = f(x,y). A 

standard argument shows that g is continuous when C*(Y,L) has 

the sup norm topology. We then define h: g(X) x Y ~ L by 

h(g(x) ,y) = f(x,y) and observe that g(X) is a metric space 

and h is continuous. Now g(X) x SZ is the product of a 

metric space and a compact space and hence is a paracompact 

M-space. This implies that the closed subset g(X) x Y is 

M-embedded (Proposition 2 of [17]). Hence we can lift h to 

h*: g(X) x SZ ~ L. Defining f*: X x Z ~ L by f*(x,z) 

h*(g(x) ,z), one checks that this defines a continuous exten­

sion of f. Note: This proof uses an idea contained in the 

proof of Theorem 2 of [19] and in fact M. Starbird's Theorem 

3 [19] is our (1) ~ (3) with C*-embedding replaced by 

C-embedding. 

Clearly (2) ~ (3). Now assume (3) holds but Y is not 

compact. By Problem 6J of [6], the space Y is absolutely 

C*-embedded and hence is almost compact. Let sY - Y = {oo}, 

and let {U : a E D} be a base of open neighborhoods of 00 in a 

SY. We will define a space X such that X x Y is not C*-em­

bedded in X x SY. Define ap ordering on D: a < S iff 
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Us C U . Then D becomes a directed set. Let X = D U {q},a 

where q ¢ D, points of D are isolated and basic open neigh­

borhoods of q are of the form {q} U{a: a ~ a }. Denote this o 

set by [ao,q]. 

For each a, choose a function fa on SY such that 

fa{SY - U ) is identically 1 and fa{oo) O. Define a 

f: X x Y + [0,1] by f{a,y) fa{y) and f{q,y) = 1. Clearly 

f is continuous at points of the form (a,y). Fix (q,yo) and 

choose a o such that y
0 

d 
~ 

ITa o 
If (x, y) E [a , q]

o 
x (Y - IT ),

ao 

then f{x,y) = 1. 

If there were an extension of f to all of X x BY, the 

extension would be 1 at all points of the form (q,y) with 

Y E Y and 0 at all points (a,oo), which implies that the 

extension is not continuous at (q,oo). 

Note: This proof is a generalization of an example given 

by Comfort and Negrepontis (Example 4.6 of [4]). 

To complete the proof of 4.2, let S be MY-embedded in 

X, and Y and B be as in (2). By 4.3 (2) it is clear that 

X x B is MY-embedded in X x Y. By proposition 5 of [17], we 

have that S x Y is MY-embedded in X x Y. By Proposition 6 

of [17], to show (2) it is sufficient to show that (S x Y) U 

(X x B) is PY-embedded in X x Y. But this is true from 

(1) ~ (2) of 4.1. 

We now use 4.3 to obtain a generalization of (K) in 

Section 1, which will throw further light on the results in 

Section 3. 

4.4 Proposition. The following are equivalent: 
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(1 ) S	 is P Y-embedded in X. 

(2) S x Y is PY-embedded in X x Y for every locally 

compact~ paracompact T space Y with w(Y) < Y·2	 ­
(3) S x Y is C*-embedded in X x Y for every locally 

compact~ paracompact T space Y with w(Y) < Y· 

Proof· (2) => (3) is clear and (3) => (1) is clear 

2	 ­

from ( A) of Section 1. It remains to show (1) => (2) . Let 

S be PY-embedded in X and Y as in (2) . For each y E Y, let 

U denote an open neighborhood of y whose closure is compact.
y 

Let {f : a E A} be a locally finite partition of unity sub­
a 

ordinate to the cover {U : y E Y}, and let K denote the corn­
y a 

pact set cl(Y - Z(f ).
a 

Let g: S x Y + B be a function into a y-separable Banach 

space B. By (a) of Section 1, it is sufficient to extend g 

to X x Y. For each a, the function g = glS x K has an 
a a 

extension to h : X x K + B by (K) of Section 1. By 4.3 (2),
a a 

h extends to k : X x Y ~ B. Then g*(x,y) = ~ f (y)k (x,y)
a a a a a 

is the desired extension of g. 

4.5 Corollary. If S is C-embedded in X~ then S x Y is 

C-embedded	 in X x Y for any locally compact metric space Y. 

Proof. Let the compact sets K be constructed as in the 
a 

proof of (1) => (2) of 4.4. If Y is metric, then K is com­
a 

pact metric. Let g: S x y ~ R. By (8) and (K) of Section 1, 

g =	 glS x K has an extension to h : X x K ~ R. The proof
a a a a 

proceeds as in 4.4. 

Comparing 3.1 and 4.5, we see that if S is a closed sub­

set of a normal space X such that (X,S) fails to have ZIP, 

then there exists a non-locally compact metric space Y such 
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that S x Y is not C-embedded in X x Y. 

4.6 Corollary. If S is MY-embedded in X3 then S x Y is 

MY-embedded in X x Y for any locally compact paracompact T
2 

space Y with w(Y) 2 y. 

Proof. The proof of (1) ~ (2) of 4.4 goes through with 

B replaced by a y-separable normed linear space. (To lift 

g a use 4.2 (1) => (2).) 

Section 5 

As a final application of M-embedding, we-generalize two 

results of E. Chang [3]. (Also see results of Ellis [5].) 

Although the results deal with ultranormal spaces, they are 

equivalent to the following: 

5.1 Proposition (Chang, p. 38, 40 [3]). Let X be non­

empty. The following are equivalent. 

(1) X is a O-dim collectionwise normal (normal) space. 

(2) Every complete (separable) metric space is an AE for 

x. 

5.2 Proposition (Chang, p. 43 [3]). Let S be a closed 

Go subset of a O-dim collectionwise normal (normal) space X 3 

Y a (separable) metric space and f: S ~ Y. Then f extends 

to X. 

5.3 Proposition. Let X be nonempty. The following are 

equivalent. 

(1) Every (separable) metric space is an AE for X. 

(2) X is a O-dim space in which every closed subset is 

M-(M~O-)embedded. 
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Proof. We prove the unbracketed equivalence. (1) => 

(2)	 is clear from 5.1 and the definition of M-err~edding. To 

show (2) => (1), let Y be a metric space, S a closed subset 

-
of X, and f: S ~ Y. Let Y denote the completion of Y with 

injection map i. Since X is a O-dim collectionwise normal 

space, the map i 0 f: S ~ Y has an extension f to X, by 5.1. 

By (8) of Section 1, there exists a zero set Z of X such that 

--1 ­
S c	 Z c f f(S). Hence flz maps Z into Y, so by 5.2 it can 

be lifted to f*: X ~ Y, completing the proof. 

In [15], Morita remarks that the following generaliza­

tions of known results can be proved: If dim XiS 2 n+l, 

then S is MY-embedded (PY-embedded) in X iff any map from S 

into a metric (complete metric) space of weight 2 Y which is 

LCn and Cn can be extended to X. If dim XiS < n, then S is 

MY-embedded (pY-embedded) in X iff (X,S) has the homotopy 

extension property with respect to every metric (complete 

metric) space of weight < Y which is LC
n . 
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