TOPOLOGY PROCEEDINGS Volume 4, 1979 Pages 29–49

http://topology.auburn.edu/tp/

$\mathcal C\text{-}\mathrm{CALMLY}$ REGULAR CONVERGENCE

 $\mathbf{b}\mathbf{y}$

Zvonko Čerin

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ℓ -calmly regular convergence

Zvonko Čerin

1. Introduction

Let X be a metric space and let d denote the distancefunction defined on X. By 2^X we denote the hyperspace of all non-empty compacta lying in X. In [4] Borsuk defined the fundamental metric $\textbf{d}_{_{\rm T}}$ on $2^{\rm X}$ such that two compacta in X which are close with respect to d_F have similar shape properties. In particular, it was demonstrated in [4] and [8] that there is a large number of hereditary shape properties α (i.e., properties preserved by shape dominations) such that the following holds.

(1.1) If A_0, A_1, \cdots is a sequence in 2^X with $\lim_{F} (A_k, A_0)$ = 0 and $A_k \in \alpha$ for $k = 1, 2, \dots$, then $A_0 \in \alpha$.

On the other hand, Boxer and Sher [5] observed that in general (1.1) is not true for every hereditary shape property α . But, by assuming that A_{α} is an FANR, they established (1.1) for every α . Finally, in [8] the same was proved under a weaker assumption that A_0 is a calm compactum. The class of calm compacta was introduced by the author in [6]. It intersects the class of all movable compacta in the class of all FANR's (see Theorem (4.5) in [8]) but calm compacta need not be movable (e.g. solenoids).

In view of the above results, it is interesting to find conditions under which $\lim_{F} (A_k, A_0) = 0$ for a sequence A_0, A_1, \cdots in 2^X implies that A_0 is calm.

This paper introduces the notion of a calmly regular

(or ca-regular) convergence of compacta lying in X such that if the sequence A_1, A_2, \cdots converges ca-regularly to A_0 , then A_0 is calm and $\lim_{F} (A_{F}, A_0) = 0$.

The definition of the ca-regular convergence, besides providing generalizations of theorems about calm compacta from [6] (see §§2 and 3), is justified by the new information that it gives about the collection ca(X) of all calm compacta in a metric space X. The main result (4.6) of this paper shows that one can define a metric d_{ca} on ca(X) such that the convergence with respect to d_{ca} is equivalent to the caregular convergence.

The paper is organized as follows. In §2 we recall definitions of (-calmness from [6], where (is an arbitrary (non-empty) class of topological spaces, and the fundamental metric d_{p} from [4] and introduce the notion of a (-calmlyregular (or ca/-regular) convergence of compacta in a metric space X which lies in an ANR space M. The ca-regular convergence is by definition ca/-regular convergence for (the class of all finite polyhedra. We first prove (see (2.3)) that in this definition the choice of the embedding of X and of M is immaterial. In (2.4) we prove that if a sequence $\{\mathtt{A}_{\mathtt{k}}\}$ in $\mathtt{2}^{X}$ converges ca(-regularly to a compactum \mathtt{A}_{0} (in symbols, $A_k - ca(\rightarrow A_0)$, then A_0 is (-calm regardless of the nature of A_{ν} 's. Then we discuss the role of the class (((2.7), (2.8), and (2.9)) and give several examples of situations in which ca/-regular convergence naturally appears ((2.10), (2.12), and (2.14)).

The short §3 shows that taking finite products and suspensions preserves ca(-regular convergence ((3.1) and (3.2),

respectively). Also, $A_k - ca_k + A_0$ iff for every component C_0 of A_0 there is a component C_k of A_k such that $C_k - ca_k + C_0$ ((3.4)).

The final §4 proves, relying heavily on Begle's technique in [1], that the hyperspace $ca_{(X)}$ of all (-calm compacta in X with the topology induced by $ca_{()}$ -regular convergence is a metric space. We close by raising two questions about the topological properties of $ca_{(X)}$.

This paper is the second in a series in which we study various types of globally regular convergence. In the first [7] we considered (-movably regular convergence.

We assume that the reader is familiar with the theory of shape [2].

Throughout the paper (and ∂ will be arbitrary (nonempty) classes of topological spaces. By \hat{P} we denote the class of all finite polyhedra.

If not stated otherwise, we reserve X for an arbitrary metric space with a fixed metric d; A_0, A_1, A_2, \cdots are compact subsets of X; M is an absolute neighborhood retract for the class of all metric spaces (in notation, an ANR) which contains X; a neighborhood means an open neighborhood; and $N_c(A_0)$ denotes the ε -neighborhood of A_0 in M.

2. Calmly Regular Convergence

Let B be a subset of an ANR M, and let V be an open subset of M containing B. We denote by (V; B) the following statement.

 $\boxed{\begin{array}{c} \hline \\ c_h(V;B) \end{array}}$ For every neighborhood W of B in M there is a neighborhood W₀, W₀ \subset V \cap W, of B in M such that if f,g: $K \rightarrow W_0$ are maps of a member K of (into W_0 which are homotopic in V, then f and g are homotopic in W.

A compactum A is $(-calm \text{ if for some (and hence for every})}$ embedding of A into an ANR M the following holds. There is a neighborhood V of A in M such that $C_h(V;A)$ is true. It is easy to see that this definition is equivalent to the one given in [6] (see Theorem (4.2) in [6]). \mathcal{P} -calm compacta are called calm.

Recall [4] (see also [8]) the definition of the fundamental metric d_F on 2^X . Let M be an AR-space containing X metrically.

(2.1) If $A, B \in 2^{X}$, then $d_{F}(A, B)$ is the greatest lower bound of those $\varepsilon > 0$ for which there exist ε -fundamental sequences $\underline{f} = \{f_{k}, A, B\}_{M,M}$ and $\underline{g} = \{g_{k}, B, A\}_{M,M}$. (By an ε -fundamental sequence we mean a fundamental sequence $\underline{f} = \{f_{k}, A, B\}_{M,M}$ for which there exists a neighborhood U of A in M such that $f_{k}|U$ is an ε -map (i.e., $d(f_{k}(x), x) < \varepsilon$ for every $x \in U$) for almost all indices k). It is known [4, Theorem 3.1] that the choice of M is irrelevant when computing $d_{F}(A, B)$. The hyperspace 2^{X} with the metric d_{F} is denoted by 2^{X}_{F} .

(2.2) Definition. A sequence $\{A_1, A_2, \dots\}$ of compacta in a metric space X which lies in an ANR M is said to converge (-calmly regularly (or ca(-regularly) in M to a compactum A \subset X provided

(i) $\lim_{\to} (A_n, A) = 0$, and

(ii) there is a neighborhood V of A in M such that $(h(V;A_n))$ holds for almost all indices n.

32

We first prove that the definition (2.2) is shape theoretic in the sense that (-calmly regular convergence isindependent of the choice of M and the embedding of X into M.

(2.3) Proposition. Let X be embedded in ANR's M and M' and let a sequence $\{A_n\}$ of compacta in X converge (-calmly regularly in M to a compactum $A_0 \subset X$. Then the convergence $A_n + A_0$ is also (-calmly regular in M'.

Proof. Since $A = \bigcup_{i=0}^{\infty} A_i$ is compact, there are neighborhoods Z and Z' of A in M and M', respectively, and maps h: Z + M' and h': Z' + M such that h|A = h'|A = id.

Let V be a neighborhood of A_0 in M and let k_V be an index such that $(_h(V; A_n)$ holds for each $n \ge k_V$. Put V' = $(h')^{-1}(V)$ and let $k_V', \ge k_V$ be such that $n \ge k_V'$, implies $A_n \subset V'$.

We claim that $({}_{h}(V'; A_{n})$ is true for each $n \ge k_{V'}$. Indeed, consider an arbitrary neighborhood W' of A_{n} in M', where $n \ge k_{V'}$. Let $W = h^{-1}(W')$. Since $n \ge k_{V'}$ we conclude that there is a neighborhood W_{0} of A_{n} in M, $W_{0} \subset V \cap W$, such that if two maps of a member of (into W_{0} are homotopic in V then they are already homotopic in W. Let $W_{0}^{\star} = (h')^{-1}(W_{0})$ and let $W_{0}', W_{0}' \subset W_{0}^{\star} \cap W'$, be a neighborhood of A_{n} in M' with the property that $h \circ h' | W_{0}' \simeq i_{W_{0}', W'}$ in W' $(i_{W_{0}', W'}$ denotes the inclusion of W_{0}' into W' and " \simeq " stands for "is homotopic to").

Now, if f, g: $K \neq W'_0$ are maps of $K \in ($ into W'_0 homotopic in V', then h'of and h'og are maps of K into W_0 homotopic in V. It follows that h'of \approx h'og in W. But then hoh'of \approx hoh'og in W'. The choice of W'_0 implies that hoh'of \approx f and $h \circ h' \circ g \simeq g$ in W'. Hence $f \simeq g$ in W'.

If a sequence $\{A_n\}$ of compacta in X converges ca_{ℓ} regularly to a compactum A_0 in X in some (and hence, by (2.3), in every) ANR containing X we shall write A_n --ca $\ell \rightarrow A_0$.

(2.4) Proposition. Let $A_n - ca(+ A_0)$. Then A_0 is (-calm regardless of the nature of A_n 's.

Proof. We can assume that all compacts under consideration lie in the Hilbert cube Q. Select a neighborhood V of A_0 in Q and an index $k_1 = k_V$ such that $({}_h(V; A_n)$ holds for each $n \ge k_1$. We shall prove that $({}_h(V; A_0)$ is also true,

Let W be an arbitrary neighborhood of A_0 in Q. Let W', W' \subset W, be a compact ANR neighborhood of A_0 . Pick $k_2 \geq k_1$ such that $n \geq k_2$ implies $A_n \subset intW'$. Let $\varepsilon > 0$ has the property that ε -close maps into W' are homotopic in W' [10]. Take $k_3 \geq k_2$ such that $d_F(A_{k_3}, A_0) < \varepsilon$. By assumption, there is a neighborhood W'_0 of A_{k_3} , W'_0 \subset V \cap W', such that any two maps of a member of (into W'_0 homotopic in V are already homotopic in W'.

Now, take an ε -fundamental sequence $\underline{f} = \{f_k, A_0, A_{k_3}\}_{Q,Q}$. We can find an index n_0 and a neighborhood W_0 of A_0 in Q, $W_0 \subset V \cap W'$, such that $d(f_{n_0}(x), x) < \varepsilon$ for each $x \in W_0$ and $f_{n_0}(W_0) \subset W_0'$.

Consider maps f, g: $K + W_0$ of $K \in ($ into W_0 that are homotopic in V. Then $f_{n_0} \circ f \approx f$ in W' (because these are ε -close maps into W') and, similarly, $f_{n_0} \circ g \approx g$ in W'. It follows that $f_{n_0} \circ f$ and $f_{n_0} \circ g$ are maps of K into W'_0 homotopic in V. By the choice of W'_0 and k_3 , we see that they are homotopic in W'. But then f and g are homotopic in W' and therefore also in W. Let $/\ensuremath{C_{\rm A}}/$ denote the number of components of a compactum A.

(2.5) Proposition. Let $A_n - ca_0 + A_0$. Then A_0 has finitely many components and $/C_{A_0} / = /C_{A_n} / \text{ for almost all indices n.}$

Proof. The first claim follows from (2.4) and Theorem (4.6) in [6]. The second is proved by the method used in the above proof.

(2.6) Example. (a) A constant sequence $\{A_n\} = \{A\}$ converges ca/-regularly to A iff A is (-calm.

(b) In the interval X = [-1,1] consider the sequence $A_n = \{-(1/n)\} \cup \{1/n\} (n = 1,2,\cdots)$ of compacta. Then $\lim d_F(A_n,A_0) = 0$, where $A_0 = \{0\}$ is (-calm for every class (, but $\{A_n\}$ does not converge ca(-regularly to A_0 . Hence, the converse of (2.4) is not true.

Now we shall discuss the role of a class (in our definition. With obvious changes the proof of Theorem (4.8) in [6] gives the following.

(2.7) Theorem. Let $A_n - ca_{\ell} \rightarrow A_0$ and let a class (shape dominate a class D. Then $A_n - ca_{\ell} \rightarrow A_0$.

Here a class of topological spaces (shape dominates another such class \hat{D} provided for every $X \in \hat{D}$ there is $Y \in ($ such that Y shape dominates X. We use the shape theory of arbitrary topological spaces in the form described by Kozlowski [12] (see also §3 in [13]).

Similarly, when (and ∂ are classes of compacta, by replacing in the above definition shape domination with

35

Borsuk's notion of quasi-domination [3], we say that (quasidominates \hat{D} . With this concept we can improve (2.7) (and by (2.6)(a) also (4.8) in [6]) for classes of compacta.

(2.8) Theorem. Let $A_n - ca_0 \neq A_0$ and let a class of compacta (quasi-dominate another such class D. Then $A_n - ca_0 \neq A_0$.

Proof. Let V be a neighborhood of A_0 in M and let k_V be an index such that $({}_h(V;A_n)$ holds for each $n \ge k_V$. We claim that for such indices $\hat{\ell}_h(V;A_n)$ also holds.

Indeed, let $n \ge k_V$ and let W be an arbitrary neighborhood of A_n in M. Select a neighborhood W_0 of A_n in M, $W_0 \subseteq V \cap W$, using $(L_1(V;A_n))$. Consider $K \in \partial$ and maps f, g: $K \to W_0$ homotopic via a homotopy H_t : $K \to V$ ($0 \le t \le 1$). Since the class (quasi-dominates the class D, there is a compactum $L \in ($ which quasi-dominates K. We can assume that both K and L lie in the Hilbert cube Q. Since V and W_0 are ANR's, there is a neighborhood Z of K in Q and extensions \hat{f} , \hat{g} : $Z \to W_0$ of f and g, respectively, and \hat{H}_t : $Z \to V$ of H_t such that $\hat{H}_0 = \hat{f}$ and $\hat{H}_1 = \hat{g}$ [10]. Now, we select a neighborhood Z_0 of K in Q, $Z_0 \subset Z$, fundamental sequences $\underline{f} = \{f_k, L, K\}_{Q,Q}$ and $\underline{g} = \{g_k, K, L\}_{Q,Q}$, and an index k_1 such that $k \ge k_1$ implies $f_k \circ g_k | Z_0 \simeq i_{Z_0, Z}$ in Z. Next, we pick $k_2 \ge k_1$ and a neighborhood T of L in Q such that $f_k | T \simeq f_k$, | T in Z whenever k, $k' \ge k_2$.

Note that $\hat{H}_t \circ f_{k_2} | L$ is a homotopy of V connecting maps $\hat{f} \circ f_{k_2} | L$ and $\hat{g} \circ f_{k_2} | L$ of L into W₀. By assumption, these maps are homotopic in W. As before, we conclude that there is a neighborhood T₁ of L in Q, T₁ \subset T, and a homotopy \hat{G}_t : T₁ \rightarrow W

36

 $(0 \leq t \leq 1)$ such that $\hat{G}_0 = \hat{f} \circ f_{k_2} | T_1$ and $\hat{G}_1 = \hat{g} \circ f_{k_2} | T_1$.

Select $k_3 \ge k_2$ and a neighborhood T_0 of K in Q, $T_0 \subset Z_0$, such that $g_{k_3}(T_0) \subset T_1$. Then $G_t = \hat{G}_t \circ g_{k_3} | K$ is a homotopy in W connecting $G_0 = \hat{f} \circ f_{k_2} \circ g_{k_3} | K$ and $G_1 = \hat{g} \circ f_{k_2} \circ g_{k_3} | K$. We leave to the reader to check that G_0 is in W homotopic to f and that G_1 is in W homotopic to g. Hence f and g are homotopic in W.

(2.9) Proposition. Let $A_n - ca_{\partial} \rightarrow A_0$. If each compactum A_n (n = 1,2,...) is ((,)-smooth [6], then $A_n - ca_{\partial} \rightarrow A_0$.

Proof. Let a neighborhood V of A_0 in M and an index k_V be chosen using the fact that $A_n - ca_{\hat{\ell}} \neq A_0$. We claim that ${\ell_h(V; A_n)}$ holds for every $n \ge k_V$.

Let W be an arbitrary neighborhood of A_n in M ($n \ge k_V$). Since A_n is $((, \partial)$ -smooth, there is a neighborhood W' of A_n in M, W' \subset W, such that every two ∂ -homotopic [6] maps of a member of (into W' are homotopic in W. The required neighborhood W_0 is picked with respect to W' using $\partial_h(V; A_n)$.

Consider maps f, g: K + W₀ of K \in (and assume that they are homotopic in V. Then for every L $\in \partial$ and every map h: L + K, compositions foh and goh are homotopic in V. The choice of W₀ implies foh \approx goh in W'. In other words, f and g are ∂ -homotopic in W'. Hence, f \approx g in W.

We shall give now three examples of situations in which ca/-regular convergence appears naturally.

(2.10) *Example*. Let $\lim_{F} (A_n, A_0) = 0$ and assume that each compactum A_n (n = 1,2,...) is (-trivial [8] and connected. Then $A_n - \operatorname{ca}(\rightarrow A_0$. We observed in the example (2.6)(b) that the convergence with respect to the fundamental metric to a (-calm compactum is not sufficient for the ca₍-regular convergence. We shall now introduce a stronger metric d_{SF} on a subset X[A] of 2^{X} consisting of all compacta in X with the same shape as a compactum A and prove that if A is (-calm then the convergence with respect d_{SF} implies ca₍-regular convergence.

(2.11) Definition. If B, C \in X[A], then d_{SF}(B,C) is the greatest lower bound of those $\varepsilon > 0$ for which there exist ε -fundamental sequences $\underline{f} = \{f_k, B, C\}_{M,M}$ and $\underline{g} = \{g_k, C, B\}_{M,M}$ such that $\underline{g} \circ \underline{f} \simeq \underline{id}_B$ and $\underline{f} \circ \underline{g} \simeq \underline{id}_C$.

One easily proves that this is indeed a metric and that the computation of $d_{\rm SF}^{}(B,C)$ is independent of the choice of the AR-space M containing X.

(2.12) Example. Let A_0, A_1, A_2, \cdots be elements of X[A] and assume that $\lim_{SF} (A_n, A_0) = 0$. If A is a (-calm compactum, then $A_n - ca(\rightarrow A_0$.

Proof. Without loss of generality we can assume that X lies in the Hilbert cube Q. Let V be a compact ANR neighborhood of A_0 in Q such that $(_h(V;A_0)$ holds. Select $\varepsilon > 0$ with the property that ε -close maps into V are homotopic in V. Pick an index k_V such that $n \ge k_V$ implies $A_n \subset intV$ and $d_{SF}(A_n,A_0) < \varepsilon$. Hence for each $n \ge k_V$ there are ε -fundamental sequences $\underline{f}^n = \{f_k^n, A_0, A_n\}_{Q,Q}$ and $\underline{g}^n = \{g_k^n, A_n, A_0\}_{Q,Q}$, neighborhoods U_0^n and V_0^n of A_0 and A_n , respectively, and an index k_n such that $k \ge k_n$ implies that $f_k^n | U_0^n$ and $g_k^n | V_0^n$ are ε -maps and $\underline{f}^m \circ \underline{g}^n - \underline{id}_{A_m}$.

Consider an arbitrary neighborhood W of A_n $(n \stackrel{>}{=} k_v)$.

Pick $k_W \stackrel{\geq}{=} k_n$ and a neighborhood W' of A_0 such that $f_k^n(W') \subset W$ for all $k \stackrel{\geq}{=} k_W$. Now, select a neighborhood W_0' of A_0 with respect to W' using $(_h(V;A_0)$. Then we take a required neighborhood W_0 of A_n inside $W \cap V_0^n \cap V$ and an index $k_0 \stackrel{\geq}{=} k_W$ for which $g_k^n(W_0) \subset W_0'$ and $f_k^n \circ g_k^n | W_0 \cong i_{W_0,W}$ in W whenever $k \stackrel{\geq}{=} k_0$.

Let f, g: $K \rightarrow W_0$ be maps of $K \in ($ into W_0 and assume that they are homotopic in V. Observe that $g_{k_0}^n \circ f \simeq f$ in V (these are ε -close maps into V) and, similarly, $g_{k_0}^n \circ g \simeq g$ in V. Hence, $g_{k_0}^n \circ f$, $g_{k_0}^n \circ g$: $K \rightarrow W_0^i$ are homotopic in V. The choice of W_0^i implies that $g_{k_0}^n \circ f \simeq g_{k_0}^n \circ g$ in W'. But then $f_{k_0}^n \circ g_{k_0}^n \circ f \simeq f_{k_0}^n \circ g_{k_0}^n \circ g$ in W. Finally, since $f_{k_0}^n \circ g_{k_0}^n \circ g \simeq f$ in W and $f_{k_0}^n \circ g_{k_0}^n \circ g \simeq g$ also in W, it follows that $f \simeq g$ in W.

Examples of sequences converging with respect to d_{SF} are provided by sequences of n-dimensional ANR's converging homotopy n-regularly [9]. In fact, one easily checks that the proof of Theorem (4.2) in [9] contains the proof of the following statement.

(2.13) Let A_0, A_1, A_2, \cdots be n-dimensional compact ANR's in a metric space X. If $\{A_n\}$ converges homotopy n-regularly to A_0 , then there is a subsequence $\{A_k\}$ of $\{A_n\}$ such that $\lim_{s \to \infty} (A_k, A_0) = 0$.

(2.14) *Example*. Under the assumptions of (2.13) we see from (2.12) that $A_n - ca_0 \rightarrow A_0$, for every class (.

3. Operations Preserving ca / -Regular Convergence

In this section we shall prove that by taking finite products and suspensions of $ca_{(-regularly converging sequences)}$ of compacta we get $ca_{(-regularly converging sequences)}$. We also investigate in what way $ca_{(-regular convergence of)}$ components of the members of the sequence $\{A_n\}$ to components of A_0 imply that $A_n - ca_0 \rightarrow A_0$.

(3.1) Theorem. If for each $i = 1, \dots, m$, $\{A_n^i\}$ is a sequence of compacta in a metric space X_i converging $ca(-regularly to a compactum <math>A_0^i$ in X_i , then $A_n = \prod_{i=1}^m A_n^i - ca(\rightarrow A_0 = \prod_{i=1}^m A_0^i$.

Proof. We can assume that each X_i lies in an ANR space M_i . Then $X = \prod_{i=1}^m X_i$ lies in the ANR space $M = \prod_{i=1}^m M_i$. It suffices to prove that $\{A_n\}$ converges ca*(*-regularly to A_0 in M.

For each $i = 1, \dots, m$ pick a neighborhood V_i of A_0^1 in M_i and an index k_i such that $({}_h(V_i; A_k^i)$ holds for all $k \ge k_i$. Let $V = \prod_{i=1}^m V_i$ and let $k_V = \max\{k_1, \dots, k_m\}$. We claim that $({}_h(V; A_k)$ is true for each $k \ge k_V$.

Indeed, let $k \ge k_V$ and consider an arbitrary neighborhood W of A_k in M. We can find neighborhoods W_1, \dots, W_m of A_k^1, \dots, A_k^m in M_1, \dots, M_m , respectively, such that W' = $\prod_{i=1}^m W_i \subset W$. For each $i = 1, \dots, m$ inside $V_i \cap W_i$ select a neighborhood W_{i0} of A_k^i using the property of V_i and k_i . Put $W_0 = \prod_{i=1}^m W_{i0}$.

If f, g: $K \rightarrow W_0$ are maps of $K \in ($ into W_0 that are homotopic in V, then the compositions $\pi_i \circ f$, $\pi_i \circ g$: $K \rightarrow W_{i0}$ (where π_i is the projection of M onto M_i) are homotopic in V_i (i = 1,...,m). It follows that they are homotopic in W_i . Hence, f and g are homotopic in W' and therefore also in W.

(3.2) Theorem. If $A_n - ca_0 \rightarrow A_0$, then the sequence $\{SA_n\}$ of the (unreduced) suspensions of A_n $(n = 1, 2, \cdots)$ converges $ca_0 - regularly$ to SA_0 .

Proof. We can assume that $A = \bigcup_{i=0}^{\infty} A_i$ lies in a compact convex infinite-dimensional subset M of a Banach space N_0 . Setting $N = N_0 \times R$ (R denotes the real line), let us identify every point $y \in N_0$ with the point $(y,0) \in N$. We select a point $c \in A$ and define the suspension SA_i as the union of all segments |ay| and |a'y|, where a = (c,1), a' = (c,-1), and $y \in A_i$ ($i = 0, 1, 2, \cdots$).

We shall show that $\{SA_n\} + SA_0$ ca(-regularly in SM. Observe that both M and SM are homeomorphic to Q [11].

Since $\{A_n\} \rightarrow A_0$ ca $(-regularly in M, there is a compact ANR neighborhood <math>\tilde{V}$ of A_0 in M and an index $k_{\tilde{V}}$ such that for every $n \geq k_{\tilde{V}}$ the statement $(\tilde{V}; A_n)$ holds. Let $V = SM[-1, -(1/2)] \cup S\tilde{V} \cup SM[1/2, 1]$, where $SM[\alpha, \beta]$ denotes all points of SM with the second coordinate in the interval $[\alpha, \beta], -1 \leq \alpha \leq \beta \leq 1$, and let $k_V = k_{\tilde{V}}$. We claim that $(\int_h (V; SA_n)$ is true for all $n \geq k_V$.

Indeed, let $n \ge k_V$ and let W be an arbitrary neighborhood of SA_n in SM. Select a neighborhood \tilde{W} of A_n in M and an ε , $0 < \varepsilon < 1/2$, such that $SM[-1,-1+\varepsilon] \cup S\tilde{W} \cup SM[1-\varepsilon,1] \subset W$. Now take a compact ANR neighborhood \tilde{W}_0 , $\tilde{W}_0 \subset \tilde{W} \cap \tilde{V}$, of A_n in M using the choice of \tilde{V} and $k_{\tilde{V}}$ and put $W_0 = SM[-1,-1+\varepsilon] \cup S\tilde{W}_0 \cup SM[1-\varepsilon,1]$.

Let $C_{-}(D_{-})$ be the set obtained as the union of all segments |b'y| where $b' = (c, -1 + (\epsilon/2))$ and $y \in S\tilde{W}_{0}[-1+\epsilon](y \in SV[-1/2])$, and let $C_{+}(D_{+})$ be the set obtained as the union of all segments |by| where $b = (c, 1 - (\epsilon/2))$ and $y \in S\tilde{W}_{0}[1-\epsilon](y \in SV[1/2])$.

Observe that $(SM[-1,-1+\epsilon],C_{-}), (SM[1-\epsilon,1],C_{+}),$ $(SM[-1,-1/2],D_{-})$ and $(SM[1/2,1],D_{+})$ are pairs of AR's. Hence in each of these pairs there is a strong deformation retraction of the first set onto the second set [10].

Consider maps f, g: $K \rightarrow W_0$ of $K \in ($ into W_0 and assume that they are homotopic in V. Applying strong deformation retractions determined by the first two pairs, we see that f and g are homotopic in W_0 to maps f' and g', respectively, of K into $S\tilde{W}_0[-1+\epsilon,1-\epsilon] \cup C_- \cup C_+$. By applying strong deformation retractions determined by the last two pairs, we see that f' and g' are homotopic in $S\tilde{V}[-1/2,1/2] \cup D_- \cup D_+$.

Since both $S\tilde{V}[-1/2,1/2] \cup D_{-} \cup D_{+}$ and $S\tilde{W}_{0}[-1+\varepsilon,1-\varepsilon] \cup C_{-} \cup C_{+}$ are contained in $S\tilde{V}[-1+(\varepsilon/2),1-(\varepsilon/2)]$ it follows (after projecting onto \tilde{V}) that f' and g' are homotopic in $S\tilde{W}[-1+(\varepsilon/2),1-(\varepsilon/2)]$. Hence, f and g are homotopic in W.

(3.3) Corollary. The (unreduced) suspension of a (-calm compactum is also (-calm.

The proof of the following proposition is left to the reader.

(3.4) Proposition. If $A_n - ca_{n} \rightarrow A_0$, then for every component C_0 of A_0 there is a component C_n of A_n such that $C_n - ca_{n} \rightarrow C_0$. Conversely, let (be a component hereditary class of topological spaces and let every compactum A_n (n = 0,1,2,...) has precisely k (k < ∞) components C_n^1, \dots, C_n^k such that $C_n^1 - ca_{n} \rightarrow C_0^i$, $1 \leq i \leq k$. Then $A_n - ca_{n} \rightarrow A_0$.

4. The Metric of ca/ -Regular Convergence

The collection of all $(-calm \text{ compacta in a metric space} X can be made into a hyperspace <math>ca_{(X)}$ by defining the notion of convergence by means of (-calmly regular convergence. In)

this section, using Begle's method in [1], we shall define the metric d_{ca} on the space $ca_{(X)}$ in such a way that $\lim_{a} (A_n, A_0) = 0$ iff $A_n - ca_{(A_n)} + A_0$.

In fact, it is clear from the explanation on the page 444 in [1] that such a metric can be introduced provided we can prove the analogues of Lemmas 1, 3, 4, and 5 in [1] for the function $\gamma_{\ell}(\varepsilon, A)$ (defined in (4.1)) corresponding to Begle's function $\delta_n(\varepsilon, P)$. The analogue of Lemma 4 was established in (2.4) while Lemmas (4.2), (4.3), and (4.5) below correspond to Lemmas 1, 3, and 5, respectively.

Throughout this section we assume that X lies in an AR space M of diameter 1.

(4.1) Definition. For each compact subset A of M and for each $\varepsilon > 0$, let $\gamma_{\int}(\varepsilon, A)$ be the least upper bound of all numbers γ , $0 \leq \gamma \leq \varepsilon$, such that $\int_{h} (N_{\gamma}(A); A)$ holds.

It is clear that for each compactum A in M, $\gamma_{\ell}(\varepsilon, A)$ always exists and is a non-negative monotone non-decreasing, and hence measurable, function on the half-open interval $I^* = (0,1]$. If A is $(-\text{calm}, \text{ then } \gamma_{\ell}(\varepsilon, A) > 0$ everywhere in I^* and conversely.

The relation between definitions (2.2) and (4.1) is provided by the following.

(4.2) Lemma. If $\lim_{F} (A_n, A_0) = 0$, then the sequence $\{A_n\}$ converges Ca(-regularly to A_0 iff $\liminf_{\gamma \in A} \gamma(\varepsilon, A) > 0$ for each ε in I*.

Proof. The proof is similar to the proof of Lemma (4.2) in [7].

The following two lemmas resemble Lemmas (4.3) and (4.4) in [7]. The proofs are similar in spirit but technically more complicated.

(4.3) Lemma. Let $\lim_{F}(A_n, A_0) = 0$. Then $\lim_{F} (\varepsilon, A_n) \leq \gamma_{f}(\varepsilon, A_0)$ for all but countably many points ε in I*.

Proof. We shall prove that if $\limsup_{\zeta \in [0, A_n]} > \gamma_{\zeta}(\varepsilon_0, A_0)$ at the point $\varepsilon_0 \in I^*$, then the function $\gamma_{\zeta}(\varepsilon, A_0)$ has a jump at the point ε_0 (in particular, it is not continuous at ε_0). Since $\gamma_{\zeta}(\varepsilon, A_0)$ is a monotone function, there are at most countably many points of I* at which this can happen.

Take an e > 0 and a subsequence $\{A_{n_i}\}$ of $\{A_n\}$ such that $\gamma_{\ell}(\epsilon_0, A_{n_i}) \ge \gamma_{\ell}(\epsilon_0, A_0) + e$ for all i > 0. Let b, 0 < b < e/2, be an arbitrary number and choose an index i_0 so that $i \ge i_0$ implies $d_F(A_{n_i}, A_0) < b$. Observe that $N_{\gamma_{\ell}}(\epsilon_0, A_0) + (e/2) (A_0)$ $\subset N_{\gamma_{\ell}}(\epsilon_0, A_{n_i}) (A_{n_i})$. We claim that $\int_h (N_{\gamma_{\ell}}(\epsilon_0, A_0) + (e/8) (A_0); A_0)$ holds. Since $N_{\gamma_{\ell}}(\epsilon_0, A_{n_i}) (A_{n_i}) \subset N_{\epsilon_0+b}(A_0)$, this would imply that for every b, 0 < b < e/8, $\gamma_{\ell}(\epsilon_0+b, A_0) \ge \gamma_{\ell}(\epsilon_0, A_0) + (e/8)$, i.e., that the function $\gamma_{\ell}(\epsilon, A_0)$ has a jump at least e/8 at the point ϵ_0 .

Let W be an arbitrary compact ANR neighborhood of A_0 in M (which we can assume is the Hilbert cube Q). Pick ξ , $0 < \xi < b/4$, such that 2ξ -close maps into W are homotopic in W and ξ -close maps into $N_{\gamma_{i}}(\epsilon_{0}, A_{0}) + (e/4)^{(A_{0})}$ are homotopic in $N_{\gamma_{i}}(\epsilon_{0}, A_{0}) + (e/2)^{(A_{0})}$. Select $j \ge i_{0}$ such that $d_{F}(A_{n_{j}}, A_{0}) < \xi$. Let $\underline{f} = \{f_{k}, A_{n_{j}}, A_{0}\}_{M,M}$ and $\underline{q} = \{g_{k}, A_{0}, A_{n_{j}}\}_{M,M}$ be ξ -fundamental sequences. Let Z be a neighborhood of A_{0} and let k_{g} be an index such that $k \ge k_{q}$ and $x \in Z$ implies $d(g_{k}(x), x) < \xi$. Similarly, let Z' be a neighborhood of A_{n_j} and let $k_{\underline{f}}$ be an index such that $k \stackrel{>}{=} k_{\underline{f}}$ and $x \in Z'$ implies $d(f_k(x), x) < \xi$.

Now we pick a neighborhood W' of A_{n_j} and $k_{W'} \ge k_{\underline{f}}, k_{\underline{g}}$ such that $f_k(W') \subset W$ for all $k \ge k_{W'}$. Inside W' let us select a neighborhood W'_0 of A_{n_j} with the property that maps of $K \in ($ into W'_0 homotopic in $N_{\gamma_{(\epsilon_0, A_{n_j})}(A_{n_j})$ are already homotopic in W'. Finally, the required neighborhood W_0 of $A_0, W_0 \subset Z \cap W \cap N_{\gamma_{(\epsilon_0, A_0)} + (e/8)}(A_0)$ and the index $k_0 \ge k_{W'}$ are picked so that $g_{k_0}(W_0) \subset Z' \cap W'_0$.

Consider maps f, g: K + W₀ defined on a member K of (and suppose that they are homotopic in $N_{\gamma_{c}(\epsilon_{0},A_{0})+(e/8)}(A_{0})$. Since $(g_{k_{0}}\circ f,f)$ and $(g_{k_{0}}\circ g,g)$ are two pairs of ξ -close maps into $N_{\gamma_{c}(\epsilon_{0},A_{0})+(e/4)}(A_{0})$, it follows that $g_{k_{0}}\circ f$ and $g_{k_{0}}\circ g$ are homotopic in $N_{\gamma_{c}(\epsilon_{0},A_{n_{j}})}(A_{n_{j}})$. The choice of W₀ implies that these maps are already homotopic in W'. But, then $f_{k_{0}}\circ g_{k_{0}}\circ f$ and $f_{k_{0}}\circ g_{k_{0}}\circ g$ are homotopic in W. We conclude that f and g are homotopic in W because $f_{k_{0}}\circ g_{k_{0}}\circ f \simeq f$ in W and $f_{k_{0}}\circ g_{k_{0}}\circ g \simeq g$ in W.

(4.4) Lemma. Let $A_n - ca_{\ell} \neq A_0$. Then $\gamma_{\ell}(\varepsilon_0, A_0) \leq \liminf \gamma_{\ell}(\varepsilon_0, A_n)$ at every point $\varepsilon_0 \in I^*$ in which the function $\gamma_{\ell}(\varepsilon, A_0)$ is continuous.

Proof. Let us consider a point $\varepsilon_0 \in I^*$ at which the function $\gamma_{\mathcal{C}}(\varepsilon_0, A_0)$ is continuous. Suppose that $\gamma_{\mathcal{C}}(\varepsilon_0, A_0) > \liminf\gamma_{\mathcal{C}}(\varepsilon_0, A_n)$. Then there is an e, $0 < e < \varepsilon_0$, and a subsequence $\{A_{n_i}\}$ of $\{A_n\}$ such that $\gamma_{\mathcal{C}}(\varepsilon_0, A_{n_i}) + 2e < \gamma_{\mathcal{C}}(\varepsilon_0, A_0) - 2e$, for all i > 0. Since the function $\gamma_{\mathcal{C}}(\varepsilon, A_0)$ is continuous at ε_0 , there is a number d, 0 < d < e, such that $\gamma_{\mathcal{C}}(\varepsilon, A_0) \in \mathbb{C}$.

 $(\gamma_{\ell}(\varepsilon_{0}, A_{0}) - 2e, \gamma_{\ell}(\varepsilon_{0}, A_{0}) + 2e) \text{ for all } \varepsilon \in (\varepsilon_{0} - 2d, \varepsilon_{0} + 2d). \text{ In } \\ \text{particular, } \gamma_{\ell}(\varepsilon_{0} - d, A_{0}) > \gamma_{\ell}(\varepsilon_{0}, A_{0}) - 2e > \gamma_{\ell}(\varepsilon_{0}, A_{n_{1}}) + 2e.$

We claim that there is an index k such that

$$\begin{split} & {}^{N}\gamma_{\bigwedge}(\varepsilon_{0}, {}^{A}_{n_{k}}) + e^{\binom{A}{n_{k}}} \subset {}^{N}\varepsilon_{0} ({}^{A}_{n_{k}}) \text{ and such that} \\ & \left({}^{h}({}^{N}\gamma_{\bigwedge}(\varepsilon_{0}, {}^{A}_{n_{k}}) + e^{\binom{A}{n_{k}}}); {}^{A}n_{k} \right) \text{ holds. This would imply that} \\ & {}^{\gamma}(\varepsilon_{0}, {}^{A}_{n_{k}}) \stackrel{\geq}{=} \gamma_{\bigwedge}(\varepsilon_{0}, {}^{A}n_{k}) + e \text{ which is an obvious contradiction.} \end{split}$$

By using the fact that $A_n - ca_{(} \neq A_0$, inside $N_{\gamma} (\epsilon_0 - d, A_0)^{(A_0)}$ we pick a compact ANR neighborhood V of A_0 and an index k_V so that $(h(V; A_i))$ is true for all $i > k_V$. Let ξ , $0 < \xi < d$, has the property that ξ -close maps into V are homotopic in V and that $N_{\xi}(A_0) \subset V$. Pick an integer k so large that $n_k \geq k_V$ and $d_F(A_{n_k}, A_0) < \xi$. Let $\underline{f} = \{f_k, A_{n_k}, A_0\}_{M,M}$ be an ξ -fundamental sequence, let Z' be a neighborhood of A_{n_k} , and let n_Z , be such that $d(f_n(x), x) < \xi$ for all $x \in Z'$ and $n \geq n_Z$.

Now we pick a neighborhood W_0^* , $W_0^* \subset V$, of A_0 in M with the property that maps of K \in (into W_0^* which are homotopic in $N_{\gamma_{i}}(\varepsilon_0^{-d}, A_0)$ (A₀) are already homotopic in V.

Consider now an arbitrary neighborhood W' of A_{n_k} . Let a neighborhood \tilde{W}_0' of A_{n_k} be selected with respect to W' and V using $(h_1(V; A_{n_k}))$. Finally, let a neighborhood W_0' , $W_0' \subset \tilde{W}_0' \cap Z'$, of A_{n_k} and $n_0 \geq n_Z$, be such that $f_{n_0}(W_0') \subset W_0$.

Suppose f, g: K \rightarrow W¹₀ are maps of a member K of (homotopic in N_Y(ϵ_0, A_{n_k}) + $e^{(A_{n_k})}$. Observe that N_Y(ϵ_0, A_{n_k}) + $e^{(A_{n_k})}$ \subset N_Y(ϵ_0 -d, A₀) (A₀) and that f' = f_{n0} of and f and g' = f_{n0} og and g are two pairs of ξ -close maps into V. It follows that f': K \rightarrow W^{*}₀ and g': K \rightarrow W^{*}₀ are homotopic in N_Y(ϵ_0 -d, A₀) (A₀). The choice of W_0^* gives that f' and g' are homotopic in V. But then f and g are homotopic in V so that the choice of V and k_V implies that f and g are homotopic in W' and this is what we wanted to prove.

Combining the last two lemmas we have the following theorem.

(4.5) Theorem. If $A_n - ca_{\ell} \rightarrow A_0$, then $\lim_{\gamma \in \mathcal{A}_0} exists$ and equals $\gamma_{\ell}(\varepsilon, A_0)$ almost everywhere in I^* .

We are now ready to introduce the metric d_{ca} on the hyperspace $ca_{(X)}$ of all (-calm compacta in a metric space X. Let E be the Banach space of all bounded measurable functions on the interval I*, the norm of an element f in E being defined as:

$$\|f\| = \int_0^1 |f| d\varepsilon.$$

We define a correspondence between $ca_{\mathcal{C}}(X)$ and a subset of $2_F^X \times E$ by assigning to each element A of $ca_{\mathcal{C}}(X)$ the element $(A, \gamma_{\mathcal{C}}(\varepsilon, A))$ of $2_F^X \times E$. This correspondence is one-to-one, so a metric is defined in $ca_{\mathcal{C}}(X)$ by letting the distance between two points in $ca_{\mathcal{C}}(X)$ be the distance between the corresponding points in $2_F^X \times E$. Specifically,

 $\mathbf{d}_{ca}(\mathbf{A},\mathbf{B}) = [\mathbf{d}_{F}^{2}(\mathbf{A},\mathbf{B}) + (\int_{0}^{1} |\gamma_{\ell}(\varepsilon,\mathbf{A}) - \gamma_{\ell}(\varepsilon,\mathbf{B})| d\varepsilon)^{2}]^{1/2}.$

With obvious modifications the argument on the page 444 in [1] shows that this metric induces the same topology on $ca_{(X)}$ as that naturally defined in terms of (-calmly regular convergence. Hence, one can prove the following.

(4.6) Theorem. There is a metric d_{Ca} on the hyperspace ca(X) of all (-calm compacta in a metric space X such that

At present we can state only the folloiwng three corollaries that describe topological properties of the metric space $(ca_{C}(X), d_{ca})$.

(4.7) Corollary. If X is homeomorphic to Y, then ca(X) is homeomorphic to ca(Y).

Proof. The proof is similar to the proof of (4.7) in [7].

(4.8) Corollary. The identity map id: $(ca_{(X)}, d_{ca}) \rightarrow (ca_{(X)}, d_{F})$ is continuous.

Proof. See (2.1).

(4.9) Corollary. Let α be a hereditary shape property. Then the collection of all elements of $ca_{\rho}(X)$ which have property α constitute a closed subset of $ca_{\rho}(X)$.

Proof. See (4.4) in [8].

We leave many questions concerning the topological structure of the space $ca_{(}(X)$ open. The most natural problem would be to see what properties of X are carried over onto $ca_{(}(X)$. In particular, is $ca_{(}(X)$ separable (topologically complete) if X is separable (topologically complete)? The last two questions are in view of (4.8) and the method of the proofs for Theorems 2 and 3 in [1] equivalent to the following questions.

(4.10) If X is a separable (topologically complete) metric space, is $(ca_{f}(X), d_{F})$ also separable (topologically

complete) metric space?

References

- E. G. Begle, Regular convergence, Duke Math. J. 11 (1944), 441-450.
- K. Borsuk, Theory of shape, Monografie Matematyczne 59, Warsaw, 1975.
- 3. ____, Some quantitative properties of shapes, Fund. Math. 93(1976), 197-212.
- 4. ____, On a metrization of the hyperspace of a metric space, Fund. Math. 94 (1977), 191-207.
- L. Boxer and R. B. Sher, Borsuk's fundamental metric and shape domination, Bull. Acad. Polon. Sci. 26 (1978), 849-853.
- Cerin, Homotopy properties of locally compact spaces at infinity--calmness and smoothness, Pacific J. Math. 79 (1978), 69-91.
- 7. ____, (-movably regular convergence (preprint).
- 8. _____ and A. P. Šostak, Some remarks on Borsuk's fundamental metric (preprint).
- M. L. Curtis, Deformation-free continua, Ann. of Math.
 57 (1953), 231-247.
- S. T. Hu, Theory of retracts, Wayne State University Press, Detroit, 1965.
- O. H. Keller, Die Homeomorphie der kompakten konvexen Mengen in Hilbertschen Raum, Math. Ann. 105 (1931), 748-758.
- 12. G. Kozlowski, Images of ANR's (preprint).
- 13. _____ and J. Segal, Locally well-behaved paracompacta in shape theory, Fund. Math. 95 (1977), 55-71.

University of Zagreb

41001 Zagreb, p. p. 187

Yugoslavia