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NON-DEGENERATE k-SPHERE MAPPINGS 

BETWEEN SPHERES 

D. Coram· and P. Duvall· 

o. Introduction 

S2k+l Sk+l . . bSuppose tha·:t f ~ 1S a mapp1ng etween 

spheres. We say that f is a non-degenerate k-sphere mapping 

provided that each point inverse has the shape of a k-sphere 

and each point y E Sk+l has a neighborhood U such that the 

inclusion induced homomorphism ~k(f-l(Z» ~TIk(f-l(U» is 

non-zero for every z E U and every base point in f-l(z). 

For such a map (with k > 1) we prove that almost all of the 

point inverses fit together "regularly," so that f is an 

approximate fibration on the complement of a finite set E 

(Thm. 8). The number of points in E is limited by the Hopf 

invariant (Cor. 15), but can be arbitrarily large (Thro. 16). 

The above definition is related to Lacher's k-sphere 

. [ L 2] [B-.L] Th a mapp1ng. f S2k+1 n .mapp1ngs , ere :. ~ N 1S 

a k-sphere mapping provided Nn is a closed topological 

n-manifold and f-l(y) is homeomorphic to either a. point or 

a k-sphere for each yEN. He proves that there are only 

two possibilities: either n = 2k + 1 and f is a homeomorph­

ism, or n = k + 1, N is a homotopy sphere and f-l(y) is a 

k-sphere for every yEN. In the more general shape setting 

Lacher's proof shows that again there are only two possi­

bilities: either n = 2k + 1 and f is a cell-like mapping, 
-I' 

or n k + 1, N is a homotopy sphere and f (y) has the 

*Research supported by N.S.F. Grant. 
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shape of a sphere for every yEN. Cell-like mappings are 

fairly well understood [L 3], but the second case is not. 

This paper takes a closer look there. 

One attractive possibility for f in the second case is 

that f is some kind of fibration. The examples Lacher gives 

are locally trivial except over a single point. Of course, 

if such a mapping is a locally trivial fibration, then all 

point inverses are homeomorphic. However, without extra 

conditions (such as complete regularity [D-H]) the converse 

is false even under the nicest conditions. Let us analyze 

one example of the failure of the converse in order to point 

out that a kind of converse is possible in the more relaxed 

setting of shape theory and approximate fibrations. 

Example. Let I be the unit interval [0,1] and let A 

be the arc ~n I x I consisting of 3 straight line segments 

from (1/2,0) to (3/8,3/4), then to (5/8,1/4) and then to 

(1/2,1). There is a homeomorphism h: I x I ~I x I which 

is the identity on the boundary of I x I and takes A to 

{1/2} x I. Let n: I x I ~I be projection onto the second 

factor, and let p: I x I ~I be defined by p = nh. Then 

pis a locally trivial fibration. Now let ~n: [l/n+l,l/nl 

~ [0,1] be the linear homeomorphism ~n(t) = n(n+l)t - n. 

Next define qk:{:~~(:(~n(:~':~) ~ x n <if lin+! < lin and k 

qk(x,y) =
 
x if x ~ l/k+l
 

Let q = lim qk- Then q is not locally trivial at q-I(O)_ 
k-+-oo 

Now define r R,: I x I ~ I by 
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= _[x<p~l (qR,-n+l (<Pn (x) , y) ) if l/n+l 2. x 2. l/n and n < R, 
rR,(x,y) 

if x < l/R,+l. 

Let r =	 lim rR,. Then r fails to be locally trivial over the 
R,-+oo 

infinite set {O,l/nln = 1,2, ••• }, even though every point 

inverse is an arc. However, r is an approximate fibration 

since it is the limit of locally trivial fibrations [C-O 2, 

Prop. 1.1]. 

In order to have an example of a k-sphere mapping we 

proceed as follows. If Sl x Sl is obtained by the standard 

identification of opposite faces of I x I, then r: I x I 

-----;> I induces r: sl x sl ~ sl. Now define f: s3 ~ s2 

to be the composition 

S3 ~ Sl	 * Sl ~ l: (Sl x Sl) ~ l:Sl ~ s2 

where * denotes join, l: suspension, and y the map whose only 

non-degenerate point inverses are the joined circles which 

are mapped to the suspension points. Although each point 

inverse is a simple closed curve, f fails to be locally 

trivial over a I-dimensional set. However f is an approxi­

mate fibration except at one point. 

This is not a coincidental example. In [C-O 4], the 

authors showed that a non-degenerate I-sphere mapping 

3 2 fOb h 10 . 0 0f : S ~s 1S an approx1mate 1 rat10n over t e comp ement 

of a set with at most 2 points. Such an f can be approximated 

by Seifert fiber maps. 

The present paper is concerned with non-degenerate 

k-sphere mappings f: S2k+l ~sk+l with k > 1. Of course 

there are, as above, examples of such maps which fail to be 

completely regular on infinite sets. We prove that in this 
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case too, such maps are approximate fibrations over the 

complement of a finite set. However, in contrast to the 

case with k 1, it is interesting that f may fail to be an 

approximate fibration at more than two points. 

Most of our notation is standard: I denotes the unit 

interval [0,1]; sk, the unit sphere; Bk , the unit ball; Z, 

the integers; and R, the real numbers. The symbol F denotes 
y 

f-l(y). Also we use H (HP) to.denote the pth singular
p 

homology (Cech cohomology) with Z coefficients. The pth 

homotopy group (shape group) is denoted n (n ). If 
p~ 

~: A ~B is a homomorphism between groups isomorphic to Z, 

a and a are generators of A and B, and ~(a) = pS, we say 

that ~ is a multipliaa~ion by Ipl. For definitions and re­

suIts on approximate fibrations, the reader is referred to 

[C-D 2] and [C-D 3]. For information on shape theory see 

[Sg] or [B 2]. 

1. The Finitene•• Theorem 

Let f: s2k+l ~sk+l be a non-degenerate k-sphere map­

ping and suppose that k > 1. Then f .is a 1 - UV mapping so 

that each F satisfies the cellularity criterion [C, Lem. 15],y 

[L 1]. It follows that each F has an arbitrarily small 
y 

k k+lneighborhood T, PL-homeomorphic to S!)f'X B , such that the 

inclusion F C T is a shape equivalence [C-D 1], [V]. We y 

shall call such a T a smalZ tube about F • 
Y 

Fix a reference point b E Sk+l and let T be a small 

tube about Let U be a fixed neighborhood of b such thatFb • 

f-l(U) c: T. If Y E U and T' is a small tube about F in T,y 

the inclusion induced map n (T') -~ n (T) is multiplication
k k 
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by P for some integer p. It is easy to see that p is inde­

pendent of T' and base points. By our non-degeneracy hy­

pothesis, we may assume that U is chosen so that p > o. 

Define a function a.: U ~R by a.(y) = p. 

Remark. The function a. is intended to measure the 

twisting of F about Fb • If we were to assume that each F 
y Y 

is homeomorphic to a k-sphere, we could define a by choosing 

-1 . 
a neighborhood U and a retraction r: f (U) ~Fb and set­

ting a.(y) = Ideg(rIF ) I. The reader may find it helpful to y

keep this more concrete situation in mind througqout what 

follows. 

Propositions 1 through 6 exactly parallel lemmas of the 

same number in [C-D 4]. We will not repeat the proofs here 

unless significant changes are necessary. 

Proposition 1. If Y E U, there is a neighborhood V of 

y in U such that for every z E V, there is a positive integer 

k such that a.(z) = ka.(y). 

Proposition 2. a. is lower semicontinuous. 

Proposition 3. The set C = {y E Ula is continuous at y} 

is open and dense in U. The set 0 = U - C can be written 

as D = 01 U 02 whe~e 01 is dense in itself and O2 is counta­

ble. 

Proposition 4. flf-l(C): f-lCC) ~c is an appro~i-

mate fibration. 

Proof. Let y E C be given. We will show tijat flf-l(C) 

is completely movable at y [C-O 3]. Given a neighborhood U' 
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of: Fyi choose a.small tube Ty about Fy in UI . Since y is a 

point q£.. continuity of a, we may assume that a is constant 

on f(T ) •. ~Given z euch that Fzc int T ' and a neighborhoody y 

VI of F in T I choose a small tube T about F in V'. Let z y z z 

W' int T • Since a is constant on f(T ) the inclusion z y 

T C T is a homotopy equivalence. Hence there is a deforma­z y 

tionof Vi into W' within U' keeping a neighborhood of F z 

fixed. Hence, by [C-D 3, Th. ~.g] f f-l(C) is an approxi­

mate fibration. 

Proposition 5. If A is an ,arc in U with endpoint d E D 

such that A - {d} C C, then Sh(f-l(A» = Sh(Sk). Furthermore, 

if c is the other endpoint of A, then the incLusion induced 

-1 -1
homomorphism ~kf (c) ~~kf (A), is a muLtipLication by 

a(c)/a(d). 

Proposition 6. D is countabLe.
 

Proof. By Proposition 3, D = D U D2 where D is
l 2 

countable, so we wish to prove D =~. Suppose D ~~. Asl l 

in Lemma 6 of [C-D 4] we can find an arc A in U such that 

DnA = Bd A = {d,e}, a(d) = aCe) = a(c)/p for some p > 1 

and every c E. Int A, and Hk+1 (f-l(A» = Zp. Hence, 

H (S2k+l - f-l(A» Z by Alexander duality. On the
k-l p 

other hand Hk_l(Sk+l - A) = O. This is impossible since 

f~: H _ (S2k+l - f-l(A» ~Hk_l(Sk+l - A) is an isomorphism
k l 

by the Vietoris mapping theorem [L 1]. 

Proposition 7. D is finite. 

Proof. S~ppose D is infinite. Then D contains in­

finitely. many i~olated points {dl ,d ,d3 ,---}. Arguing as in2 
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Prop. 6, we can show that a(d ) ~ a(d ) whenever m , n. m n 

Hence a(D) is an unbounded subset of R. On the other hand 

by Proposition 1 there is a neighborhood V of d such thatn n 

a (d ) < a(y) for each y E V . Since d is an iso+ated point,n n n 

a(d ) < a(c) for some c E C. Since a is constant on C, this n 

implies that {a(d )} is bounded, which is a contradiction. n

Now we let b vary over sk+l. It is clear that the pro­

perty of being a point of continuity does not depend on the 

reference point used to define a, so by covering sk+l with 

a finite number of U's, we get the following: 

s2k+l ~ sk+l isTheorem 8. If f: a non-degenerate 

k-sphere mapping, k > 1, then f is an appro:cimate fibration 

over the aomplement of a finite set of points in Sk+l. 

2. Connections with the Hopf Invariant 
2k+l k+l .Suppose that f: S ~S 1S a non-degenerate 

k-sphere mapping, k > 1, and let E(f) c sk+l be the finite 

set of points which fail to have a neighborhood over which 

f is an approximate fibration. If e E E(f), we can use e 

as a reference point for a map a as in section 1. Then 

a(y) p > I for all y sufficiently close to e, y # e, and 

we say that e i8 an e:caeptional point of degree p. 

Proposition 9. If d and e are e:caeptional points of 

degree p and q, then the least aommon divisor (p,q) = 1. 

Proof. If (p,q) = r > 1, we can find an arc A such 

kthat A n E(f) BdA = {d,e}. As in Prop. 6, H+l (f-l(A» -

Zr which is a contradiction. 

Now suppose that X and Yare compacta in S2k+l such that 
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X and Y satisfy the cellularity criterion and Sh(X) = Sh(Y) = 

Sh(Sk). Define the link~ng number L(X,Y) to be p, where the 

inclusion induced map Hk(X) ~Hk(S2k+l - y) is multiplica­

tion by p. 

2k+l k+lProposition 10. Let f: S ~S be a non-degener­

ate k-sphere mapping which is an approximate fibration over 

an open set U in sk+l. Let y,z E U. Then L(Fy,F ) = IH(f) I 
z 

where H(f) is the Hopf invariant of f. 

Proof. Choose a tube T C s2k+l - F containing F 
y z Y 

such that the inclusion-induced homomorphism HkFy ---~HkTy 

-1
is an isomorphism. Next choose £ > 0 such that f (N(y,£» 

C Int T , and choose a > 0 such that a-close maps into sk+l 
y 

are £/2-homotopic [B 1, Th. 3.1]. Letf : s2k+l ~sk+l
l 

be a map such that d(f,f l ) < C and f is simplicial relativel 
, l' f s2k+l d sk+l f h' h ' , hto tr1angu at10ns 0 an or w 1C y 1S 1n t e 

interior of a (k+l)-simplex. Finally choose an open disk 

D such that y E D C N(y,£/2). Now suppose that K: s2k+l x I 

~sk+l is an £/2-homotopy with K
O 

f and Kl fl. Note 

that K«S2k+l - Int T ) x I) c Sk+l - D since if x E S2k+l ­
Y 

Int T , then d (K (x, t) , y) > d ( f (x) , y) - d ( f (x) , K (x , t» > £ ­y, . ­

£/2 = £/2. Therefore, f ~ f as maps of pairs (S2k+l,s2k+l_
l 

Int T ) ~ (Sk+l,sk+l - y). Now consider the diagram
y
 

HOY Hk(F )
y 
~ ~ ~ ~ 

HOD Hk(Int T )y 
~ ~ f* = f* ~ ~ 
Hk +l (Sk+l ,sk+l D) 1 > Hk +l (S2k+l ,s2k+l _ Int T ) 

Y 
where the uppermost arrows are inclusion induced isomorphisms, 

the next lower arrows are duality isomorphisms [Sp, Th. 
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6.2.17], and the horizontal arrow is induced by either f or 

fl. Using f* the composition applied to the generator of 

HOY yields the homology class of F . Using f!it yieldsy 
-1the homology class 6ff (y). But f* = fi so the homologyl 

class of Fy in s2k-l - F z can. be represented by f~l(y). 

Similarly the homology class of F in s2k+l - F can be 
z y 

-1
represented by f (z). (The epsilonics can be done simul­

l 

taneously for y and z to get a single approximation fl.) 

-1 -1
Hence L(Fy,F ) = 9,,(f l (y) ,f (z» == IH(f ) I = IH(f) I, [Stn,z l l 

p. 113], where 9,,( , ) denotes the usual homological linking 

number. 

Proposition 11. Suppose that f: S2k+l ~Sk+l is a 

nondegenerate k-sphere mapping~ and d and e are exceptional 

points of degrees p and q. Then !H(f) I ~ pqL(Fd,F ).e 

Proof. Let T and T be disjoint small tubes about Fd e d 

and Fe' let x and y be non-exceptional points such that F x 

e int T and Fe int T , and let W , W be small tubes aboutd y e x y 

F and F inside Td and T . Then if Ld , L , LX' L denote x y e e y 

the k-cycles carried by the cores of T T , etc. with suita­d , e 

ble orientations, we have LX ~ PLd in s2k+l - Te , L 
y 

~ qLd 

in S2k+l - Td and L(Fx,F ) 1.Q,(LX,L ) I = 1.Q,(pLd,qL ) Iy y e 

pq I 9" ( Ld ' Le) I = pqL (Fd ' Fe) • 

Proposition 12. If f: s2k+l ~sk+l is a nondegenerate 

k-sphere mapping~ and U is an open (k+l)-cell in sk+l with 

y E U the only possible exceptional point in U., then £-l(U) 

~s · h ' h·'~c Sk x Rk +l If W ~s sma ..,..,vvueb ab tomeomorp to' '. . a t ou 

-1
Fy~ W C 'f (U) is a homotopy equivalence. 

Proof. By the exact homotopy sequence of an approximate 
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fibration, f-l(U) is simply connected at infinity. Thus the 

first conclusion follows from the second by the open collar 

theorem [Sb]. Using the stationary lifting property of ap­

proximate fibrations [C-D 2], we may deform f-l(U) into W 

keeping a neighborhood of F fixed, so that the second con­y 

elusion follows. 

2k+l k+l .Theorem 13. Suppose f: S ~ S ~s a nondegener­

ate k-sphere mapping with exceptional set {e l ,··· ,e }" where r 
r 

e i has degree Pi. Then IH(f) I = ITi=lPi· 

Proof. Let y and z be points in Sk+l - E(f). Note that 

S 2k+l . h h' sk k+l [C 1] []- F 1S omeomorp ~c to x R -D, V. By
Y 

working with open regular neighborhoods of arcs joining e i 

to z, we can find open (k+l) - cells U , U. in sk+l - {y}
z 1 

such that z E U ' U; n E(f) = {e.}, and U. n u. = u , i ~ j.z • ~ ~ J Z 

By stationary lifting of a deformation of sk+l - {y} into 

U~ lU" one can show as in Proposition 12 that the inclusion1= 1 
of f-l(U: lU') into S2k+l - F induces an isomorphism on 

~= ~ y
 
th -1
k -homology. Let G , G. and K. denote Hk(f (U )),z ~ J z 

-1 -1 j
Hk(f (Ui » and Hk(f (Ui=lUi » respectively. Choose genera­

tors n ' ni of G ' Gi such that n ~ Pini in Gi • Also letz z z 

s. = IT~ IP, and s .. = s./p .• We wish to prove the followingJ ~= ~ J,~ J ~ 

statement inductively. 

Statement S .• The group K. is cyclic with generator
J J 

~. = L~ lq· ·n· for some integers q .. such that L~ lQ .. s ..J ~= J,l ~ J,l 1= J,l J,l 
= 1, and the image of n in K. is s.~ .• z J J J 

Note that Sl is immediate. Now suppose that Sj is true 

for some j < r. The Mayer-Vietoris Theorem gives the exact 

sequence 
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(Throughout this proof we use the same notation for a 

homology class and its image under an inclusion induced 

map.) Since the Pi'S are relatively prime, there exist 

integers a and b such that a p + + bS = 1. It is easy to
j l j 

see that ~l = (Sj~j' - Pj+lnj+l) and ~2 = (a~j' bnj+l) form 

a basis for Kj e Gj +l . Therefore a~j + bnj+l is a generator 

for Kj +l . We claim that Sj+l is satisfied with qj+l,i 

aqj,i for i < j and qj+l,j+l = b. 

First 

'+1 
b n~j+l = II=lqj+l,ini aI~1=lq·J,l·n·1 + '+lJ

so ~j+l generates Kj +l • Secondly 

j+l
I·-lq·+l .s·+l . ap . +1 ( I ~ lq· . s. .) + bs.1- J ,1 J ,1 J 1= J,l J,l J 

a p 
j +l + bS j = 1 

Finally n = (s.~.,O) sjbnl + SjPj+ln2 in Kj e Gj +l , soz J J 

that n z = Sj+l~j+l in Kj +l . Consequently we conclude that 

S. is true for each j < r. 
J 

Now let ~ = ~r' q1' = q ., and s = s. Since s2k+l - Fr,l r y 

x Rk+l , there is a k-sphere E embedded in S2k+l - F 
Y 

with L(E,F ) = 1. We may assume that ~, n are generators of 
y 

the k th homology of small tubes about L, F respectively.
ei 

thIf n is a suitably oriented generator of the k homology of 

a small tube about F ' we have I = ~(~,n) = L~=lqi~(niY). y 

By Proposition 11 (thinking of y as an exceptional point of 

degree 1), ~ (n· ,n) = ±L(F ,F) = ± IH (f) I/P1.. Thus, 1 = 
1 ei y 

I~=lqi(±IH(f) I/Pi ) and 

s = \H(f) II:-l±q.s ..1- 1. r,l 

However, by Propositions 9 and 11, s divides IH(f) I, so 
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s IH (f) I. 

Corollary 14. If f: S2k+l ~Sk+l is as above, k is 

odd. 

Proof. Since we may consider nonexceptional points as 

exceptional points of degree 1, we have H(f) > 0, but H(f) = 

° if k is even [H]. 

Corollary 15. If f is as above, IE (f) I < r, where r is 

the number of prime divisors of H(f). 

3. Some Examples 

First we extend the technique used for constructing the 

example in the introduction of a I-sphere mapping to obtain 

k-sphere mappings. The technique for obtaining examples 

with 0, 1, or 2 exceptional points is not new: see [H], [E], 

and [L 2]. 

Let h: sk x sk --~ sk x sk be any homeomorphism,and let 

k k k .. h dfTI: S x S ~s be proJectl0n onto t e secon actor. 

. 2k+l k+l 2k+l k kDeflne f h : S -..;> S to be the composition S == S * S 

---y-~ L (Sk x Sk) L (7Th) > LSk ~ sk+l. Then f 
h 

is a k-sphere 

mapping. Furthermore, if a and S are the generators of 

Hk(Sk x Sk) corresponding to Sk x {x} and {x} x Sk for some 

xESk and h*(a) = pa + qS, then f h has Hopf invariant Ipql 

and two exceptional fibers of degrees Ipl and Iql. 

To construct more complicated examples, weare led to 

the question of which automorphisms of H (Sk x Sk) are induced
k 

by homeomorphisms. For simplicity, we will assume from now 

on that k is odd and k ~ 1, 3, 7. (If k = 1, 3, 7, one can 

use the multiplication on Sk to construct homeomorphisms.) 
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If <p is an automorphism of Hk(Sk x Sk) such that <p(a) = 

pa + q!3, <p (S) = ra + s6, we identify <p with the matrix 

p r ±l 0 ±l 
Clearly, the automorphisms can 

q s ±l 00 ±:]and 

always be realized as maps induced by homeomorphisms. Let 

Ck : sk ~SO(k+l) be the characteristic map of the tangent 

bundle of sk+l [Hs, p. 87] and define h: sk x sk ~sk x sk 

1 0 
by h(x,y) (x,C (x) y) . By [Hs, p. 89], h inducesk 2 1 

Similarly, we can realize [:: (It is not hard to show 

that the realizations of the elementary matrices we have 

listed can be composed to realize any automorphism of the 

p r 
form where p = s mod 2, q _ r mod 2, and p t q mod 2, 

q s 

but we shall not use this fact.) We are now ready to con­

struct examples with many exceptional points. 

Theorem 16. For any n ~ 13 there are non-degenerate 

e f 2k+l k+l e h t ~ febe

k -sp h ere mapp~ngs 0 S to S w~t n exaep ~onav ~ ers 

for k > 1, k odd. 

Proof. For n = 1, 2, we can use the maps f constructedh 

above for suitably chosen h. Suppose that n > 2 and f: S2k+l 

k+l . d k h . h' h h~s 1S a non egenerate -sp ere mapp1ng w 1C as n ex­

ceptional points and is locally trivial over the complement 

ofE(f). Write s2k+l = (Sk x Bk +l ) U (Bk +l x Sk) where the 

k k k
union is along S x S ; and write sk+l ~ rs = sk x [-l,l]/~ 

where ~ identifies sk x {-I} to a point called and Sk x 

{1} to a point called +00. We may assume without loss of 
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generality that the exceptional fibers are contained in the 

interior of Sk x Bk+l , f-l(Sk x {o}) = Sk x Sk and f-l(Sk x 

[-1,0]) Sk x Bk+l • Let b E sk x {a} be a point of Sk+l 

and let n be a generator of Hk(Fb ). It follows from a link­

ing argument that n = ±pa ± S, where p = H(f). We assume 

that n = pa + S; the other cases are similar. Let h be a 

homeomorphism of Sk x sk which realizes ~ :j, and let 

X = (Sk x Bk+l ) Uh(Bk+l x Sk). It follows that X is a 

homotopy sphere and thus X is homeomorphic to S2k+l [Stl]. 

Define g: X --~ Sk+l by 

f(x,y) , if (x,y) E Sk x Bk+l 

-1 x I I (Bk+l_{O}) x skig(x,y) (fh (TXT,y),l- x ), if (x,y) E 

+00, if (x,y) E {a} x sk. 

Then g is a non-degenerate k-sphere mapping with (n+l)­

exceptional fibers and is locally trivial over the comple­

ment of the exceptional set. The new exceptional point has 

degree 2p + 1. 

The authors can now remove the non-degeneracy condi­

tion from the hypotheses in the paper. The main results, 

Theorems 8 and 13, remain true with the only condition on 

the point inverses being that each has the shape of a 

k-sphere. These results will appear elsewhere. 
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