TOPOLOGY PROCEEDINGS

Volume 3, 1978

Pages 523-525

http://topology.auburn.edu/tp/

Research Announcement:

AN APPLICATION OF TREES TO TOPOLOGY

by

Scott W.Williams

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

AN APPLICATION OF TREES TO TOPOLOGY

Scott W. Williams

A tree is a POSET in which the set of predecessors of any element is well-ordered.

The *Gleason space* [C.N.], $\mathcal{G}(X)$, of a regular space X is the Stone space of the regular-closed set algebra $\mathcal{R}(X)$ of X. Two spaces X and Y are \mathcal{G} -absolute iff $\mathcal{G}(X)$ and $\mathcal{G}(Y)$ are homeomorphic. Note if X and Y are compact, \mathcal{G} -absoluteness is just co-absoluteness [Po; Wo].

Theorem 1. X is G-absolute with a linearly ordered space if, and only if, R(X) - $\{X\}$ contains a cofinal tree.

Application 1. A Moore space X is \mathcal{G} -absolute with a linearly ordered space if, and only if, X has a dense metrizable subspace.

Remark 1. A recent result in [Wh] suggests that "Moore" in the preceding might be replaced by "1st countable"; however, if X is a Souslin line, then X provides the counterexample. Further, $X \times [0,1]$ is not \mathcal{G} -absolute with any linearly ordered space.

A POSET P is κ -closed [B], for a cardinal κ , iff every well-ordered increasing sequence in P, of length κ , is bounded above. P is separative [Je] iff given p $\not \leq q \exists r \geq q \ni \not = s$ s > p and s > r.

Theorem 2. A κ -closed separative POSET of cardinal $<2^{\kappa}$ has a cofinal tree.

524 Williams

Application 2. If D is a locally compact non-compact metric space, then βD - D is co-absolute with a linearly ordered space having a dense set of P-points.

Remark 2. S. Broverman has verbally communicated a short proof to the author that if D is an infinite discrete space of cardinal $\leq 2^{\omega}$, then βD - D and βN - N are co-absolute. We note that the same technique shows that if D is a dense-initself locally compact non-compact metric space of density $\leq 2^{\omega}$, then βD - D and βR - R are co-absolute. (N is the space of natural numbers and R is the reals.)

We consider two statements:

- (#) \exists precisely one (up to an isomorphism) complete atomless Boolean algebra B with a dense set of cardinal 2^ω and ω -closed.
- (*) If D is a locally compact non-compact metric space of density $\leq 2^{\omega}$, then βD D is co-absolute with βN N.

 The following theorem can be proved similarly to [G.J.,

13.13]; however, our proof via trees appears new.

Theorem . CH
$$\Rightarrow$$
 # and $2^{\omega} = 2^{\omega 1} \Rightarrow \neg \#$.

Application 3. # \Rightarrow (*) and (*) is consistent with \neg #.

Remark 3. If M is a model of ZFC obtained from a model of CH by adding ω_2 Cohen reals iteratively [B], then (*) is true in M.

Corollary [Wo]. (CH) If D is a dense-in-itself locally compact non-compact metric space of density $\leq 2^{\omega}$, then $\beta D - D$ is co-absolute with $\beta N - N$.

Questions. (1) Does there exist a "real" example of a compact 1st countable space not \mathcal{G} -absolute with any linearly ordered space?

- (2) Does # ⇒ CH?
- (3) Is $\beta R R$ co-absolute with $\beta N N$?
- (4) Is $(\beta R R)^2$ (respectively, $(\beta N N)^2$) co-absolute with $\beta R R$ $(\beta N N)$?

References

- [B] J. P. Burgess, Forcing, Handbook of mathematical logic, North-Holland, 1977, 403-452.
- [C.N.] W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Grand. Math. Wiss. Bd. 211, Springer-Verlag, 1974.
- [G.J.] L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, 1976.
- [Je] T. Jech, Lectures in set theory, Lect. Notes in Math. 217, Springer-Verlag, 1971.
- [Po] V. Ponomarev, On the absolute of a topological space, Soviet Math. 4 (1963), 299-302.
- [Wh] H. E. White, First countable spaces having special pseudo-bases, Can. Math. Bull. 21 (1978), 103-112.
- [Wo] R. G. Woods, Co-absolutes of remainders of Stone-Čech compactifications, Pac. J. Math 37 (1971), 545-560.

State University of New York at Buffalo Buffalo, New York 14214