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(-CALMLY REGULAR CONVERGENCE

v
Zvonko Cerin

1. Introduction

Let X be a metric space and let d denote the distance-
function defined on X. By 2X we denote the hyperspace of all
non-empty compacta lying in X. In [4] Borsuk defined the
fundamental metric dF on 2X such that two compacta in X
which are close with respect to dF have similar shape proper-
ties. 1In particular, it was demonstrated in [4] and [8] that
there is a large number of hereditary shape properties o
(i.e., properties preserved by shape dominations) such that
the following holds.

(L.1) If AO,A «++ is a sequence in 2X with limdF(Ak'AO)

ll
= 0 and Ak € a for k =1,2,+++, then AO € 0.

On the other hand, Boxer and Sher [5] observed that in
general (1.1) is not true for every hereditary shape property

o. But, by assuming that A  is an FANR, they established

0
(1.1) for every o. Finally, in [8] the same was proved under

a weaker assumption that A  is a calm compactum. The class

0
of calm compacta was introduced by the author in [6]. It
intersects the class of all movable compacta in the class of
all FANR's (see Theorem (4.5) in [8}) but calm compacta need
not be movable (e.g. solenoids).

In view of the above results, it is interesting to find
conditions under which limdF(Ak,AO) = 0 for a seguence
AO,Al,--- in 2X implies that AO is calm.

This paper introduces the notion of a calmly regular
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(or ca~regular) convergence of compacta lying in X such that

if the sequence A, ,A_,+++ converges ca-regularly to A then

U2 'M

A. is calm and llmdF(Ak,AO) = 0.

0

The definition of the ca-regular convergence, besides
providing generalizations of theorems about calm compacta
from [6] (see §§2 and 3), is justified by the new information
that it gives about the collection ca(X) of all calm compacta
in a metric space X. The main result (4.6) of this paper
shows that one can define a metric dca on ca(X) such that the
convergence with respect to dca is equivalent to the ca-
regular convergence.

The paper is organized as follows. 1In §2 we recall
definitions of (~calmness from [6], where (| is an arbitrary
(non-empty) class of topological spaces, and the fundamental
metric dF from [4] and introduce the notion of a Clcalmly
regular (or cac—regular) convergence of compacta in a metric
space X which lies in an ANR space M. The ca-regular con-
vergence is by definition cachregular convergence for C the
class of all finite polyhedra. We first prove (see (2.3))
that in this definition the choice of the embedding of X and
of M is immaterial. In (2.4) we prove that if a segquence
{Ak} in 2% converges caC—regularly to a compactum AO (in
symbols, Ak——caC - AO), then AO is Clcalm regardless of the
nature of Ak's. Then we discuss the role of the class (
((2.7), (2.8), and (2.9)) and give several examples of situa-
tions in which caC-regular convergence naturally appears
((2.10), (2.12), and (2.14)).

The short §3 shows that taking finite products and sus-

pensions preserves caC—regular convergence ((3.1) and (3.2),



TOPOLOGY PROCEEDINGS Volume 4 1979 31

respectively). Also, Ak——cac . AO iff for every component

C0 of Ao

((3.4)).

there is a component Ck of Ak such that Ck——caC‘+ C0

The final 54 proves, relying heavily on Begle's technique
in [1], that the hyperspace caf{x) of all (-calm compacta in
X with the topology induced by caChregular convergence is a
metric space. We close by raising two questions about the
topological properties of cac(x).

This paper is the second in a series in which we study
various types of globally regular convergence. In the first
[7] we considered ((-movably regular convergence.

We assume that the reader is familiar with the theory of
shape [2].

Throughout the paper (( and / will be arbitrary (non-
empty) classes of topological spaces. By P we denote the
class of all finite polyhedra.

If not stated otherwise, we reserve X for an arbitrary
metric space with a fixed metric d4; AO,Al,Az,--- are compact
subsets of X; M is an absolute neighborhood retract for the
class of all metric spaces (in notation, an ANR) which con-
tains X; a neighborhood means an open neighborhood; and

NE{AO] denotes the e-neighborhood of AO in M.

2. ( -Calmly Regular Convergence
Let B be a subset of an ANR M, and let V be an open

subset of M containing B. We denote by Ch(V;B) the follow-
ing statement.

|§h{V;B]| For every neighborhood W of B in M there is

a neighborhood LAY WO =V N W, of B in M such that if
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are maps of a member K of ( into W, which are homo-

f,9: K > W 0

0
topic in V, then f and g are homotopic in W.

A compactum A is (-calm if for some (and hence for every)
embedding of A into an ANR M the following holds. There is a
neighborhood V of A in M such that Cﬁ(V;A) is true. It is
easy to see that this definition is equivalent to the one
given in [6] (see Theorem (4.2) in [6]). P-calm compacta
are called calm.

Recall [4] (see also [8]) the definition of the funda-
mental metric dF on 2X. Let M be an AR-space containing X
metrically.

(2.1) If A,B ¢ 2X, then dF(A,B) is the greatest lower
bound of those € > 0 for which there exist e-fundamental

sequences f = {fk,A,B} and g = {gk’B'A}M,M’ (By an

M,M
e~fundamental sequence we mean a fundamental sequence

f = {fk,A,B} for which there exists a neighborhood U of

M,M
A in M such that fk|U is an e-map (i.e., d(fk(x),x) < ¢ for
every x € U) for almost all indices k). It is known [4,
Theorem 3.1] that the choice of M is irrelevant when computing

dF(A,E). The hyperspace 2% with the metric dF is denoted by

2

X

(2.2) Definition. A sequence {Al,Az,---} of compacta
in a metric space X which lies in an ANR M is said to con-
verge (-calmly regularly (or cac;regularly) in M to a com-
pactum A < X provided
(i) limdF(An,A) = 0, and
(ii) there is a neighborhood V of A in M such that Ch(V7An)

holds for almost all indices n.
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We first prove that the definition (2.2) is shape
theoretic in the sense that C¥calmly regular convergence 1is
independent of the choice of M and the embedding of X into

M.

(2.3) Proposition. Let X be embedded in ANR's M and
M' and let a sequence {An} of compacta in X converge (-calmly

regularly in M to a compactum Ay € X. Then the convergence

An > Ao is also Clcalmly regular in M'.

Proof. Since A = U:=0Ai is compact, there are neighbor-
hoods Z and Z' of A in M and M', respectively, and maps
h: 2 > M' and h': Z2' +~ M such that h|A = h'|A = id.

Let V be a neighborhood of AO in M and let kV be an

index such that (h(V;A ) holds for each n 2 k Put V' =

n
(h) "L (V) and let Ky 2 ky be such that n 2 k, implies
A < V',
n

We claim that Ch(V';An) is true for each n 2 k In-

V'
deed, consider an arbitrary neighborhood W' of An in M',

where n 2 kyi- Let W= n“l(W'). Since n 2 k, we conclude

that there is a neighborhood W, of An in M, W, €V N W, such

0
that if two maps of a member of ( into W

0

o are homotopic in
V then they are already homotopic in W. Let W6 = (h')_l(wo)

and let W), W! © W* N W', be a neighborhood of A in M' with
0 0 0 n

VW = 4 . v g

the property that heh IWO lWé,W' in W (1W6,w' denotes the

inclusion of w6 into W' and "=" stands for "is homotopic to").

Now, if £, g: K > W) are maps of K € ( into W} homotopic

in V', then h'of and h'og are maps of K into W, homotopic in

0
V. It follows that h'ef =~ h'eg in W. But then hoh'of =

hoh'eg in W'. The choice of W]

0 implies that hoh'of = f and
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hoh'eg =~ g in W'. Hence f = g in W',
If a sequence {An} of compacta in X converges caCh

regularly to a compactum A. in X in some (and hence, by (2.3),

0
in every) ANR containing X we shall write An——caC‘+ AO.

is

(2.4) Proposition. Let An——caC > AO. Then A

(-calm regardless of the nature of A 's.
Proof. We can assume that all compacta under consider-
ation lie in the Hilbert cube Q. Select a neighborhood V of

A; in Q and an index k; = k such that (h(V7An) holds for

each n 2 kl. We shall prove that Ch(V;AO) is also true.

Let W be an arbitrary neighborhood of A, in Q. Let W',

0
i >

0" Pick k, 2 k,

implies An < intW'. Let ¢ > 0 has the pro-

W' © W, be a compact ANR neighborhood of A

such that n 2 k,

perty that e-close maps into W' are homotopic in W' [10].
3 2
is a neighborhood W6 of Ak3' Wé <V N W', such that any two

Take k, 2 k2 such that dF(Ak3,A0) < €. By assumption, there

maps of a member of C into W6 homotopic in V are already

homotopic in W'.

Now, take an e-fundamental sequence f = {fk’AO'Ak3}Q,Q'

We can find an index n, and a neighborhood W, of AO in Q,

¢ 0

Wog =V AN W', such that d(fno(x),x) < g for each x € W and
]
fno(WO) [ WO'
Consider maps £, g: K » W0 of K € ( into W0 that are

homotopic in V. Then fn0°f ~ f in W' (because these are

e~close maps into W') and, similarly, £ g = g in W'. It

n
0

follows that anOf and fnoog are maps of K into Wé homotopic
in V. By the choice of Wé and k3, we see that they are homo-~
topic in W'. But then £ and g are homotopic in W' and there-

fore also in W.
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Let /CA/ denote the number of components of a compactum

(2.5) Proposition. Let An——caC‘+ Ay- Then Ao has
finitely many components and /CAO/ = /CA / for almost all
n
indices n.
Proof. The first claim follows from (2.4) and Theorem

(4.6) in [6]. The second is proved by the method used in the

above proof.

(2.6) Example. (a) A constant sequence {An} = {A} con-
verges caC—regularly to A iff A is Clcalm.

(b) In the interval X = [-1,1] consider the sequence
A = {-(1/n)} U {1/n}(n = 1,2,+++) of compacta. Then

limdF(An,Ao) = 0, where A, = {0} is (-calm for every class

0

C, but {An} does not converge caC—regularly to A Hence,

0
the converse of (2.4) is not true.
Now we shall discuss the role of a class (( in our defi-

nition. With obvious changes the proof of Theorem (4.8) in

[6] gives the following.

(2.7) Theorem. Let“An——caC > A, and let a class (

shape dominate a class . Then A —ca)y > Aj.

Here a class of topological spaces ( shape dominates
another such class / prbvided for every X € J there is
Y € C such that Y shape dominates X. We use the shape theory
of arbitrary ﬁopological spaces in the form described by
Kozlowski [12] (see also §3 in [13]).

Similarly, when C and /) are classes 6f cqﬁpacta, by

replacing in the above definition shape domination with
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Borsuk's notion of quasi-domination [3], we say that ( quasi-
dominates ¥. With this concept we can improve (2.7) (and by

(2.6) (a) also (4.8) in [6]) for classes of compacta.

(2.8) Theorem. Let An——caC‘* Ao and let a class of
compacta ( quasi-dominate another such class . Then
An—caﬁ hd AO .

Proof. Let V be a neighborhood of A, in M and let kV

0

be an index such that Ch(V;An) holds for each n 2 kV. We

claim that for such indices ﬂh(V;An) also holds.

Indeed, let n 2 kv and let W be an arbitrary neighbor-

hood of An in M. Select a neighborhood W, of An in M, W, <

0 0

V N W, using Ch(V;An). Consider K € /J and maps £, 9: K LA

homotopic via a homotopy H,: K+ V (0 £ t £ 1). Since the

e
class C quasi-dominates the class D, there is a compactum

L € ( which quasi-dominates K. We can assume that both K

and L lie in the Hilbert cube Q. Since V and W0 are ANR's,
there is a neighborhood Z of K in Q and extensions £, g:

zZ ~ w0 of £ and g, respectively, and i Z >~ V of Ht such

t:

that 8, = £ and ﬁl = § [10]. Now, we select a neighborhood

0

Z0 of K in Q, Z0 © Z, fundamental sequences f = {fk,L,K}

and g {gk,K,L}

Q,0

. S . .
9,9’ and an index kl such that k 2 kl implies

o . . S . _
fkogk|z0 = lZO,Z in Z. Next, we pick k2 2 k; and a neighbor

hood T of L in Q such that fk|T > fk,|T in Z whenever k,

2>
k' = k2.

Note that ﬁtoszlL is a homotopy of V connecting maps

fofk2|L and §ofk2|L of L into W By assumption, these maps

0"
are homotopic in W. As before, we conclude that there is a

c T, and a homotopy at: T. > W

neighborhood Tl of Lin Q, T 1

1
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< < G = f & =
(0 £t £ 1) such that G, = f°fk2|T1 and G, = goszlT

0 1
Select k3 2 k2 and a neighborhood T0 of K in Q, T0 c ZO’
such that gk3(To) = Tl‘ Then G, = Gtogk3|K is a homotopy in
W connecting G, = f°fk2°gk3|K and G, = gokang3|K. We leave

to the reader to check that G, is in W homotopic to f and

0
that Gy is in W homotopic to g. Hence f and g are homotopic

in W.

(2.9) Proposition. Let A —ca) > A If each compactum

0*
A, (n=1,2,--) is (C,0)-smooth (61, then A —cal > Ag.

Proof. Let a neighborhood V of A, in M and an index kv

0

be chosen using the fact that An——caﬁ + A We claim that

0"
Ch(V;An) holds for every n Z ky.

Let W be an arbitrary neighborhood of An in M (n 2 kv).
Since Al is (C,D)—smooth, there is a neighborhood W' of An in
M, W' © W, such that every two /J-homotopic [6] maps of a
member of ( into W' are homotopic in W. The required neigh-

borhood W, is picked with respect to W' using Dh(V;An).

0

Consider maps £, g: K > W, of K € ( and assume that they

0
are homotopic in V. Then for every L € ) and every map

h: L - K, compositions feoh and goh are homotopic in V. The
choice of W0 implies foh = goh in W'. In other words, f and

g are fJ-homotopic in W'. Hence, f = g in W.

We shall give now three examples of situations in which

caC—regular convergence appears naturally.

(2.10) Example. Let limdF(An,AO) = 0 and assume that
each compactum An (n =1,2,<+¢) is CFtrivial [8] and con-

nected. Then An——caC'+ A,.
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We observed in the example (2.6) (b) that the convergence
with respect to the fundamental metric to a C-calm compactum
.is not sufficient for the caC—regular convergence. We shall
now introduce a stronger metric dSF on a subset X[A] of 2X
consisting of all compacta in X with the same shape as a com-
pactum A and prove that if A is C—calm then the convergence

with respect dSF implies cac—regular convergence.

(2.11) Definition. If B, C € X[A], then dSF(B,C) is
the greatest lower bound of those € > 0 for which there exist

e-fundamental sequences f = {fk,B,C} and g = {gk’c’B}M,M

M,M
such that gef = id, and gég ~ id

One easily proves that this is indeed a metric and that
the computation of dSF(B,C) is independent of the choice of

the AR-space M containing X.

(2.12) Example. Let AO’Al’AZ’

and assume that limdSF(An,Ao) = 0. If A is a (-calm compactum,

+++ be elements of X[A]

then An——cac - AO.

Proof. Without loss of generality we can assume that
X lies in the Hilbert cube Q. Let V be a compact ANR neigh-
borhood of A, in Q such that Ch(V7AO) holds.  Select € > 0
with the property that e-close maps inEp V are homotopic in
V. Pick an index kV such that n 2 kv‘implies An < intV and

> -
dSF(An,AO) < €. Hence for each n 2 kv there are e-fundamental

n n n n .
sequences f = = {fk’AO’An}Q,Q and g = {gk,An,AO} neighbor-

Q.,Q'

hoods U and V® of A. and An, respectively, and an index kn

0 0 0
such that k 2 kn implies that f£|Ug and gilvg are g-maps
and f" o g" ~ id, .
= 2 =An

Consider an arbitrary neighborhood W of An (n 2 kv).
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Pick k, Z k and a neighborhood W' of A, such that M) cw

0 k
for all k 2 kw. Now, select a neighborhood W6 of A0 with
respect to W' using Ch(V;Ao). Then we take a required neigh-

L. n . N
borhood W0 of An inside W n V0 N V and an index k0 Z kw for

which gi(wo) = Wy and fiog§|w0 = in W whenever k 2 k

Let £, g: K > W, be maps of K € ( into W, and assume

that they are homotopic in V. Observe that gioof = f in V

YWy, W 0°

(these are e-close maps into V) and, similarly, gEOOg % g in

V. Hence, gEOof, gEOog: K ~» W6 are homotopic in V. The

choice of W! implies that gn of = gn °g in W'. But then
0 kg kg

n n . . . n n .
£ ngOOg in W. Finally, since f ogkoog = f in

koogzoof ) fEo kg
W and f£0°gﬁo°g ~ g also in W, it follows that f = g in W.
Examples of sequences converging with respect to dSF are
provided by sequences of n-dimensional ANR's converging homo-
topy n-regularly [9]. 1In fact, one easily checks that the
proof of Theorem (4.2) in [9] contains the proof of the fol-
lowing statement.
(2.13) Let A

Al,A +++ be n-dimensional compact ANR's

0’ 27
in a metric space X. If {An} converges homotopy n-regularly

to A, then there is a subsequence {Ak} of {An} such that

OI
limdSF(Ak,Ao) = 0.
(2.14) Example. Under the assumptions of (2.13) we see

from (2.12) that A ——ca( » A;, for every class C.

3. Operations Preserving ca ( -Regular Convergence

In this section we shall prove that by taking finite
products and suspensions of caC;regularly converging sequences
of compacta we get ca(hregularly converging sequences. We

also investigate in what way cac=regu1ar convergence of
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components of the members of the sequence {An} to components

of AO imply that An~—caC > AO.

(3.1) Theorem. If for each i = 1,«++,m, {A;} 18 a se-

quence of compacta in a metric space Xi converging caC>regu-

i, _ i _
larly to a compactum AO in X,, then A = i=18,—=ca( > By =

n
i i
Mi=120°

Proof. We can assume that each Xi lies in an ANR space

Mi' Then X = Ii=lxi lies in the ANR space M = i=lMi' It

suffices to prove that {An} converges caC>regular1y to AO in

M.
For each i = 1,+++,m pick a neighborhood Vi of Az in Mi

and an index k, such that (|, (V.;Al) holds for all k 2 k..
i h''i'"k i
Let V = i=lVi and let kV = max{kl,---,km}. We claim that
. ; >
Ch(V,Ak) is true for each k 2 k.

Indeed, let k 2 kV and consider an arbitrary neighbor-

hood W of Ak in M. We can find neighborhoods W ---,Wm of

l’

™ in Ml,---,Mm, respectively, such that W' =

1
Ak'...’Ak
W_ W. ©“W. For each i =1,+++,m inside V., N W, select a

i=1"i i i
neighborhood Wio of Ai using the property of Vi and ki. Put
Wo = Mi=1%s0-

If £, g: K > W, are maps of K € ( into W, that are homo-

0 0

topic in V, then the compositions “i°fu m;°g: K ~» Wi (where

0
LA is the projection of M onto Mi) are homotopic in Vi (1 =
l,¢++,m). It follows that they are homotopic in Wi' Hence,

f and g are homotopic in W' and therefore also in W.

(3.2) Theorem. If An——caC > AO’ then the sequence
{SAn} of the (unreduced) suspensions of A (n=1,2,+-")

converges caC-reguZarZy to SA,.
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Proof. We can assume that A = U:=o

Ai lies in a compact
convex infinite-dimensional subset M of a Banach space NO'
Setting N = No x R (R denotes the real line), let us identify

every point y € N, with the point (y,0) € N. We select a

0
point ¢ € A and define the suspension SAi as the union of all
segments |ay| and |a'y|, where a = (c,1),a' = (c,-1), and
y €A; (i=0,1,2,:00).

We shall show that {SAn} > SA, ca(-regularly in SM. Ob-
serve that both M and SM are homeomorphic to Q [1ll1].

Since {An} > A caC—regularly in M, there is a compact

ANR neighborhood V of A_ in M and an index k§ such that for

0
> ke~ s =

every n 2 kv the statement Ch(V,An) holds. Let V

SM[-1,-(1/2)] U SV y SM[1/2,1], where SM[a,B] denotes all

points of SM with the second coordinate in the interval

[a,B], -1 £ a £ B8 £ 1, and let kV = kﬁ- We claim that

. >
(,(VisA)) is true for all n Z k.

Indeed, let n 2 kV and let W be an arbitrary neighbor-
hood of SAn in SM. Select a neighborhood W of An in M and an
€, 0 < e < 1/2, such that SM[~l,-1+e] U SW U SM[l-¢,1l] c W.
Now take a compact ANR neighborhood ﬁo, ﬁo cW N V, of An in

M using the choice of V and kG and put W0 = SM[-1,-1+e] u

SW, U SM[1-¢,1].
Let C_(D_) be the set obtained as the union of all seg-
ments |b'y| where b' = (c,-1+(e/2)) and y € SQO[—1+E](y €

Sv[-1/2]1), and let C+(D+) be the set obtained as the union
of all segments |by| where b = (c,1-(e/2)) and y € Sﬁo[l-e]
(y € sv([l/2]).

Observe that (SMI[-1,-1+e],C_), (SM[1l-¢,1],C,),

(sM[-1,-1/2],D_) and (SM[1/2,1],D+) are pairs of AR's.
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Hence in each of these pairs there is a strong deformation
retraction of the first set onto the second set [10].
Consider maps f, g: K > Wy of K € ( into W, and assume
that they are homotopic in V. Applying strong deformation
retractions determined by the first two pairs, we see that
f and g are homotopic in w0 to maps f' and g', respectively,
of K into SWO[—l+e,l—e] uc_uc.. By applying strong de-
formation retractions determined by the last two pairs, we
see that f' and g' are homotopic in SG[—l/Z,l/Z] UbD_ U D, .
Since both SV[-1/2,1/2] U D_ U D, and SWy[-l+e,l-¢] U
C_ U c, are contained in SV[-1+(e/2),1-(e/2)] it follows
(after projecting onto G) that f' and g' are homotopic in

Sﬁ[-l+(e/2),l—(e/2)]. Hence, f and g are homotopic in W.

(3.3) Corollary. The (unreduced) suspension of a Clcalm

compactum is also (-calm.

The proof of the following proposition is left to the

reader.

(3.4) Proposition. If An——caC > A then for every com-

0)
ponent C0 of AO there is a component Cn of An such that
Cn——caC > Cy- Conversely, let (( be a component hereditary

elass of topological spaces and let every compactum A,

k

(n =0,1,2,¢++) has precisely'k (k <) components C:’l,---,Cn

i i < 1<
such that Cn——caC - CO’ 1 >1i k. Then An——caC > AO.

4. The Metric of caC -Regular Convergence

The collection of all C—calm compacta in a metric space
X can be made into a hyperspace caC(X) by defining the notion

of convergence by means of C—calmly regular convergence. In
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this section, using Begle's method in [1], we shall define
the metric dca on the space cac(x) in such a way that

lJ.mdc (An,AO) = 0 iff An——caC‘» AO.

In fact, it is clear from the explanation on the page

a

444 in [1] that such a metric can be introduced provided we
can prove the analogues of Lemmas 1, 3, 4, and 5 in [1] for
the function Y(%e,A) (defined in (4.1)) corresponding to
Begle's function dn(e,P). The analogue of Lemma 4 was estab-
lished in (2.4) while Lemmas (4.2), (4.3), and (4.5) below
correspond to Lemmas 1, 3, and 5, respectively.

Throughout this section we assume that X lies in an AR

space M of diameter 1.

(4.1) Definition. For each compact subset A of M and
for each ¢ > 0, let YC(E,A) be the least upper bound of all

numbers vy, 0 £ v £ €, such that Ch(Ny(A);A) holds.

It is clear that for each compactum A in M, YC(E,A)
always exists and is a non-negative monotone non-decreasing,
and hence measurable, function on the half-open interval
I* = (0,1]. If A is C-calm, then YC(E,A) > 0 everywhere in
I* and conversely.

The relation between definitions (2.2) and (4.1) is

provided by the following.

(4.2) Lemma. If limdF(An,Ao) = 0, then the sequence
{An} converges caC—reguZarZy to Ao iff llmlnfyC(e,A) > 0 for
each € in I*.

Proof. The proof is similar to the proof of Lemma

(4.2) in [7]1.
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The following two lemmas resemble Lemmas (4.3) and (4.4)
in [7]. The proofs are similar in spirit but technically

more complicated.

(4.3) Lemma. Let llmdF(An,Ao) = 0, Then llmsupyC(e,An)

< YC(E,AO) for all but countably many points e in 1I*.

Proof. We shall prove that if limsupycxeo,An) >

YC(EO,AO) at the point €, € I*, then the function YC(e,AO)

0

has a jump at the point ¢, (in particular, it is not continu-

0
ous at so). Since YC(E,AO) is a monotone function, there are
at most countably many points of I* at which this can happen.

Take an e > 0 and a subsequence {An_} of {An} such that
i

N .
YC(EO,Ani) 2 YC(EO,AO) + e for all i > 0. Let b, 0 < b < e/2,

liv

be an arbitrary number and choose an index i0 so that i i

0
implies dF(Ani,AO) < b. Observe that NYC(EOIAO)+(6/2)(A0)
We claim that (} (N (Ag)iay)

CNY((EO,Ani)(Ani)' Y ((£qrRg)+ (e/8)

(A ) N

. (A.), this would imply
YC(EO,Ani) nj €gtb 0

holds. Since N

that for every b, 0 < b < e/8, YC%eo+b,A0) 2 YC(EO,A0)+(e/8),
i.e., that the function YC{E,AO) has a jump at least e/8 at

the point €o°

Let W be an arbitrary compact ANR neighborhood of A0 in
M (which we can assume is the Hilbert cube Q). Pick &,

0 < § < b/4, such that 2f£-close maps into W are homotopic in

W and {-close maps into N (AO) are homotopic in

Y((EO,AO)+(e/4)

. > .
NYC(EO’AO)+(e/2)(A0). Seléct j =i such that dF(Anj,AO) < &

Let f = {fk'Anj’AO}M,M and g = {gk'AO’Anj}M,M be ¢-fundamental

sequences. Let Z be a neighborhood of Ao and let kS be an

index such that k 2 kg and x € Z implies d(gk(x),x) < E.
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Similarly, let Z2' be a neighborhood of A, and let kf be an
J

index such that k 2 kf and x € Z2' implies d(fk(x),x) < E.

Now we pick a neighborhood W' of A and k_, 2 k_,k
ny W £'g
such that fk(W') c W for all k 2 kW" Inside W' let us select

a neighborhood W6 of An- with the property that maps of
J

K € ( into W} homotopic in N

0

(A_ ) are already
YC(EO,Anj) ny

homotopic in W'. Finally, the required neighborhood W0 of

AO, W, cZ NWANN

0 (AO) and the index k

2
2 k.,

Y((EgrBg)*(e/8) 0

0
defined on a member K of C

3 ) 1
are picked so that gko(wo) cZ' NWe.

Consider maps f, g: K -~ W0

and suppose that they are homotopic in N (An) .
Y((EO,A0)+(e/8) 0

Since (gkoof,f) and (gkOOg,g) are two pairs of g-close maps

into N )(AO)' it follows that gkoof and gkoog

Y((eO,A0)+(e/4

are homotopic in N )(An~)' The choice of W! implies
J

YC(EO,An 3 0
that these maps are already homotopic in W'. But, then

fkoogkOOf and fko

f and g are homotopic in W because fkoogkOOf ~ f in W and

ogkoog are homotopic in W. We conclude that

kang0°g ~ g in W.

<
(4.4) Lemma. Let An——caC‘+ A,. Then ycieo,Ao) S

liminfyC(EO,An) at every point €, € I* in which the function

0

Yc(E,AO) is continuous.

Proof. Let us consider a point €0 € I* at which the

function YC(E,AO) is continuous. Suppose that YC(EO’AO) >

liminfyC{eo,An). Then there is an e, 0 < e < ¢ and a sub-

OI
sequence {Ani} of {a } such that yC(eo,Ani)+2e < yC(eO,AO)—Ze,
for all i > 0. Since the function YC(E,AO) is continuous at

€gr there is a number d, 0 < d < e, such that y((e,Ao) €
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(Yc(eo,AO)—Ze, YC(EO,A0)+2e) for all ¢ ¢ (60-2d,€0+2d). In
particular, YC(eo—d,AO) > yC(eo,AO)-Ze > yc(eo,Ani)+2e.
We claim that there is an index k such that

NYC(EO'Ank)+e(Ank) c Neo(Ank) and such that

Ch(NYC(€0,Ank)+e(Ank);Ank) holds. This would imply that

yc(eo,Ank) 2 YC(EO’Ank)+e which is an obvious contradiction.
By using the fact that An——ca(‘+ Ay, inside

. . £
NYC(EO_d’AO)(AO) we pick a compact ANR neighborhood V o AO

and an index kv so that Ch(v;Ai) is true for all i > kV’
Let £, 0 < £ < d, has the property that £-close maps into V

are homotopic in V and that NE(AO) © V. Pick an integer k

> =
so large that n, 2 kV and dF(Ank,AO) < g. Let f

{fk,Ank,AO}M M be an £{-fundamental sequence, let Z' be a
’

neighborhood of Ank, and let n be such that d(fn(x),x) < £

A

for all x € 2' and n 2 N, .

Now we pick a neighborhood W%, WS cv, of AO in M with

the property that maps of K € C‘into wa which are homotopic

in NYC(EO_d'AO)(AO) are already homotopic in V.

Consider now an arbitrary neighborhood W' of Ank. Let

0

V using Cﬂ(V;Ank)' Finally, let a neighborhood W), W) c

- ] ' > '
winz', of Ank and n, 2 n,, be such that fno(wo) c WO‘

a neighborhood W! of An be selected with respect to W' and
k

0 0=

Suppose f, g: K » W6 are maps of a member K of C homo-

(A_ ). Observe that N (A_ )
yc(eO,Ank)+e n, YC(EO,Ank)+e n,

1) - L -
)(AO) and that f' = fnoof and f and g' = fnoog

topic in N

[t

N
YC(ao—d,AO
and g are two pairs of £-close maps into V. It follows that

f': K » wa and g': K +~ W* are homotopic in N

0 (Bg) -

YC(eo—d,AO)
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The choice of W6 gives that f' and g' are homotopic in V.
But then f and g are homotopic in V so that the choice of V
and kv implies that f and g are homotopic in W' and this is

what we wanted to prove.

Combining the last two lemmas we have the following

theorem.

(4.5) Theorem. If A, —<cal > Ay, then limYC(e,An) exists

and equals YC(E,AO) almost everywhere in I*.

We are now ready to introduce the metric dca on the
hyperspace caC(X) of all C-calm compacta in a metric space
X. Let E be the Banach space of all bounded measurable
functions on the interval I*, the norm of an element f in E
being defined as:
I£ll = fglelae.
We define a correspondence between caC(X) and a subset
of 2§ X E by assigning to each element A of caC(X) the element
(A,yC(e,A)) of 2§ x E. This correspondence is one-to-one,
so a metric is defined in caC(X) by letting the distance be-
tween two points in caC(X) be the distance between the cor-
responding points in 2? x E. Specifically,
Goq(A,B) = 18208, B)+([5]v (220 -y (e B) |de) 2112,
With obvious modifications the argument on the page 444
in [1] shows that this metric induces the same topology on

caC(X) as that naturally defined in terms of (-calmly regular

convergence. Hence, one can prove the following.

(4.6) Theorem. There is a metric dca on the hyperspace

cal (X} of all (-calm compacta in a metric space X such that



48 éerin

for a sequence AO,Al,A2,°°° in caC(X) llmdca(An,Ao) =0 Zff

An——caC he AO.

At present we can state only the folloiwng three corol-
laries that describe topological properties of the metric

space (caC(X),dca).

(4.7) Corollary. If X is homeomorphic to Y, then
caC(X) 18 homeomorphic to caC(Y).
Proof. The proof is similar to the proof of (4.7) in

[71.

(4.8) Corollary. The identity map id: (CaC(X)’dca) >
(ca((X),dF) 18 continuous.

Proof. See (2.1).

(4.9) Corollary. Let o be a hereditary shape property.
Then the collection of all elements of caP(X) which have
property o constitute a closed subset of caP(X).

Proof. See (4.4) in [8].

We leave many questions concerning the topological
structure of the space caC(X) open. The most natural problem
would be to see what properties of X are carried over onto
caC(X). In particular, is cac(X) separable (topologically
complete) if X is separable (topologically complete)? The
last two questions are in view of (4.8) and the method of
the proofs for Theorems 2 and 3 in [1l] equivalent to the fol-

lowing questions.

(4.10) If X is a separable (topologically complete)

metric space, is (cac(X),dF) also separable (topologically
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complete) metric space?
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