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SOME REMARKS ON M-EMBEDDING 

L. I. Sennott 

Section 1 

There are four main results in this paper: (1) a 

necessary condition for the product of a space with any metric 

space to be normal, (2) a characterization of compact T
2 

spaces, (3) a complete analogue of the Morita-Hoshina Homotopy 

Extension Theorem (3.7 [13]) for ANR spaces, and (4) a char

acterization of spaces for which every metric space is an AE. 

Each of these results involves the notion of M-embedding, 

which was introduced in [17]. (See also [8], [15]) 

In what follows, Y will denote an infinite cardinal 

number, R will denote the reals, p the irrationals, and I 

the unit interval; all functions and pseudometrics will be 

assumed continuous. No separation axioms will be assumed 

unless stated. 

We say a subspace S of a topological space X is MY-em

bedded (PY-embedded) in X if every function from S to a 

y-separable (complete) metrizable AE extends to X. By an 

AE or ANR we mean an AE or ANR for metric spaces. By drop

ping the separability condition, we obtain definitions of 

P- and M-ernbedding. P-embedding has been extensively studied, 

for example, see [1, 2, 13, 14]. For definitions of C*- and 

C-embedding see [6]. 

There are certain results we will frequently use, and 

we list them here. 

(a) S is pY-embedded (MY-embedded) in X iff every function 
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from S to a y-separab1e Banach space (normed linear space) 

extends to X (p. 227 [1], Th. 1 [17]). 

(S) X is y-co11ectionwise normal iff every closed sub

set is pY-embedded in X (p. 189 [1]). 

(0) S is pHo-embedded in X iff S is C-embedded in X (p. 

200 [1]). 

(n) S is MY-embedded in X iff S is PY-embedded in X and 

given a y-separab1e pseudometric d on X, there exists a zero 

set Z of X such that S c Z c {x E X: d(x,xo ) = 0 for some 

X E S} (Th. 1 [17]).o 

(8) S is MY-embedded in X iff S is pY-embedded in X and 

given a function f from X to a y-separab1e metric space, 

-1there exists a zero set Z of X such that S c Z C f f(S) 

(Th • 1 [1 7] ) • 

(K) S is PY-embedded in X iff S x Y is PY-embedded in 

X x Y for every compact T2 space Y with w(Y) < Y (p. 234 [1] 

(X need not be T )).
3i

(A) S is PY-embedded in X iff S x Y is C*-embedded in 

x x Y for every compact T2 space Y with w(Y) < y (p. 234 [1]-

for a sharpened version see [14]). 

Removing the cardinality restrictions on each of these 

(except (0)) produces characterizations of p- and M-embedding 

and of co11ectionwise normality. 

Section 2 

Since MHo-embedding (pHO-embedding) is equivalent to the 

extendability of every function into a separable (complete) 

metrizable AE and since pHo-embedding is equivalent to C-em

bedding (fact (0) of Section 1), one might wonder whether S 
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is M~o-embedded in X iff (*): every function from S into an 

AE embedded in R extends to X. Note that a subset of R is 

an AE iff it is an interval. 2.1 will show that the above 

conjecture is false as (*) is equivalent to C-ernbedding. 

Example 2.4 of [8] (identical with the example on p. 224 of 

[17]) shows that C-embedding is strictly weaker than MHO-em

bedding. (2.1 was first shown by R. Arens for closed sub

sets of normal spaces [2].) 

2.1 Proposition. If 8 is C-embedded in X, every function 

from S to an intervaZ K of R extends to X with vaZues in K. 

Proof. There is an extension g of f with g(X) c K. 

Assuming that K is not closed, K - K consists of 1 or 2 points 

and hence is a zero set of R. Hence g-l(K - K) is a zero set 

of X disjoint from 8. Hence there exists h: X ~ [0,1] such 

-1 that	 h(8) :: 1 and h(g (K - K)) :: 0 (p. 19 [6]). Fix r E K 

and define f* = hg + (1 - h)r. 

This same idea will work if 8 is PY-embedded in X and f 

is a function from 8 to a convex subset K of a y-separable 

Banach space B such that K - K is a zero set in B. (See 4.1 

[2] ) 

Fact (8) of Section 1 with y = ~o tells us that S is 

M~O-ernbedded in X iff it is p~O-ernbedded and given a function 

f from X to a separable metric space, there exists a zero set 

Z of X such that 8 c Z c f- l f(8). One might ask whether 

MHo~embedding is equivalent to C-embedding plus (**): Given 

f: X ~ R, there exists a zero set Z of X such that 8 c Z c 

£-1£(8).	 The answer is again no. 

To see this, let X be the unit disc in the plane (as a 
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2 2 2 2set) .and S = {(x,y): x + y < 1, or x + y 1 and x is 

rational}. Let X have the topology that makes the points of 

X - S discrete. Hence open sets of X are of the form U U V, 

where U is an open neighborhood in the ordinary metric 

topology and V is a subset of X - S. Any space formed in 

this way is hereditarily paracompact (see [10] ) • Hence S is 

a closed C-embedded subset of X. Since S is an AR that is 

not an absolute Go (see p. 382 [7]), we can show that S is 

not a zero set of X. Since X is submetrizable (i.e. its 

topology contains a metric topology), it is clear from (n) in 

Section 1 that S is not MHo-embedded in X. (To see this, let 

d be the metric topology on X.) However, let f: X + Rand 

observe that since S is connected, f(S) is an interval and 

hence is a Go. Therefore f-lf(S) is a Go set of X contain

ing S; since X is normal, there exists a zero set Z such that 

S c Z c f-lf (S) . 

Section 3 

There is considerable interest in spaces whose product 

with every metric space is normal. A characterization of this 

class was given by Morita [11, 12]. A theorem due to Morita, 

Rudin, and Starbird states that if Y is metric and X normal 

and countably paracompact, then X x Y is normal iff X x Y is 

countably paracompact [16]. 

This section will produce a necessary condition for the 

product of a normal space X with every y-separable metric 

space to be normal. If S is a subspace of X, we say that 

(X,S) has the y-Zero-Set Interpolation Property {y-ZIP} if 

whenever d is a y-separable pseudometric on X, there exists 
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a zero set Z of X such that: 

S c Z c {x E X: d(x,x ) = 0 for some X E S}.o o 

By (n) in Section 1, we see that S is MY-embedded in X iff S 

is PY-embedded and (x,S) has the y-ZIP. Hence the y-ZIP is 

what needs to be added to pY-embedding to produce MY-embedding. 

By dropping the separability condition on d, we obtain a de

finition of the Zero-Set Interpolation Property (ZIP), and 

observe that S is M-embedded in X iff S is P-embedded in X 

and (X,S) has the ZIP. The following proposition is a slight 

generalization of an example communicated to the author by 

E. Michael (the example is written up in Section 3 of [18]). 

3.1 Proposition. Let S be a closed subset of a normal 

space X such that S x Y is C-embedded in X x Y for every 

y-separable metric space Y. Then (X,S) has the y-ZIP. 

Proof. Let d be a y-separable pseudometric on X and 

let A = {x E X: d(x,x ) = 0 for some X E S}. Let (Y,d) be o o 

the y-separable metric space associated with the pseudometric 

space (X - A,d). For notational ease we will identify points 

of Y with those of X-A. Define f: S x Y ~ R by f(x,y) = 

l/d(x,y). The map f is well-defined and continuous hence ex

tends to g: X x Y ~ R. 

Let H {x E X - A: d(x,y) < lin ~ g(x,y) < n}. We n 

claim X - A U H. Let X E X - A and choose m such that o 

g(xo'x ) < m. Since g is continuous there exists an open set 
n n 

o 

U of X containing X and an E > 0 such that if x E U and o 

d(xo'y) < E, then g(x,y) < m. Choose n such that n > m and 

lin < E. Then X E H • o n 

Hence we have H = n (X - H ) C A. We claim that. S c H. n n 
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This will finish the proof, for since S is closed, X is nor

mal, and H is a Go' we will be able to find a zero set Z such 

that S c Z c A. To show that S c H, argue by contradiction. 

Assume there exists X E S n H for some n. Choose Yo E X - A o n 

(We can do this since the topology 

generated by d is contained in the topology on X and x E H .)o	 n 

Then g(xo'yo) > 2n. Since g is continuous, there exists an 

open U containing X and E > 0 such that x E U and y E Y with o 

d(y,yo) < E implies g(x,y) > n. 

Choose x E U n H such that d(x,x ) < l/2n. Then n o 

d(x,yo) ~ d(x,x ) + d(xo'yo) < lin, hence g(x,yo) < n (sinceo 

x E H ). However, x E U and hence g(x,yo) > n, which is the n 

desired contradiction. 

There are a number of corollaries of this result. For 

example: 

3.2 Corollary. If X x Y is normal for every metric Y, 

then every closed subset of X has the ZIP with respect to x. 

3.3 Corollary. If X x Y is normal for every separable 

metric	 Y, then every closed subset of X is MKO-embedded in X. 

Proof. Use (0) and (n) of Section 1. 

3.4 Corollary. Let X be a collectionwise normal space 

whose product with every metric space is normal. Then every 

closed subset of X is M-embedded in X. 

Proof. Use (S) and (n) of Section 1. 

3.5 Corollary (Michael). The following are equivalent 

for a submetrizable space x: 



TOPOLOGY PROCEEDINGS Volume 3 1978 513 

(a) X is perfectly normal. 

(b) X x Y is perfectly normal for every metric Y. 

(c) X x Y is normal for every metric Y. 

Proof· (b) => (c) is clear and (a) => (b) is known [9]. 

Hence we need only show (c) => (a). Assume (c) but suppose 

(a) fails. This implies that X is normal and submetrizable, 

but not perfectly normal. From the definition of the ZIP, 

it is clear that a subset of a submetrizable space X has the 

ZIP with respect to X iff it is a zero set. (One may see 

this by letting d be the metric whose topology is contained 

in that of X.) Hence X contains a closed subset S such that 

(X,S) fails to have the ZIP, so by 3.1 there exists a metric 

space Y such that X x Y is not normal, giving a contradiction. 

In fact, it is clear from the above that if X contains 

a y-separable metric topology and fails to be perfectly nor

mal, then there exists a y-separable metric Y such that 

X x Y is not normal. More specifically, if m is a continuous 

metric on X and S is a closed non-Go subset of X, then S x Y 

fails to be C-embedded in X x Y, where Y is the metric space 

(X - S,m). This shows immediately that X x P fails to be 

normal, where X is the Michael line and P the irrationals 

with their usual topology. A different proof was originally 

given in [10]. 

It is an open question whether the converse of 3.1 is 

true. 4.5 of Section 4 will shed some light on this question. 

Section 4 

Morita and Hoshina (Theorem 3.7 [13]) proved the 
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following generalization of the Homotopy Extension Theorem: 

4.1 Theorem. For a subspace S of a topological space 

X the following are equivalent: 

(1)	 S is PY-embedded in X. 

(2)	 (8 x Y) U (X x B) is PY-embedded in X x Y for every 

compact T space Y with w(Y) < Y and its closed2
 

subset B.
 

(3)	 (S x I) U (X x {a}) is PY-embedded in X x I. 

(4)	 (X,S) has the HEP with respect to every complete 

ANR space of weight 2 y. 

The	 analogue of 4.1 for MY-embedding is the following: 

4.2	 Theorem. The following are equivalent: 

(1)	 S is MY-embedded in X. 

(2)	 (S x Y) U (X x B) is MY-embedded in X x Y for every 

compact T space Y with w(Y) < Y and its closed2
 

subset B.
 

(3)	 (S x I) U (X x {O}) is MY-embedded in X x I. 

(4)	 (X, S) has the HEP with respect to every ANR space 

of weight .2. y. 

Proof. The equivalence of (1), (3), and (4) is Theorem 

2 of [17]. To complete the proof it remains to show (1) ~ 

(2). We state and prove the next theorem, then use it to 

show (1) => (2). 

4.3 Theorem (L. Sennott, R. Levy, M. D. Rice). The fol

lowing are equivalent for a T space Y:2 

(1)	 The space Y is compact. 
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(2)	 If Y is embedded in a T3! space Z and X is any space~ 

then X x Y is M-embedded in X x z. 

(3)	 If Y is embedded in a space Z and X is any space~T3! 

then X x Y is C*-embedded in X x z. 

Proof. To show (1) ~ (2) let Y be a compact space 

embedded in a T3! space Z, let X be any space, and let 

f: X x Y ~ L be a continuous function into a normed linear 

space L. By (a) of Section 1, it is sufficient to extend f 

to X x Z. Define g: X ~ C*(Y,L) by g(x) (y) = f(x,y). A 

standard argument shows that g is continuous when C*(Y,L) has 

the sup norm topology. We then define h: g(X) x Y ~ L by 

h(g(x) ,y) = f(x,y) and observe that g(X) is a metric space 

and h is continuous. Now g(X) x SZ is the product of a 

metric space and a compact space and hence is a paracompact 

M-space. This implies that the closed subset g(X) x Y is 

M-embedded (Proposition 2 of [17]). Hence we can lift h to 

h*: g(X) x SZ ~ L. Defining f*: X x Z ~ L by f*(x,z) 

h*(g(x) ,z), one checks that this defines a continuous exten

sion of f. Note: This proof uses an idea contained in the 

proof of Theorem 2 of [19] and in fact M. Starbird's Theorem 

3 [19] is our (1) ~ (3) with C*-embedding replaced by 

C-embedding. 

Clearly (2) ~ (3). Now assume (3) holds but Y is not 

compact. By Problem 6J of [6], the space Y is absolutely 

C*-embedded and hence is almost compact. Let sY - Y = {oo}, 

and let {U : a E D} be a base of open neighborhoods of 00 in a 

SY. We will define a space X such that X x Y is not C*-em

bedded in X x SY. Define ap ordering on D: a < S iff 
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Us C U . Then D becomes a directed set. Let X = D U {q},a 

where q ¢ D, points of D are isolated and basic open neigh

borhoods of q are of the form {q} U{a: a ~ a }. Denote this o 

set by [ao,q]. 

For each a, choose a function fa on SY such that 

fa{SY - U ) is identically 1 and fa{oo) O. Define a 

f: X x Y + [0,1] by f{a,y) fa{y) and f{q,y) = 1. Clearly 

f is continuous at points of the form (a,y). Fix (q,yo) and 

choose a o such that y
0 

d 
~ 

ITa o 
If (x, y) E [a , q]

o 
x (Y - IT ),

ao 

then f{x,y) = 1. 

If there were an extension of f to all of X x BY, the 

extension would be 1 at all points of the form (q,y) with 

Y E Y and 0 at all points (a,oo), which implies that the 

extension is not continuous at (q,oo). 

Note: This proof is a generalization of an example given 

by Comfort and Negrepontis (Example 4.6 of [4]). 

To complete the proof of 4.2, let S be MY-embedded in 

X, and Y and B be as in (2). By 4.3 (2) it is clear that 

X x B is MY-embedded in X x Y. By proposition 5 of [17], we 

have that S x Y is MY-embedded in X x Y. By Proposition 6 

of [17], to show (2) it is sufficient to show that (S x Y) U 

(X x B) is PY-embedded in X x Y. But this is true from 

(1) ~ (2) of 4.1. 

We now use 4.3 to obtain a generalization of (K) in 

Section 1, which will throw further light on the results in 

Section 3. 

4.4 Proposition. The following are equivalent: 
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(1 ) S	 is P Y-embedded in X. 

(2) S x Y is PY-embedded in X x Y for every locally 

compact~ paracompact T space Y with w(Y) < Y·2	 
(3) S x Y is C*-embedded in X x Y for every locally 

compact~ paracompact T space Y with w(Y) < Y· 

Proof· (2) => (3) is clear and (3) => (1) is clear 

2	 

from ( A) of Section 1. It remains to show (1) => (2) . Let 

S be PY-embedded in X and Y as in (2) . For each y E Y, let 

U denote an open neighborhood of y whose closure is compact.
y 

Let {f : a E A} be a locally finite partition of unity sub
a 

ordinate to the cover {U : y E Y}, and let K denote the corn
y a 

pact set cl(Y - Z(f ).
a 

Let g: S x Y + B be a function into a y-separable Banach 

space B. By (a) of Section 1, it is sufficient to extend g 

to X x Y. For each a, the function g = glS x K has an 
a a 

extension to h : X x K + B by (K) of Section 1. By 4.3 (2),
a a 

h extends to k : X x Y ~ B. Then g*(x,y) = ~ f (y)k (x,y)
a a a a a 

is the desired extension of g. 

4.5 Corollary. If S is C-embedded in X~ then S x Y is 

C-embedded	 in X x Y for any locally compact metric space Y. 

Proof. Let the compact sets K be constructed as in the 
a 

proof of (1) => (2) of 4.4. If Y is metric, then K is com
a 

pact metric. Let g: S x y ~ R. By (8) and (K) of Section 1, 

g =	 glS x K has an extension to h : X x K ~ R. The proof
a a a a 

proceeds as in 4.4. 

Comparing 3.1 and 4.5, we see that if S is a closed sub

set of a normal space X such that (X,S) fails to have ZIP, 

then there exists a non-locally compact metric space Y such 
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that S x Y is not C-embedded in X x Y. 

4.6 Corollary. If S is MY-embedded in X3 then S x Y is 

MY-embedded in X x Y for any locally compact paracompact T
2 

space Y with w(Y) 2 y. 

Proof. The proof of (1) ~ (2) of 4.4 goes through with 

B replaced by a y-separable normed linear space. (To lift 

g a use 4.2 (1) => (2).) 

Section 5 

As a final application of M-embedding, we-generalize two 

results of E. Chang [3]. (Also see results of Ellis [5].) 

Although the results deal with ultranormal spaces, they are 

equivalent to the following: 

5.1 Proposition (Chang, p. 38, 40 [3]). Let X be non

empty. The following are equivalent. 

(1) X is a O-dim collectionwise normal (normal) space. 

(2) Every complete (separable) metric space is an AE for 

x. 

5.2 Proposition (Chang, p. 43 [3]). Let S be a closed 

Go subset of a O-dim collectionwise normal (normal) space X 3 

Y a (separable) metric space and f: S ~ Y. Then f extends 

to X. 

5.3 Proposition. Let X be nonempty. The following are 

equivalent. 

(1) Every (separable) metric space is an AE for X. 

(2) X is a O-dim space in which every closed subset is 

M-(M~O-)embedded. 
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Proof. We prove the unbracketed equivalence. (1) => 

(2)	 is clear from 5.1 and the definition of M-err~edding. To 

show (2) => (1), let Y be a metric space, S a closed subset 

-
of X, and f: S ~ Y. Let Y denote the completion of Y with 

injection map i. Since X is a O-dim collectionwise normal 

space, the map i 0 f: S ~ Y has an extension f to X, by 5.1. 

By (8) of Section 1, there exists a zero set Z of X such that 

--1 
S c	 Z c f f(S). Hence flz maps Z into Y, so by 5.2 it can 

be lifted to f*: X ~ Y, completing the proof. 

In [15], Morita remarks that the following generaliza

tions of known results can be proved: If dim XiS 2 n+l, 

then S is MY-embedded (PY-embedded) in X iff any map from S 

into a metric (complete metric) space of weight 2 Y which is 

LCn and Cn can be extended to X. If dim XiS < n, then S is 

MY-embedded (pY-embedded) in X iff (X,S) has the homotopy 

extension property with respect to every metric (complete 

metric) space of weight < Y which is LC
n . 
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