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SOME REMARKS ON M-EMBEDDING

L. L Sennott

Section 1

There are four main results in this paper: (1) a
necessary condition for the product of a space with any metric
space to be normal, (2) a characterization of compact TZ
spaces, (3) a complete analogue of the Morita-~Hoshina Homotopy
Extension Theorem (3.7 [13]) for ANR spaces, and (4) a char-
acterization of spaces for which every metric space is an AE.
Each of these results involves the notion of M-embedding,
which was introduced in [17]. (See also [8], [15])

In what follows, y will denote an infinite cardinal
number, R will denote the reals, p the irrationals, and I
the unit interval; all functions and pseudometrics will be
assumed continuous. No separation axioms will be assumed
unless stated.

We say a subspace S of a topological space X is M -em-
bedded (PY-embedded) in X if every function from S to a
Y-separable (complete) metrizable AE extends to X. By an
AE or ANR we mean an AE or ANR for metric spaces. By drop-
ping the separability condition, we obtain definitions of
P- and M-embedding. P-embedding has been extensively studied,
for example, see [1l, 2, 13, 14]. For definitions of C*- and
C-embedding see [6].

There are certain results we will frequently use, and

we list them here.

(a) 5 is PY-embedded (MY-embedded) in X iff every function
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from S to a y-separable Banach space (normed linear space)
extends to X (p. 227 [1], Th. 1 [17]).

(R) X is y-collectionwise normal iff every closed sub-
set is P'-embedded in X (p. 189 {11).

(6) S is Po-embedded in X iff S is C-embedded in X (p.
200 [11).

(n) S is M'-embedded in X iff S is P'-embedded in X and
given a y-separable pseudometric d on X, there exists a zero
set Z of X such that S ¢ Z « {x ¢ X: d(x,x5) = 0 for some
X, € St (Th. 1 [17]).

(6) S is M'-embedded in X iff S is PY-embedded in X and
given a function f from X to a y-separable metric space,
there exists a zero set Z of X such that § < 2 & f-lf(s)

(Th. 1 [17]). '

(k) S is P'-embedded in X iff S x Y is P'-embedded in
X x Y for every compact T, space Y with w(Y) < y (p. 234 [1]
(X need not be T3%)).

(A) S is PY-embedded in X iff § x Y is C*-embedded in
X x Y for every compact T, space Y with w(Y) < vy (p. 234 [1]--
for a sharpened version see [14]).

Removing the cardinality restrictions on each of these
(except (§)) produces characterizations of P- and M-embedding

and of collectionwise normality.

Section 2
Since MNO-embedding (PNO—embedding) is equivalent to the

extendability of every function into a separable (complete)
metrizable AE and since PNO—embedding is equivalent to C-em-

bedding (fact (§) of Section 1), one might wonder whether S
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is Mxo—embedded in X iff (*): every function from § into an
AE embedded in R extends to X. Note that a subset of R is
an AE iff it is an interval. 2.1 will show that the above
conjecture is false as (*) is equivalent to C-embedding,
Example 2.4 of [8] (identical with the example on p. 224 of
[17]) shows that C-embedding is strictly weaker than MHO—em—
bedding. (2.1 was first shown by R. Arens for closed sub-

sets of normal spaces [2].)

2.1 Proposition. If S is C-embedded in X, every function
from S to an interval K of R extends to X with values in K.

Proof. There is an extension g of f with g(X) < K.
Assuming that K is not closed, K - K consists of 1 or 2 points
and hence is a zero set of R. Hence g-l(f - K) is a zero set

of X disjoint from S. Hence there exists h: X » [0,1] such

that h(s) = 1 and h(g (K - K)) = 0 (p. 19 [6]). Fix r € K
and define f* = hg + (1 - h)r.

This same idea will work if S is PY-embedded in X and f
is a function from S to a convex subset K of a y-separable
Banach space B such that K - K is a zero set in B. (See 4.1
[21)

Fact (6) of Section 1 with y = Ho tells us that S is
MHO-embedded in X iff it is Pxo-embedded and given a function
f from X to a separable metric space, there exists a zero set
%z of X such that S « 2 < f_lf(s). One might ask whether
Mﬁoeembedding is equivalent to C-embedding plus (**): Given
f: X > R, there exists a zero set 2 of X such that § = 2 <
f_lf(S). The answer is again no.

To see this, let X be the unit disc in the plane (as a
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set) .and S = {(X,y): x2 + y2 <1, or x2 + y2 =1 and x is
rational}. Let X have the topology that makes the points of
X - S discrete. Hence open sets of X are of the form U U V,
where U is an open neighborhood in the ordinary metric
topology and V is a subset of X - S. Any space formed in
this way is hereditarily paracompact (see [10]). Hence S is
a closed C-embedded subset of X. Since $ is an AR that is

not an absolute G, (see p. 382 [7]), we can show that S is

8
not a zero set of X. Since X is submetrizable (i.e. its
topology contains a metric topology), it is clear from (n) in
Section 1 that S is not M¥o-embedded in X. (To see this, let
d be the metric topology on X.) However, let f: X » R and
observe that since S is connected, f(S) is an interval and
hence is a Gd' Therefore f—lf(S) is a Gd set of X contain-

ing S; since X is normal, there exists a zero set 2 such that

Sc 2z« f-lf(S).

Section 3

There is considerable interest in spaces whose product
with every metric space is normal. A characterization of this
class was given by Morita [11, 12]. A theorem due to Morita,
Rudin, and Starbird states that if Y is metric and X normal
and countably paracompact, then X x Y is normal iff X x Y is
countably paracompact [16].

This section will produce a necessary condition for the
product of a normal space X with every y-separable metric
space to be normal. If S is a subspace of X, we say that
(X,S) has the y-Zero-Set Interpolation Property (y-ZIP) if

whenever d is a y-separable pseudometric on X, there exists
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a zero set Z of X such that:

S 2 c {x € X: d(x,xo) = 0 for some X, € S}.
By (n) in Section 1, we see that S 1is MY-embedded in X iff S
is P'-embedded and (X,8) has the y-ZIP. Hence the y-ZIP is
what needs to be added to PY-embedding to produce MY-embedding.
By dropping the separability condition on d, we obtain a de-
finition of the Zero-Set Interpolation Property (ZIP), and
observe that S is M-embedded in X iff S is P-embedded in X
and (X,S) has the ZIP. The following proposition is a slight
generalization of an example communicated to the author by

E. Michael (the example is written up in Section 3 of [18]).

3.1 Proposition. Let S be a closed subset of a normal
space X such that S x Y igs C-embedded in X x Y for every
Y-separable metric space Y. Then (X,S) has the y-ZIP.

Proof. Let d be a y-separable pseudometric on X and
let A = {x € X: d(x,xo) = 0 for some X, € S}. Let (Y,d) be
the y-separable metric space associated with the pseudometric
space (X - A,d). For notational ease we will identify points
of Y with those of X = A. Define f: S x Y - R by f(x,y) =
1/d(x,y). The map f is well-defined and continuous hence ex-

tends to g: X x Y »> R.

Let Hn {x € X - A: d(x,y) < 1/n = g(x,y) < n}. We

claim X - A = g Hn' Let X € X - A and choose m such that
g(xo,xo) < m. Since g is continuous there exists an open set
U of X containing X, and an € > 0 such that if x € U and
d(xo,y) < g, then g(x,y) < m. Choose n such that n > m and
l/n < g. Then X, € Hn'
Hence we have H = 2 (X - ﬁh) < A. We claim that S < H.
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This will finish the proof, for since S is closed, X is nor-

mal, and H is a G we will be able to find a zero set Z such

5’
that S € Z =< A. To show that S < H, argue by contradiction.
Assume there exists X, €SN ﬁh for some n. Choose Yo € X -~ A
such that d(xo,yo) < 1/2n. (We can do this since the topology
generated by 4 is contained in the topology on X and Xq € ﬁh.)
Then g(xo,yo) > 2n. Since g is continuous, there exists an
open U containing X, and € > 0 such that x € Uand y € ¥ with
d(y,yo) < €& implies g{(x,y) > n.
Choose x € U N Hn such that d(x,xo) < 1/2n. Then
d(x,yo) < d(x,xo) + d(xo,yo) < 1/n, hence g(x,yo) < n (since
X € Hn). However, x € U and hence g(x,yo) > n, which is the

desired contradiction.

There are a number of corollaries of this result. For

example:

3.2 Corollary. If X x ¥ is normal for every metric Y,

then every closed subset of X has the ZIP with respect to X.

3.3 Corollary. If X x Y is normal for every separable
metric Y, then every closed subset of X is MPo-embedded in X.

Proof. Use (8) and (n) of Section 1.

3.4 Corollary. Let X be a collectionwise normal space
whose product with every metric space is normal. Then every
closed subset of X is M-embedded in X.

Proof. Use (B) and (n) of Section 1.

3.5 Corollary (Michael). The following are equivalent

for a submetrizable space X:
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(a) X 18 perfectly normal.

(b) X X Y is perfectly normal for every metric Y.

(e) X x Y is normal for every metric Y.

Proof. (b) = (c¢) is clear and (a) = (b) is known [9].
Hence we need only show (c¢) = (a). Assume (c) but suppose
(a) fails. This implies that X is normal and submetrizable,
but not perfectly normal. From the definition of the ZIP,
it is clear that a subset of a submetrizable space X has the
ZIP with respect to X iff it is a zero set. (One may see
this by letting d be the metric whose topology is contained
in that of X.) Hence X contains a closed subset S such that
(X,S) fails to have the ZIP, so by 3.1 there exists a metric

space Y such that X x Y is not normal, giving a contradiction.

In fact, it is clear from the above that if X contains

a y-separable metric topology and fails to be perfectly nor-
mal, then there exists a y-separable metric Y such that

X x Y is not normal. More specifically, if m is a continuous
metric on X and S is a closed non—G<S subset of X, then S x Y
fails to be C-embedded in X x Y, where Y is the metric space
(X - S,m). This shows immediately that X x P fails to be
normal, where X is the Michael line and P the irrationals

with their usual topology. A different proof was originally

given in [10].

It is an open question whether the converse of 3.1 is

true. 4.5 of Section 4 will shed some light on this question.

Section 4

Morita and Hoshina (Theorem 3.7 [13]) proved the
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following generalization of the Homotopy Extension Theorem:

4.1

Theorem. For a subspace S of a topological space

X the following are equivalent:

(1)

(2)

(3)

The

(1)
(2)

(3)
(4)

S is P'-embedded in X.

(S x Y) U (X x B) is PY-embedded in X x Y for every
compact T, space Y with w(Y) < y and its closed
subset B.

(S x I) U (X x {0}) Zs PY-embedded in X x I.

(X,S) has the HEP with respect to every complete

ANR space of weight < v.
analogue of 4.1 for MY—embedding is the following:

Theorem. The following are equivalent:

S is M'-embedded in X.

(8 x Y) U (X x B) is M'-embedded in X x Y for every
compact T, space Y with w(Y) < vy and its closed
subset B.

(S x I) U (X x {0}) s M'-embedded in X x I.

(X,S) has the HEP with respect to every ANR space

of weight < Y.

Proof. The equivalence of (1), (3), and (4) is Theorem

2 of [17]. To complete the proof it remains to show (1) =

(2). We
show (1)
4.3

state and prove the next theorem, then use it to

= (2).

Theorem (L. Sennott, R. Levy, M. D. Rice). The fol-

lowing are equivalent for a T, space Y:

(1)

The space Y is compact.
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(2) If Y is embedded in a ‘I‘3é space % and X is any space,
then X x Y 1s M-embedded in X x Z.

(3) If Y is embedded in a T3% space Z and X is any space,
then X x Y is C*-embedded in X x Z.

Proof. To show (1) = (2) let Y be a compact space
embedded in a T3% space Z, let X be any space, and let
f: X XY > L be a continuous function into a normed linear
space L. By (a) of Section 1, it is sufficient to extend £
to X x Z. Define g: X > C*(Y,L) by g(x)(y) = £(x,y). A
standard argument shows that g is continuous when C*(Y,L) has
the sup norm topology. We then define h: g(X) x Y > L by
h(g(x),y) = f(x,y) and observe that g(X) is a metric space
and h is continuous. Now g(X) x BZ is the product of a
metric space and a compact space and hence is a paracompact
M-space. This implies that the closed subset g(X) x Y is
M-embedded (Proposition 2 of [17]). Hence we can lift h to
h*: g(X) x BZ » L. Defining f*: X x 2 » L by f*(x,2) =
h* (g(x),z), one checks that this defines a continuous exten-
sion of f. Note: This proof uses an idea contained in the
proof of Theorem 2 of [19] and in fact M. Starbird's Theorem
3 [19] is our (1) = (3) with C*-embedding replaced by
C-embedding.

Clearly (2) = (3). Now assume (3) holds but Y is not
compact. By Problem 6J of [6], the space Y is absolutely
C*-embedded and hence is almost compact. Let BY - Y = {w},
and let {Ua: a € D} be a base of open neighborhoods of = in
BY. We will define a space X such that X x Y is not C*-em-

bedded in X x BY. Define an ordering on D: o < B iff
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UB = Ua' Then D becomes a directed set. Let X =D U {q},
where q £ D, points of D are isolated and basic open neigh-
borhoods of q are of the form {q} U {a: o > ao}. Denote this
set by [a_.,q].

For each o, choose a function fa on BY such that
fa(BY - Ua) is identically 1 and fa(m) = 0. Define
f: X x Y +~ [0,1] by f(a,y) = fa(y) and f(q,y) = 1. Clearly
f is continuous at points of the form (a,y). Fix (q,yo) and
choose ay such that Yo £ ﬁao. If (x,y) ¢ [ao,q] x (Y - ﬁ&o)’
then f(x,y) = 1.

I1f there were an extension of £ to all of X x RY, the
extension would be 1 at all points of the form (q,y) with
y € Y and 0 at all points {(a,»), which implies that the
extension is not continuous at (g,«).

Note: This proof is a generalization of an example given

by Comfort and Negrepontis (Example 4.6 of [4]).

To complete the proof of 4.2, let S be MY-embedded in
X, and Y and B be as in (2). By 4.3 (2) it is clear that
X x B is M'-embedded in X x Y. By proposition 5 of [17], we
have that 8 x Y is M'-embedded in X x Y. By Proposition 6
of [17], to show (2) it is sufficient to show that (S x Y) U
(X x B) is PY-embedded in X x Y. But this is true from

(1) = (2) of 4.1.

We now use 4.3 to obtain a generalization of (k) in
Section 1, which will throw further light on the results in

Section 3.

4.4 Proposition. The following are equivalent:
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(1) 8 is P'-embedded in X.

(2) S x Y is P'-embedded in X x Y for every locally
compact, paracompact T, space Y with w(Y) < y.

(3) 8§ x Y is C*-embedded in X x Y for every locally

compact, paracompact T, space Y with w(Y) < y.

2
Proof. (2) = (3) is clear and (3) = (1) is clear
from (A) of Section 1. It remains to show (1) = (2). Let

S be P'-embedded in X and Y as in (2). For each y ¢ Y, let
Uy denote an open neighborhood of y whose closure is compact.
Let {fa: @ € A} be a locally finite partition of unity sub-
ordinate to the cover {Uy: y € Y}, and let Ka denote the com-
pact set cl(y - Z(fa))'

Let g: S x Y » B be a function into a y-separable Banach
space B. By (a) of Section 1, it is sufficient to extend g
to X x Y. For each @, the function 9, = g|s x Ka has an
extension to ha: X x Ka + B by (k) of Section 1. By 4.3 (2),
ha extends to ka: X x Y » B. Then g*(x,y) = g fa(y)ka(x'y)

is the desired extension of g.

4.5 Corollary. If S is C-embedded in X, then S x Y ig
C-embedded in X x Y for any locally compact metric space Y.

Proof. Let the compact sets Ka be constructed as in the
proof of (1) = (2) of 4.4. If Y is metric, then Ka is com-
pact metric. Let g: S x Y » R. By (8) and (x) of Section 1,
9, = gls x K has an extension to ha: X x K > R. The proof
proceeds as in 4.4.

Comparing 3.1 and 4.5, we see that if S is a closed sub-

set of a normal space X such that (X,S) fails to have ZIP,

then there exists a non-locally compact metric space Y such
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that S x Y is not C-embedded in X x Y.

4.6 Corollary. If S is MY-embedded in X, then S x Y is
M -embedded in X x Y for any locally compact paracompact T2
space Y with w(Y) < vy.

Proof. The proof of (1) = (2) of 4.4 goes through with
B replaced by a y-separable normed linear space. (To lift

g, use 4.2 (1) = (2).)

Section 5

As a final application of M-embedding, we generalize two
results of E. Chang [3]. (Also see results of Ellis [5].)
Although the results deal with ultranormal spaces, they are

equivalent to the following:

5.1 Proposition (Chang, p. 38, 40 [3]1). Let X be non-
empty. The following are equivalent.

(1) X is a 0-dim collectionwise normal (normal) space.

(2) Every complete (separable) metric space is an AE for

X.

5.2 Proposition (Chang, p. 43 [3]). Let s be a closed

G, subset of a 0-dim collectionwise normal (normal) space X,

8
Y a (separable) metric space and f: § » Y. Then f extends

to X.

5.3 Proposition. Let X be nonempty. The following are
equivalent.

(1) Every (separable) metric space is an AE for X.

(2) X 28 a 0-dim space in which every closed subset is

M-(MBO—)embedded.
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Proof. We prove the unbracketed equivalence. (1) =
(2) is clear from 5.1 and the definition of M-embedding. To
show (2) = (1), let Y be a metric space, S a closed subset
of X, and f: § » Y. Let Y denote the completion of Y with
injection map i. Since X is a 0-dim collectionwise normal
space, the map i o f: § » Y has an extension f to X, by 5.1.
By (6) of Section 1, there exists a zero set Z of X such that

1

S cZ cf “f(S). Hence f|Z maps Z into ¥, so by 5.2 it can

be lifted to f*: X + Y, completing the proof.

In [15], Morita remarks that the following generaliza-
tions of known results can be proved: If dim X/S < n+l,
then S is M'-embedded (PY-embedded) in X iff any map from S
into a metric (complete metric) space of weight < y which is
Lc™ and c® can be extended to X. If dim X/S < n, then S is
M'-embedded (P'-embedded) in X iff (X,S) has the homotopy
extension property with respect to every metric (complete

metric) space of weight < y which is Lc™.
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