TOPOLOGY PROCEEDINGS Volume 4, 1979 Pages 29-49 http://topology.auburn.edu/tp/ ## C-CALMLY REGULAR CONVERGENCE by Zvonko Čerin #### **Topology Proceedings** Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA $\textbf{E-mail:} \quad topolog@auburn.edu$ **ISSN:** 0146-4124 COPYRIGHT © by Topology Proceedings. All rights reserved. ## ℓ -CALMLY REGULAR CONVERGENCE #### Zvonko Čerin #### 1. Introduction Let X be a metric space and let d denote the distance-function defined on X. By 2^X we denote the hyperspace of all non-empty compacta lying in X. In [4] Borsuk defined the fundamental metric d_F on 2^X such that two compacta in X which are close with respect to d_F have similar shape properties. In particular, it was demonstrated in [4] and [8] that there is a large number of hereditary shape properties α (i.e., properties preserved by shape dominations) such that the following holds. (1.1) If A_0, A_1, \cdots is a sequence in 2^X with $\lim_F (A_k, A_0)$ = 0 and $A_k \in \alpha$ for $k = 1, 2, \cdots$, then $A_0 \in \alpha$. On the other hand, Boxer and Sher [5] observed that in general (1.1) is not true for every hereditary shape property α . But, by assuming that A_0 is an FANR, they established (1.1) for every α . Finally, in [8] the same was proved under a weaker assumption that A_0 is a calm compactum. The class of calm compacta was introduced by the author in [6]. It intersects the class of all movable compacta in the class of all FANR's (see Theorem (4.5) in [8]) but calm compacta need not be movable (e.g. solenoids). In view of the above results, it is interesting to find conditions under which $\lim_{F} (A_k, A_0) = 0$ for a sequence A_0, A_1, \cdots in 2^X implies that A_0 is calm. This paper introduces the notion of a calmly regular (or ca-regular) convergence of compacta lying in X such that if the sequence A_1, A_2, \cdots converges ca-regularly to A_0 , then A_0 is calm and $\lim_F (A_k, A_0) = 0$. The definition of the ca-regular convergence, besides providing generalizations of theorems about calm compacta from [6] (see §§2 and 3), is justified by the new information that it gives about the collection ca(X) of all calm compacta in a metric space X. The main result (4.6) of this paper shows that one can define a metric d_{ca} on ca(X) such that the convergence with respect to d_{ca} is equivalent to the caregular convergence. The paper is organized as follows. In §2 we recall definitions of (-calmness from [6], where (is an arbitrary (non-empty) class of topological spaces, and the fundamental metric d_p from [4] and introduce the notion of a (-calmly)regular (or ca/-regular) convergence of compacta in a metric space X which lies in an ANR space M. The ca-regular convergence is by definition ca/-regular convergence for (the class of all finite polyhedra. We first prove (see (2.3)) that in this definition the choice of the embedding of X and of M is immaterial. In (2.4) we prove that if a sequence $\{{\bf A}_{\bf k}\}$ in ${\bf 2}^{\bf X}$ converges ca_regularly to a compactum ${\bf A}_{\bf 0}$ (in symbols, A_k —ca(\rightarrow A_0), then A_0 is (-calm regardless of the nature of A_L 's. Then we discuss the role of the class (((2.7), (2.8), and (2.9)) and give several examples of situations in which ca/-regular convergence naturally appears ((2.10), (2.12), and (2.14)). The short §3 shows that taking finite products and suspensions preserves ca(-regular convergence ((3.1) and (3.2), respectively). Also, A_k — $ca(\rightarrow A_0)$ iff for every component C_0 of A_0 there is a component C_k of A_k such that C_k — $ca(\rightarrow C_0)$ ((3.4)). The final §4 proves, relying heavily on Begle's technique in [1], that the hyperspace $\operatorname{ca}_{\mathcal{C}}(X)$ of all \mathcal{C} -calm compacta in X with the topology induced by $\operatorname{ca}_{\mathcal{C}}$ -regular convergence is a metric space. We close by raising two questions about the topological properties of $\operatorname{ca}_{\mathcal{C}}(X)$. This paper is the second in a series in which we study various types of globally regular convergence. In the first [7] we considered (-movably regular convergence. We assume that the reader is familiar with the theory of shape [2]. Throughout the paper (and θ will be arbitrary (non-empty) classes of topological spaces. By θ we denote the class of all finite polyhedra. If not stated otherwise, we reserve X for an arbitrary metric space with a fixed metric d; A_0, A_1, A_2, \cdots are compact subsets of X; M is an absolute neighborhood retract for the class of all metric spaces (in notation, an ANR) which contains X; a neighborhood means an open neighborhood; and $N_{\epsilon}(A_0)$ denotes the ϵ -neighborhood of A_0 in M. ## 2. C-Calmly Regular Convergence Let B be a subset of an ANR M, and let V be an open subset of M containing B. We denote by $\ell_h(V;B)$ the following statement. $\begin{array}{|c|c|c|c|}\hline (h)(V;B) & \text{For every neighborhood W of B in M there is} \\ \text{a neighborhood W}_0, \ \text{W}_0 \subset V \ \text{N W, of B in M such that if} \\ \end{array}$ f,g: $K \rightarrow W_0$ are maps of a member K of (into W_0 which are homotopic in V, then f and g are homotopic in W. A compactum A is (-calm) if for some (and hence for every) embedding of A into an ANR M the following holds. There is a neighborhood V of A in M such that (V;A) is true. It is easy to see that this definition is equivalent to the one given in [6] (see Theorem (4.2) in [6]). (V;A)-calm compacta are called (V;A)-calm compacta Recall [4] (see also [8]) the definition of the fundamental metric \textbf{d}_F on $\textbf{2}^X$. Let M be an AR-space containing X metrically. - (2.1) If A,B \in 2^X, then d_F(A,B) is the greatest lower bound of those ϵ > 0 for which there exist ϵ -fundamental sequences $\underline{f} = \{f_k, A, B\}_{M,M}$ and $\underline{g} = \{g_k, B, A\}_{M,M}$. (By an ϵ -fundamental sequence we mean a fundamental sequence $\underline{f} = \{f_k, A, B\}_{M,M}$ for which there exists a neighborhood U of A in M such that $f_k | U$ is an ϵ -map (i.e., $d(f_k(x), x) < \epsilon$ for every $x \in U$) for almost all indices k). It is known [4, Theorem 3.1] that the choice of M is irrelevant when computing $d_F(A,B)$. The hyperspace 2^X with the metric d_F is denoted by 2^X_F . - (2.2) Definition. A sequence $\{A_1,A_2,\cdots\}$ of compacta in a metric space X which lies in an ANR M is said to converge (-calmly regularly (or ca(-regularly) in M to a compactum $A \subseteq X$ provided - (i) $limd_F(A_n, A) = 0$, and - (ii) there is a neighborhood V of A in M such that $\binom{}{h}(V;A_n)$ holds for almost all indices n. We first prove that the definition (2.2) is shape theoretic in the sense that $(-\text{calmly regular convergence}\ is$ independent of the choice of M and the embedding of X into M. (2.3) Proposition. Let X be embedded in ANR's M and M' and let a sequence $\{A_n\}$ of compacta in X converge (-calmly regularly in M to a compactum $A_0 \subseteq X$. Then the convergence $A_n \to A_0$ is also (-calmly regular in M'. *Proof.* Since $A = \bigcup_{i=0}^{\infty} A_i$ is compact, there are neighborhoods Z and Z' of A in M and M', respectively, and maps h: Z \rightarrow M' and h': Z' \rightarrow M such that h|A = h'|A = id. Let V be a neighborhood of A_0 in M and let k_V be an index such that $\binom{}{h}(V;A_n)$ holds for each $n \geq k_V$. Put V' = $\binom{}{h'}$ $\binom{}{}^{-1}(V)$ and let k_V , $\stackrel{\geq}{}$ k_V be such that $n \geq k_V$, implies $A_n \subset V'$. We claim that $\binom{}{h}(V';A_n)$ is true for each $n \geq k_V$. Indeed, consider an arbitrary neighborhood W' of A_n in M', where $n \geq k_V$. Let $W = h^{-1}(W')$. Since $n \geq k_V$ we conclude that there is a neighborhood W_0 of A_n in M, $W_0 \subseteq V \cap W$, such that if two maps of a member of $\binom{}{l}$ into W_0 are homotopic in V then they are already homotopic in W. Let $W_0^* = (h')^{-1}(W_0)$ and let W_0' , $W_0' \subseteq W_0^* \cap W'$, be a neighborhood of A_n in M' with the property that $h \circ h' \mid W_0' \cong i_{W_0',W'}$ in W' $(i_{W_0',W'}$ denotes the inclusion of W_0' into W' and W'' stands for "is homotopic to"). Now, if f, g: $K \to W_0^1$ are maps of $K \in C$ into W_0^1 homotopic in V', then h'of and h'og are maps of K into W_0 homotopic in V. It follows that h'of \approx h'og in W. But then hoh'of \approx hoh'og in W'. The choice of W_0^1 implies that hoh'of \approx f and $h \circ h' \circ g \simeq g$ in W'. Hence $f \simeq g$ in W'. If a sequence $\{A_n\}$ of compacta in X converges ca_regularly to a compactum A_0 in X in some (and hence, by (2.3), in every) ANR containing X we shall write A_n —ca_regular_a. (2.4) Proposition. Let A_n —ca(\rightarrow A_0 . Then A_0 is (-calm regardless of the nature of A_n 's. *Proof.* We can assume that all compacta under consideration lie in the Hilbert cube Q. Select a neighborhood V of A_0 in Q and an index $k_1 = k_V$ such that $\binom{}{h}(V;A_n)$ holds for each $n \geq k_1$. We shall prove that $\binom{}{h}(V;A_0)$ is also true. Let W be an arbitrary neighborhood of A_0 in Q. Let W', W' \subset W, be a compact ANR neighborhood of A_0 . Pick $k_2 \geq k_1$ such that $n \geq k_2$ implies $A_n \subset \text{intW'}$. Let $\epsilon > 0$ has the property that ϵ -close maps into W' are homotopic in W' [10]. Take $k_3 \geq k_2$ such that $d_F(A_{k_3}, A_0) < \epsilon$. By assumption, there is a neighborhood W'_0 of A_{k_3} , W'_0 \subset V \cap W', such that any two maps of a member of (into W'_0 homotopic in V are already homotopic in W'. Now, take an ϵ -fundamental sequence $\underline{f} = \{f_k, A_0, A_{k_3}\}_{Q,Q}$. We can find an index n_0 and a neighborhood W_0 of A_0 in Q, $W_0 = V \cap W'$, such that $d(f_{n_0}(x), x) < \epsilon$ for each $x \in W_0$ and $f_{n_0}(W_0) = W_0'$. Consider maps f, g: K + W₀ of K \in (into W₀ that are homotopic in V. Then f_{n₀} of \cong f in W' (because these are ε -close maps into W') and, similarly, f_{n₀} og \cong g in W'. It follows that f_{n₀} of and f_{n₀} og are maps of K into W'₀ homotopic in V. By the choice of W'₀ and k₃, we see that they are homotopic in W'. But then f and g are homotopic in W' and therefore also in W. Let $/C_{\mbox{\scriptsize A}}/$ denote the number of components of a compactum A. (2.5) Proposition. Let A_n — $ca_0 \rightarrow A_0$. Then A_0 has finitely many components and $C_{A_0} = C_{A_n}$ for almost all indices n. Proof. The first claim follows from (2.4) and Theorem (4.6) in [6]. The second is proved by the method used in the above proof. - (2.6) Example. (a) A constant sequence $\{A_n\} = \{A\}$ converges ca/-regularly to A iff A is /-calm. - (b) In the interval X = [-1,1] consider the sequence $A_n = \{-(1/n)\} \cup \{1/n\} \ (n=1,2,\cdots) \ \text{of compacta. Then}$ $\lim_F (A_n,A_0) = 0 \text{, where } A_0 = \{0\} \text{ is ℓ-calm for every class } \ell, \text{ but } \{A_n\} \text{ does not converge ca} \ell^{-\text{regularly to } A_0}. \text{ Hence,}$ the converse of (2,4) is not true. Now we shall discuss the role of a class (in our definition. With obvious changes the proof of Theorem (4.8) in [6] gives the following. (2.7) Theorem. Let A_n — $ca_{\ell} \to A_0$ and let a class ℓ shape dominate a class ℓ . Then A_n — $ca_{\ell} \to A_0$. Here a class of topological spaces (shape dominates another such class θ provided for every $X \in \theta$ there is $Y \in \theta$ such that Y shape dominates X. We use the shape theory of arbitrary topological spaces in the form described by Kozlowski [12] (see also §3 in [13]). Similarly, when ℓ and ϑ are classes of compacta, by replacing in the above definition shape domination with 36 Cerin Borsuk's notion of quasi-domination [3], we say that $(quasi-dominates \ \hat{\theta})$. With this concept we can improve (2.7) (and by (2.6)(a) also (4.8) in [6]) for classes of compacta. (2.8) Theorem. Let A_n —ca(+ A_0 and let a class of compacta (quasi-dominate another such class D. Then A_n —caD + A_0 . $\label{eq:proof.} \text{ Let V be a neighborhood of A}_0 \text{ in M and let k}_V$ be an index such that $\binom{}{h}(V;A_n)$ holds for each $n \geq k_V$. We claim that for such indices $\binom{}{h}(V;A_n)$ also holds. Indeed, let $n \geq k_V$ and let W be an arbitrary neighborhood of A_n in M. Select a neighborhood W_0 of A_n in M, $W_0 \subset V \cap W$, using $C_h(V;A_n)$. Consider $K \in \partial$ and maps f, $g: K \to W_0$ homotopic via a homotopy $H_t \colon K \to V$ ($0 \leq t \leq 1$). Since the class C quasi-dominates the class C, there is a compactum $C \in C$ which quasi-dominates $C \in C$. We can assume that both $C \in C$ which quasi-dominates $C \in C$. Since $C \in C$ and $C \in C$ and $C \in C$ which quasi-dominates $C \in C$ and $C \in C$ and $C \in C$ which quasi-dominates $C \in C$ since $C \in C$ and $C \in C$ are an eighborhood $C \in C$ of $C \in C$ of $C \in C$ and $C \in C$ of $C \in C$ of $C \in C$ and $C \in C$ of $C \in C$ and $C \in C$ of $C \in C$ and $C \in C$ fundamental sequences $C \in C$ and $C \in C$ implies $C \in C$ and $C \in C$ of $C \in C$ of $C \in C$ of $C \in C$ of $C \in C$ and $C \in C$ in $C \in C$ of $C \in C$ of $C \in C$ of $C \in C$ in $C \in C$ of and an index $C \in C$ of C Note that $\hat{\mathrm{H}}_{\mathsf{t}} \circ \mathrm{f}_{k_2} | \mathrm{L}$ is a homotopy of V connecting maps $\hat{\mathrm{f}} \circ \mathrm{f}_{k_2} | \mathrm{L}$ and $\hat{\mathrm{g}} \circ \mathrm{f}_{k_2} | \mathrm{L}$ of L into W $_0$. By assumption, these maps are homotopic in W. As before, we conclude that there is a neighborhood T $_1$ of L in Q, T $_1 \subset \mathrm{T}$, and a homotopy $\hat{\mathrm{G}}_{\mathsf{t}} \colon \mathrm{T}_1 \to \mathrm{W}$ (0 $\stackrel{\leq}{=}$ t $\stackrel{\leq}{=}$ 1) such that $\hat{\mathbf{G}}_0 = \hat{\mathbf{f}} \circ \mathbf{f}_{\mathbf{k}_2} | \mathbf{T}_1$ and $\hat{\mathbf{G}}_1 = \hat{\mathbf{g}} \circ \mathbf{f}_{\mathbf{k}_2} | \mathbf{T}_1$. Select $k_3 \geq k_2$ and a neighborhood T_0 of K in Q, $T_0 \subseteq Z_0$, such that $g_{k_3}(T_0) \subseteq T_1$. Then $G_t = \hat{G}_t \circ g_{k_3} | K$ is a homotopy in W connecting $G_0 = \hat{f} \circ f_{k_2} \circ g_{k_3} | K$ and $G_1 = \hat{g} \circ f_{k_2} \circ g_{k_3} | K$. We leave to the reader to check that G_0 is in W homotopic to f and that G_1 is in W homotopic to g. Hence f and g are homotopic in W. (2.9) Proposition. Let A_n — $ca_{\hat{l}} \rightarrow A_0$. If each compactum A_n (n = 1,2,...) is ((, \hat{l})-smooth [6], then A_n — $ca_{\hat{l}} \rightarrow A_0$. $\label{eq:proof.} \text{ Let a neighborhood V of A}_0 \text{ in M and an index k}_V$ be chosen using the fact that $A_n - ca_{\bar{\partial}} \to A_0$. We claim that $\binom{h}{h}(V;A_n)$ holds for every $n \geq k_V$. Let W be an arbitrary neighborhood of A_n in M ($n \ge k_V$). Since A_n is ((f, ∂) -smooth, there is a neighborhood W' of A_n in M, W' \subseteq W, such that every two ∂ -homotopic [6] maps of a member of (f) into W' are homotopic in W. The required neighborhood (f) is picked with respect to W' using (f) (V; (f)). Consider maps f, g: K + W₀ of K \in (and assume that they are homotopic in V. Then for every L \in $\widehat{\mathcal{D}}$ and every map h: L + K, compositions foh and goh are homotopic in V. The choice of W₀ implies foh \cong goh in W'. In other words, f and g are $\widehat{\mathcal{D}}$ -homotopic in W'. Hence, f \cong g in W. We shall give now three examples of situations in which carregular convergence appears naturally. (2.10) Example. Let $\lim_{F} (A_n, A_0) = 0$ and assume that each compactum A_n (n = 1,2,...) is (-trivial [8] and connected. Then A_n —ca(\rightarrow A_0 . We observed in the example (2.6)(b) that the convergence with respect to the fundamental metric to a ℓ -calm compactum is not sufficient for the ca ℓ -regular convergence. We shall now introduce a stronger metric d_{SF} on a subset X[A] of 2^X consisting of all compacta in X with the same shape as a compactum A and prove that if A is ℓ -calm then the convergence with respect d_{SF} implies ca ℓ -regular convergence. (2.11) Definition. If B, C \in X[A], then $d_{SF}(B,C)$ is the greatest lower bound of those $\varepsilon > 0$ for which there exist ε -fundamental sequences $\underline{f} = \{f_k, B, C\}_{M,M}$ and $\underline{g} = \{g_k, C, B\}_{M,M}$ such that $\underline{g} \circ \underline{f} \simeq \underline{id}_B$ and $\underline{f} \circ \underline{g} \simeq \underline{id}_C$. One easily proves that this is indeed a metric and that the computation of $d_{\rm SF}(B,C)$ is independent of the choice of the AR-space M containing X. (2.12) Example. Let A_0, A_1, A_2, \cdots be elements of X[A] and assume that $\lim_{SF} (A_n, A_0) = 0$. If A is a (-calm compactum, then $A_n - ca(\rightarrow A_0)$. Proof. Without loss of generality we can assume that X lies in the Hilbert cube Q. Let V be a compact ANR neighborhood of A_0 in Q such that $\binom{}{h}(V;A_0)$ holds. Select $\epsilon>0$ with the property that $\epsilon\text{-close}$ maps into V are homotopic in V. Pick an index k_V such that $n \geq k_V$ implies $A_n \subset \text{intV}$ and $d_{SF}(A_n,A_0) < \epsilon$. Hence for each $n \geq k_V$ there are $\epsilon\text{-fundamental}$ sequences $\underline{f}^n = \{f_k^n,A_0,A_n\}_{Q,Q}$ and $\underline{g}^n = \{g_k^n,A_n,A_0\}_{Q,Q}$, neighborhoods U_0^n and V_0^n of A_0 and A_n , respectively, and an index k_n such that $k \geq k_n$ implies that $f_k^n|_{U_0^n}$ and $g_k^n|_{V_0^n}$ are $\epsilon\text{-maps}$ and $\underline{f}^m \circ \underline{g}^n = \underline{id}_{A_m}$. Consider an arbitrary neighborhood W of A_n ($n \ge k_V$). Pick $k_W^n \geq k_n$ and a neighborhood W' of A_0 such that $f_k^n(W') \subset W$ for all $k \geq k_W$. Now, select a neighborhood W' of A_0 with respect to W' using $\binom{n}{h}(V;A_0)$. Then we take a required neighborhood W_0 of A_n inside W \cap $V_0^n \cap V$ and an index $k_0 \geq k_W$ for which $g_k^n(W_0) \subset W_0^n$ and $f_k^n \circ g_k^n | W_0 \cong i_{W_0,W}$ in W whenever $k \geq k_0$. Let f, g: K \rightarrow W₀ be maps of K \in (into W₀ and assume that they are homotopic in V. Observe that $g_{k_0}^n \circ f \cong f$ in V (these are ε -close maps into V) and, similarly, $g_{k_0}^n \circ g \cong g$ in V. Hence, $g_{k_0}^n \circ f$, $g_{k_0}^n \circ g$: K \rightarrow W' are homotopic in V. The choice of W' implies that $g_{k_0}^n \circ f \cong g_{k_0}^n \circ g$ in W'. But then $f_{k_0}^n \circ g_{k_0}^n \circ f \cong f_{k_0}^n \circ g_{k_0}^n \circ g$ in W. Finally, since $f_{k_0}^n \circ g_{k_0}^n \circ g \cong f$ in W and $f_{k_0}^n \circ g_{k_0}^n \circ g \cong g$ also in W, it follows that $f \cong g$ in W. Examples of sequences converging with respect to d_{SF} are provided by sequences of n-dimensional ANR's converging homotopy n-regularly [9]. In fact, one easily checks that the proof of Theorem (4.2) in [9] contains the proof of the following statement. - (2.13) Let A_0, A_1, A_2, \cdots be n-dimensional compact ANR's in a metric space X. If $\{A_n\}$ converges homotopy n-regularly to A_0 , then there is a subsequence $\{A_k\}$ of $\{A_n\}$ such that $\lim_{s \to \infty} (A_k, A_0) = 0$. - (2.14) Example. Under the assumptions of (2.13) we see from (2.12) that A_n — $ca(\rightarrow A_0)$, for every class (. ## 3. Operations Preserving ca / -Regular Convergence In this section we shall prove that by taking finite products and suspensions of ca_regularly converging sequences of compacta we get ca_regularly converging sequences. We also investigate in what way ca_regular convergence of components of the members of the sequence $\{{\bf A}_n\}$ to components of ${\bf A}_0$ imply that ${\bf A}_n{-\!\!\!\!\!-}{\rm ca}(\ \to\ {\bf A}_0$. (3.1) Theorem. If for each $i=1,\cdots,m$, $\{A_n^i\}$ is a sequence of compacta in a metric space X_i converging ca(-regularly to a compactum A_0^i in X_i , then $A_n = \prod_{i=1}^m A_n^i$ —ca($\rightarrow A_0 = \prod_{i=1}^m A_0^i$. Proof. We can assume that each X_i lies in an ANR space M_i . Then $X = \prod_{i=1}^m X_i$ lies in the ANR space $M = \prod_{i=1}^m M_i$. It suffices to prove that $\{A_n\}$ converges ca(-regularly to A_0 in M. For each $i=1,\cdots,m$ pick a neighborhood V_i of A_0^i in M_i and an index k_i such that $\binom{}{h}(V_i;A_k^i)$ holds for all $k \geq k_i$. Let $V = \prod_{i=1}^m V_i$ and let $k_V = \max\{k_1,\cdots,k_m\}$. We claim that $\binom{}{h}(V;A_k)$ is true for each $k \geq k_V$. Indeed, let $k \geq k_V$ and consider an arbitrary neighborhood W of A_k in M. We can find neighborhoods W_1, \dots, W_m of A_k^1, \dots, A_k^m in M_1, \dots, M_m , respectively, such that $W' = \prod_{i=1}^m W_i \subseteq W$. For each $i=1,\dots,m$ inside $V_i \cap W_i$ select a neighborhood W_{i0} of A_k^i using the property of V_i and k_i . Put $W_0 = \prod_{i=1}^m W_{i0}$. If f, g: K \rightarrow W₀ are maps of K \in (into W₀ that are homotopic in V, then the compositions $\pi_i \circ f$, $\pi_i \circ g$: K \rightarrow W_{i0} (where π_i is the projection of M onto M_i) are homotopic in V_i (i = 1, \cdots , m). It follows that they are homotopic in W_i. Hence, f and g are homotopic in W' and therefore also in W. (3.2) Theorem. If A_n —ca(\rightarrow A_0 , then the sequence $\{SA_n\}$ of the (unreduced) suspensions of A_n (n = 1,2,...) converges ca(-regularly to SA_0 . Proof. We can assume that $A=\bigcup_{i=0}^\infty A_i$ lies in a compact convex infinite-dimensional subset M of a Banach space N_0 . Setting $N=N_0\times R$ (R denotes the real line), let us identify every point $y\in N_0$ with the point $(y,0)\in N$. We select a point $c\in A$ and define the suspension $c\in A$ as the union of all segments |ay| and |a'y|, where a=(c,1), a'=(c,-1), and $c\in A$ an We shall show that $\{SA_n\} \to SA_0$ ca(-regularly in SM. Observe that both M and SM are homeomorphic to Q [11]. Since $\{A_n\} \to A_0$ ca_C-regularly in M, there is a compact ANR neighborhood \tilde{V} of A_0 in M and an index $k_{\tilde{V}}$ such that for every $n \geq k_{\tilde{V}}$ the statement $C_h(\tilde{V};A_n)$ holds. Let $V = SM[-1,-(1/2)] \cup S\tilde{V} \cup SM[1/2,1]$, where $SM[\alpha,\beta]$ denotes all points of SM with the second coordinate in the interval $[\alpha,\beta]$, $-1 \leq \alpha \leq \beta \leq 1$, and let $k_V = k_{\tilde{V}}$. We claim that $C_h(V;SA_n)$ is true for all $n \geq k_V$. Indeed, let $n \geq k_V$ and let W be an arbitrary neighborhood of SA_n in SM. Select a neighborhood \widetilde{W} of A_n in M and an ε , $0 < \varepsilon < 1/2$, such that $SM[-1,-1+\varepsilon] \cup S\widetilde{W} \cup SM[1-\varepsilon,1] \subset W$. Now take a compact ANR neighborhood \widetilde{W}_0 , $\widetilde{W}_0 \subset \widetilde{W} \cap \widetilde{V}$, of A_n in M using the choice of \widetilde{V} and $k_{\widetilde{V}}$ and put $W_0 = SM[-1,-1+\varepsilon] \cup S\widetilde{W}_0 \cup SM[1-\varepsilon,1]$. Let $C_{-}(D_{-})$ be the set obtained as the union of all segments |b'y| where $b'=(c,-1+(\epsilon/2))$ and $y\in \widetilde{SW_{0}}[-1+\epsilon]$ ($y\in SV[-1/2]$), and let $C_{+}(D_{+})$ be the set obtained as the union of all segments |by| where $b=(c,1-(\epsilon/2))$ and $y\in \widetilde{SW_{0}}[1-\epsilon]$ ($y\in SV[1/2]$). Observe that (SM[-1,-1+ ϵ],C_), (SM[1- ϵ ,1],C_), (SM[-1,-1/2],D_) and (SM[1/2,1],D_) are pairs of AR's. Hence in each of these pairs there is a strong deformation retraction of the first set onto the second set [10]. Consider maps f, g: K \rightarrow W₀ of K \in (into W₀ and assume that they are homotopic in V. Applying strong deformation retractions determined by the first two pairs, we see that f and g are homotopic in W₀ to maps f' and g', respectively, of K into $S\widetilde{W}_0[-1+\epsilon,1-\epsilon]$ U C_{_} U C₊. By applying strong deformation retractions determined by the last two pairs, we see that f' and g' are homotopic in $S\widetilde{V}[-1/2,1/2]$ U D_{_} U D_{_}. Since both $S\widetilde{V}[-1/2,1/2] \cup D_- \cup D_+$ and $S\widetilde{W}_0[-1+\epsilon,1-\epsilon] \cup C_- \cup C_+$ are contained in $S\widetilde{V}[-1+(\epsilon/2),1-(\epsilon/2)]$ it follows (after projecting onto \widetilde{V}) that f' and g' are homotopic in $S\widetilde{W}[-1+(\epsilon/2),1-(\epsilon/2)]$. Hence, f and g are homotopic in W. (3.3) Corollary. The (unreduced) suspension of a (-calm compactum is also (-calm. The proof of the following proposition is left to the reader. $(3.4) \ \textit{Proposition.} \ \textit{If} \ \texttt{A}_n - \texttt{ca}_{\text{\tiny c}} + \texttt{A}_0, \ \textit{then for every component} \ \texttt{C}_0 \ \textit{of} \ \texttt{A}_0 \ \textit{there is a component} \ \texttt{C}_n \ \textit{of} \ \texttt{A}_n \ \textit{such that} \ \texttt{C}_n - \texttt{ca}_{\text{\tiny c}} + \texttt{C}_0. \ \textit{Conversely, let (be a component hereditary class of topological spaces and let every compactum A_n} \ (n = 0, 1, 2, \cdots) \ \textit{has precisely k} \ (k < \infty) \ \textit{components} \ \texttt{C}_n^1, \cdots, \texttt{C}_n^k \ \textit{such that} \ \texttt{C}_n^i - \texttt{ca}_{\text{\tiny c}} + \texttt{C}_0^i, \ 1 \leq i \leq k. \ \textit{Then A_n--ca}_{\text{\tiny c}} + \texttt{A}_0.$ #### 4. The Metric of ca - Regular Convergence The collection of all (-calm compacta in a metric space X can be made into a hyperspace ca((X) by defining the notion of convergence by means of (-calmly regular convergence. In this section, using Begle's method in [1], we shall define the metric d_{ca} on the space ca(X) in such a way that $\lim_{ca} (A_n, A_0) = 0$ iff $A_n - ca(A_0) + A_0$. In fact, it is clear from the explanation on the page 444 in [1] that such a metric can be introduced provided we can prove the analogues of Lemmas 1, 3, 4, and 5 in [1] for the function $\gamma_{\mathcal{C}}(\varepsilon, A)$ (defined in (4.1)) corresponding to Begle's function $\delta_{\mathbf{n}}(\varepsilon, P)$. The analogue of Lemma 4 was established in (2.4) while Lemmas (4.2), (4.3), and (4.5) below correspond to Lemmas 1, 3, and 5, respectively. Throughout this section we assume that X lies in an AR space M of diameter 1. (4.1) Definition. For each compact subset A of M and for each $\epsilon > 0$, let $\gamma_{C}(\epsilon,A)$ be the least upper bound of all numbers γ , $0 \le \gamma \le \epsilon$, such that $\ell_{h}(N_{\gamma}(A);A)$ holds. It is clear that for each compactum A in M, $\gamma_{\mathcal{C}}(\epsilon,A)$ always exists and is a non-negative monotone non-decreasing, and hence measurable, function on the half-open interval $I^* = (0,1]$. If A is $(-\text{calm}, \text{then } \gamma_{\mathcal{C}}(\epsilon,A) > 0 \text{ everywhere in } I^*$ and conversely. The relation between definitions (2.2) and (4.1) is provided by the following. (4.2) Lemma. If $\lim_{F} (A_n, A_0) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$, then the sequence $\{A_n\}$ converges $(a_n) = 0$. *Proof.* The proof is similar to the proof of Lemma (4.2) in [7]. The following two lemmas resemble Lemmas (4.3) and (4.4) in [7]. The proofs are similar in spirit but technically more complicated. $\begin{array}{lll} \text{(4.3) Lemma.} & \text{Let limd}_F(A_n,A_0) = 0. & \text{Then limsupy}_{C}(\epsilon,A_n) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$ *Proof.* We shall prove that if $\limsup_{\ell \to 0} \gamma_{\ell}(\epsilon_0, A_n) > \gamma_{\ell}(\epsilon_0, A_0)$ at the point $\epsilon_0 \in I^*$, then the function $\gamma_{\ell}(\epsilon, A_0)$ has a jump at the point ϵ_0 (in particular, it is not continuous at ϵ_0). Since $\gamma_{\ell}(\epsilon, A_0)$ is a monotone function, there are at most countably many points of I^* at which this can happen. Take an e > 0 and a subsequence $\{A_{n_i}\}$ of $\{A_n\}$ such that $\gamma_{\mathcal{C}}(\epsilon_0,A_{n_i}) \geq \gamma_{\mathcal{C}}(\epsilon_0,A_0)$ + e for all i > 0. Let b, 0 < b < e/2, be an arbitrary number and choose an index i_0 so that $i \geq i_0$ implies $d_F(A_{n_i},A_0) < b$. Observe that $N_{\gamma_{\mathcal{C}}(\epsilon_0,A_0)+(e/2)}(A_0) = N_{\gamma_{\mathcal{C}}(\epsilon_0,A_{n_i})}(A_{n_i})$. We claim that $C_h(N_{\gamma_{\mathcal{C}}(\epsilon_0,A_0)+(e/8)}(A_0);A_0)$ holds. Since $N_{\gamma_{\mathcal{C}}(\epsilon_0,A_{n_i})}(A_{n_i}) = N_{\epsilon_0+b}(A_0)$, this would imply that for every b, 0 < b < e/8, $\gamma_{\mathcal{C}}(\epsilon_0+b,A_0) \geq \gamma_{\mathcal{C}}(\epsilon_0,A_0)+(e/8)$, i.e., that the function $\gamma_{\mathcal{C}}(\epsilon,A_0)$ has a jump at least e/8 at the point ϵ_0 . Let W be an arbitrary compact ANR neighborhood of A_0 in M (which we can assume is the Hilbert cube Q). Pick ξ , $0<\xi< b/4$, such that $2\xi\text{-close}$ maps into W are homotopic in W and $\xi\text{-close}$ maps into $N_{\gamma_{C}(\epsilon_{0},A_{0})+(e/4)}(A_{0})$ are homotopic in $N_{\gamma_{C}(\epsilon_{0},A_{0})+(e/2)}(A_{0}). \text{ Select } j \stackrel{\geq}{=} i_{0} \text{ such that } d_{F}(A_{n_{j}},A_{0}) < \xi.$ Let $\underline{f}=\{f_{k},A_{n_{j}},A_{0}\}_{M,M}$ and $\underline{g}=\{g_{k},A_{0},A_{n_{j}}\}_{M,M}$ be $\xi\text{-fundamental}$ sequences. Let Z be a neighborhood of A_{0} and let $k_{\underline{g}}$ be an index such that $k\stackrel{\geq}{=} k_{\underline{g}}$ and $x\in Z$ implies $d(g_{k}(x),x)<\xi.$ Similarly, let Z' be a neighborhood of A_{n_j} and let $k_{\underline{f}}$ be an index such that $k \geq k_{\underline{f}}$ and $x \in Z'$ implies $d(f_k(x), x) < \xi$. Now we pick a neighborhood W' of A_{n_j} and $k_W' \geq k_{\underline{f}}' k_{\underline{g}}$ such that $f_k(W') \subset W$ for all $k \geq k_W'$. Inside W' let us select a neighborhood W'_0 of A_{n_j} with the property that maps of $K \in \mathcal{C}$ into W'_0 homotopic in $N_{\gamma_{\mathcal{C}}(\epsilon_0, A_{n_j})}(A_{n_j})$ are already homotopic in W'. Finally, the required neighborhood W_0 of A_0 , $W_0 \subset Z \cap W \cap N_{\gamma_{\mathcal{C}}(\epsilon_0, A_0) + (e/8)}(A_0)$ and the index $k_0 \geq k_W'$ are picked so that $g_{k_0}(W_0) \subset Z' \cap W'_0$. Consider maps f, g: K + W₀ defined on a member K of (and suppose that they are homotopic in $N_{\gamma_{C}(\epsilon_{0},A_{0})+(e/8)}(A_{0})$. Since $(g_{k_{0}}\circ f,f)$ and $(g_{k_{0}}\circ g,g)$ are two pairs of ξ -close maps into $N_{\gamma_{C}(\epsilon_{0},A_{0})+(e/4)}(A_{0})$, it follows that $g_{k_{0}}\circ f$ and $g_{k_{0}}\circ g$ are homotopic in $N_{\gamma_{C}(\epsilon_{0},A_{n_{j}})}(A_{n_{j}})$. The choice of W'_0 implies that these maps are already homotopic in W'. But, then $f_{k_{0}}\circ g_{k_{0}}\circ f$ and $f_{k_{0}}\circ g_{k_{0}}\circ g$ are homotopic in W. We conclude that f and g are homotopic in W because $f_{k_{0}}\circ g_{k_{0}}\circ f$ \cong f in W and $f_{k_{0}}\circ g_{k_{0}}\circ g$ \cong g in W. $\begin{array}{lll} (\textbf{4.4}) & \textit{Lemma.} & \textit{Let } A_n - \text{ca}_{\text{C}} \rightarrow A_0. & \textit{Then } \gamma_{\text{C}}(\epsilon_0, A_0) \leq \\ & \text{liminf} \gamma_{\text{C}}(\epsilon_0, A_n) & \textit{at every point } \epsilon_0 \in \textbf{I*} & \textit{in which the function} \\ & \gamma_{\text{C}}(\epsilon, A_0) & \textit{is continuous.} \end{array}$ $\label{eq:proof.} \begin{array}{lll} & \text{Proof.} & \text{Let us consider a point } \epsilon_0 \in I^* \text{ at which the} \\ & \text{function } \gamma_{\textstyle \mathcal{C}}(\epsilon, A_0) \text{ is continuous.} & \text{Suppose that } \gamma_{\textstyle \mathcal{C}}(\epsilon_0, A_0) > \\ & \text{liminf} \gamma_{\textstyle \mathcal{C}}(\epsilon_0, A_n) \text{.} & \text{Then there is an e, } 0 < e < \epsilon_0, \text{ and a subsequence } \{A_{n_i}\} \text{ of } \{A_n\} \text{ such that } \gamma_{\textstyle \mathcal{C}}(\epsilon_0, A_{n_i}) + 2e < \gamma_{\textstyle \mathcal{C}}(\epsilon_0, A_0) - 2e, \\ & \text{for all } i > 0. & \text{Since the function } \gamma_{\textstyle \mathcal{C}}(\epsilon, A_0) \text{ is continuous at } \\ & \epsilon_0, \text{ there is a number d, } 0 < d < e, \text{ such that } \gamma_{\textstyle \mathcal{C}}(\epsilon, A_0) \in \\ \end{array}$ $\begin{array}{lll} (\gamma_{\textstyle \bigcap}(\epsilon_0,A_0)-2e,\;\gamma_{\textstyle \bigcap}(\epsilon_0,A_0)+2e) \;\; \text{for all}\;\; \epsilon \in \; (\epsilon_0-2d,\epsilon_0+2d) \,. & \text{In} \\ \text{particular,}\;\; \gamma_{\textstyle \bigcap}(\epsilon_0-d,A_0) \; > \; \gamma_{\textstyle \bigcap}(\epsilon_0,A_0)-2e \; > \; \gamma_{\textstyle \bigcap}(\epsilon_0,A_{n_1})+2e \,. \\ \end{array}$ We claim that there is an index k such that ${}^{N_{\gamma}}_{C}(\epsilon_{0}, {}^{A_{n_{k}}}) + e^{(A_{n_{k}})} \subset {}^{N_{\epsilon}}_{0}({}^{A_{n_{k}}}) \text{ and such that}$ ${}^{C_{h}(N_{\gamma}}_{C}(\epsilon_{0}, {}^{A_{n_{k}}}) + e^{(A_{n_{k}})}; {}^{A_{n_{k}}}) \text{ holds. This would imply that}$ ${}^{\gamma}_{C}(\epsilon_{0}, {}^{A_{n_{k}}}) \stackrel{\geq}{=} {}^{\gamma}_{C}(\epsilon_{0}, {}^{A_{n_{k}}}) + e \text{ which is an obvious contradiction.}$ By using the fact that $A_n - ca_{\ell} \to A_0$, inside ${}^{N}\gamma_{\ell}(\epsilon_0 - d, A_0) \stackrel{}{(A_0)} \text{ we pick a compact ANR neighborhood V of } A_0$ and an index k_V so that $\binom{}{h}(V;A_1)$ is true for all $i > k_V$. Let $\xi,\ 0 < \xi < d$, has the property that $\xi\text{-close maps into V}$ are homotopic in V and that $N_\xi(A_0) \subset V$. Pick an integer k so large that $n_k \stackrel{\geq}{=} k_V$ and $d_F(A_{n_k},A_0) < \xi$. Let $\underline{f} = \{f_k,A_{n_k},A_0\}_{M,M}$ be an $\xi\text{-fundamental sequence, let Z' be a neighborhood of <math display="inline">A_{n_k}$, and let n_Z , be such that $d(f_n(x),x) < \xi$ for all $x \in Z'$ and $n \stackrel{\geq}{=} n_Z$. Now we pick a neighborhood W_0^\star , $W_0^\star \subset V$, of A_0 in M with the property that maps of K \in (into W_0^\star which are homotopic in $N_{\gamma_C}(\epsilon_0^{-d},A_0^{-d})$ (A_0^\star) are already homotopic in V. Consider now an arbitrary neighborhood W' of A_{n_k} . Let a neighborhood \widetilde{W}_0^i of A_{n_k} be selected with respect to W' and V using $\binom{}{h}(V;A_{n_k})$. Finally, let a neighborhood W_0^i , $W_0^i \subset \widetilde{W}_0^i \cap Z^i$, of A_{n_k} and $n_0 \geq n_Z$, be such that $f_{n_0}(W_0^i) \subset W_0$. Suppose f, g: K \rightarrow W' are maps of a member K of (homotopic in $^{N}\gamma_{C}(\epsilon_{0},^{A}n_{k})$ +e $^{(A}n_{k})$. Observe that $^{N}\gamma_{C}(\epsilon_{0},^{A}n_{k})$ +e $^{(A}n_{k})$ \subset $^{N}\gamma_{C}(\epsilon_{0}^{-d},^{A}n_{0})$ $^{(A}0)$ and that f' = $^{1}n_{0}$ of and f and g' = $^{1}n_{0}$ og and g are two pairs of $^{1}\xi$ -close maps into V. It follows that f': K \rightarrow W' and g': K \rightarrow W' are homotopic in $^{N}\gamma_{C}(\epsilon_{0}^{-d},^{A}n_{0})$ $^{(A}0)$. The choice of W_0^\star gives that f' and g' are homotopic in V. But then f and g are homotopic in V so that the choice of V and k_V implies that f and g are homotopic in W' and this is what we wanted to prove. Combining the last two lemmas we have the following theorem. $\begin{tabular}{ll} (4.5) & \it{Theorem.} & \it{If} \ A_n - \it{ca}(\ \rightarrow \ A_0, \ \it{then} \ lim\gamma_{(\ }(\epsilon,A_n) \ \it{exists} \ \it{and equals} \ \gamma_{(\ }(\epsilon,A_0) \ \it{almost everywhere in I*.} \ \it{lim}(\epsilon,A_n) \ \it{exists} \ \it{and} \ \it{exists} \ \it{and} \ \it{exists} \ \it{and} \ \it{exists} \it{exists$ We are now ready to introduce the metric d_{ca} on the hyperspace $\text{ca}_{\mathcal{C}}(X)$ of all ℓ -calm compacta in a metric space X. Let E be the Banach space of all bounded measurable functions on the interval I*, the norm of an element f in E being defined as: $$||f|| = \int_0^1 |f| d\varepsilon$$. We define a correspondence between ca(X) and a subset of $2_F^X \times E$ by assigning to each element A of ca(X) the element (A, $\gamma_C(\epsilon,A)$) of $2_F^X \times E$. This correspondence is one-to-one, so a metric is defined in ca(X) by letting the distance between two points in ca(X) be the distance between the corresponding points in $2_F^X \times E$. Specifically, $$d_{ca}(A,B) = [d_F^2(A,B) + (\int_0^1 | \gamma_{\ell}(\varepsilon,A) - \gamma_{\ell}(\varepsilon,B) | d\varepsilon)^2]^{1/2}.$$ With obvious modifications the argument on the page 444 in [1] shows that this metric induces the same topology on $ca_{\mathcal{C}}(X)$ as that naturally defined in terms of (-calmly regular convergence. Hence, one can prove the following. (4.6) Theorem. There is a metric d_{Ca} on the hyperspace $\mathsf{Ca}(X)$ of all (-calm compacta in a metric space X such that for a sequence A_0, A_1, A_2, \cdots in $ca(X) \operatorname{limd}_{ca}(A_n, A_0) = 0$ iff $A_n - ca(A_n, A_0) = 0$ At present we can state only the following three corollaries that describe topological properties of the metric space $(ca(X),d_{Ca})$. (4.7) Corollary. If X is homeomorphic to Y, then $\text{ca}_{\ell}(X)$ is homeomorphic to $\text{ca}_{\ell}(Y)$. Proof. The proof is similar to the proof of (4.7) in [7]. (4.8) Corollary. The identity map $id: (ca(X), d_{ca}) \rightarrow (ca(X), d_F)$ is continuous. Proof. See (2.1). (4.9) Corollary. Let α be a hereditary shape property. Then the collection of all elements of $ca_{\rho}\left(X\right)$ which have property α constitute a closed subset of $ca_{\rho}\left(X\right)$. Proof. See (4.4) in [8]. We leave many questions concerning the topological structure of the space ca₍(X) open. The most natural problem would be to see what properties of X are carried over onto ca₍(X). In particular, is ca₍(X) separable (topologically complete) if X is separable (topologically complete)? The last two questions are in view of (4.8) and the method of the proofs for Theorems 2 and 3 in [1] equivalent to the following questions. (4.10) If X is a separable (topologically complete) metric space, is $(ca_{\Gamma}(X),d_{F})$ also separable (topologically #### complete) metric space? #### References - E. G. Begle, Regular convergence, Duke Math. J. 11 (1944), 441-450. - 2. K. Borsuk, Theory of shape, Monografie Matematyczne 59, Warsaw, 1975. - _____, Some quantitative properties of shapes, Fund. 3. Math. 93(1976), 197-212. - 4. , On a metrization of the hyperspace of a metric space, Fund. Math. 94 (1977), 191-207. - L. Boxer and R. B. Sher, Borsuk's fundamental metric and 5. shape domination, Bull. Acad. Polon. Sci. 26 (1978), 849-853. - 6. Z. Čerin, Homotopy properties of locally compact spaces at infinity -- calmness and smoothness, Pacific J. Math. 79 (1978), 69-91. - _____, (-movably regular convergence (preprint). 7. - 8. and A. P. Šostak, Some remarks on Borsuk's fundamental metric (preprint). - 9. M. L. Curtis, Deformation-free continua, Ann. of Math. 57 (1953), 231-247. - S. T. Hu, Theory of retracts, Wayne State University 10. Press, Detroit, 1965. - 11. O. H. Keller, Die Homeomorphie der kompakten konvexen Mengen in Hilbertschen Raum, Math. Ann. 105 (1931), 748-758. - 12. G. Kozlowski, Images of ANR's (preprint). - _____ and J. Segal, Locally well-behaved paracompacta 13. in shape theory, Fund. Math. 95 (1977), 55-71. University of Zagreb 41001 Zagreb, p. p. 187 Yugoslavia