TOPOLOGY PROCEEDINGS

Volume 4, 1979 Pages 103–108

http://topology.auburn.edu/tp/

ARBITRARY POWERS OF THE ROOTS OF UNITY ARE MINIMAL HAUSDORFF TOPOLOGICAL GROUPS

by

Douglass L. Grant

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ARBITRARY POWERS OF THE ROOTS OF UNITY ARE MINIMAL HAUSDORFF TOPOLOGICAL GROUPS

Douglass L. Grant

It is well-known [B, D] that minimality in the category of Hausdorff groups may fail to be preserved even in finite products. However, it has also been shown [D, G] that the group U of complex roots of units is well-behaved in this respect, all finite powers of U being minimal.

R. M. Stephenson asked [St2, Question 10] whether the countably infinite power of U is a minimal group. We answer this question in the affirmative, as a corollary of a stronger result.

Let us recall from [H] that a topological group G is called a B(A) (resp., $B_r(A)$) group is every continuous, almost open (resp., and one-to-one) homomorphism from G onto a Hausdorff group is open. The author, generalizing earlier results of L. J. Sulley [Su], showed [G, Theorem 1.4] that G is a B(A) group (resp., $B_r(A)$ group) if and only if its completion H with respect to the two-sided uniformity is a B(A) (resp., $B_r(A)$) group and G \cap N is dense in N for every closed normal subgroup N of H (resp., G \cap N is non-trivial for every nontrivial closed normal subgroup of H). Stephenson showed [St1] that a condition identical to the one stated for the $B_r(A)$ property guarantees the inheritance of minimality by precompact groups from their compact completions. It therefore follows that, for precompact groups, the $B_r(A)$ property is equivalent to minimality, and both are consequences of the B(A) property. It is now evident that the following theorem implies an affirmative answer to Stephenson's question.

Theorem. Let A be any set. Then \boldsymbol{U}^{A} is a $B\left(A\right)$ topological group.

Let T denote the circle group, e the function $R \rightarrow T$ given by $e(t) = e^{2\pi i t}$, (t) the fractional part of t. A subset $\{t_1, \dots, t_n\}$ of R is said to be rationally independent if $r_1 t_1 + \dots + r_n t_n = 0$ with each r_i rational implies $r_i = 0$ for each i. We will require the following lemma which is a trivial extension of Theorem 443 of [HW].

Lemma. Let $\{1,\beta_1,\dots,\beta_n\}$ be rationally independent, p a positive integer, $r \in \{0,1,\dots,p-1\}$. Then $\{((k\beta_1),\dots,(k\beta_n)): k \equiv r \pmod{p}\}$ is dense in the n-dimensional unit cube, and its image under e^n therefore dense in T^n .

We now proceed to the proof of the theorem.

Proof. The case where A is finite has already been proved as Example 2 of [G]. We therefore assume A to be infinite. By a result of Soundararajan [So], it is sufficient to show that U^A intersects the closure of every singly-generated subgroup of T^A in a dense subgroup of that closure.

Let $x = (x_{\alpha})_{\alpha \in A} \in T^{A}$, $\langle x \rangle$ the subgroup it generates, and X the closure of this subgroup in T^{A} . If supp $x = \{\alpha \in A: x_{\alpha} \neq 1\}$ is finite, then a similar argument to that in [G] will establish that $U^{A} \cap X$ is dense in X. One may then further assume, without loss of generality, that supp x = A. Let $A_0 = \{a \in A: x_\alpha \in U\}, A_1 = A \setminus A_0$. Let $x_\alpha = e(\beta_\alpha);$ then $\beta_\alpha \in Q$ iff $\alpha \in A_0$. Let B be a maximal subset of $\{\beta_\alpha: \alpha \in A_1\}$ such that B U {1} is rationally independent, $A_2 = \{\alpha \in A_1: \beta_\alpha \in B\}$. Then, for each $\gamma \in A_1 \setminus A_2$, there exist an integer n(γ), a finite subset $F_\gamma = \{\beta_{\gamma 1}, \dots, \beta_{\gamma n}(\gamma)\}$ of B of minimal size, and a finite set of non-zero rational numbers $Q_\gamma = \{c_{\gamma 1}, \dots, c_{\gamma n}(\gamma)\}$ such that $\beta_\gamma = \sum_{i=1}^{n} c_{\gamma i} \beta_{\gamma i}.$

The elements of $\langle x \rangle$ can then be characterized as follows: $y = (y_{\alpha}) \in \langle x \rangle$ if and only if, for some integer r, $y_{\alpha} = e(r\beta_{\alpha})$ for each α . In particular, for $\alpha \in A_1 \setminus A_2$, $y_{\alpha} = \sum_{i=1}^{n(\alpha)} rc_{\alpha i} \beta_{\alpha i}$.

Let $K = \langle (x_{\alpha})_{\alpha \in A_{O}} \rangle \subseteq U^{A_{O}}$. For $(y_{\alpha}) \in T^{A_{1}}$, let $y_{\alpha} = e(t_{\alpha})$. For $\gamma \in A_{1} \setminus A_{2}$, define a subgroup L_{γ} of $U^{A_{1}}$ by

 $L_{\gamma} = \{ (y_{\alpha}) : t_{\gamma} = \sum_{i=1}^{n} (\gamma) c_{\gamma i} t_{\gamma i} \},$ the coefficients being those from Q_{γ} . Let L denote the intersection of the subgroups L_{γ} for all $\gamma \in A_1 \setminus A_2$.

Clearly, $\langle x \rangle$ is a subset of K×L, and we claim that it is in fact a dense subset. Since (K×L) $\cap U^A$ is dense in K×L and so in its closure, it would then follow that

 $Cl[U^{A} \cap Cl(x)] = Cl[U^{A} \cap Cl(K \times L)] = Cl(K \times L) = Cl(x).$

To establish this density property, we let $y = (y_{\alpha}) \in K \times L$, $y_{\alpha} = e(t_{\alpha})$ for each α . Let $V = \prod_{\alpha \in A} V_{\alpha}$ be a neighbourhood of y, $E = \{\alpha \in A: V_{\alpha} \neq T\}$, $E_{i} = E \cap A_{i}$ for i = 0,1,2. For $\alpha \in E$, let V_{α}' be a neighbourhood of t_{α} such that $e(V_{\alpha}') \subseteq V_{\alpha}$. Now, for $\alpha \in E_{1} \setminus E_{2}$, $t_{\alpha} = \sum_{i=1}^{n(\alpha)} c_{\alpha i} t_{\alpha i}$, $c_{\alpha i} = m_{\alpha i}/n_{\alpha i}$, g.c.d. $(m_{\alpha i}, n_{\alpha i}) = 1$. For each $\gamma \in E_{2}$, let $G_{\gamma} = \{a: \beta_{\gamma} = \beta_{\alpha,i}(\gamma) \text{ for some } i(\gamma) \in \{1, \dots, n(\alpha)\}\}$, and $n_{\gamma} = 1.c.m.\{n_{\alpha,i}(\gamma): \alpha \in G_{\gamma}\}$. For each $\gamma \in E_{2}$ and $\alpha \in G_{\gamma}$, let $d_{\alpha,i}(\gamma)$ be the integer $c_{\alpha,i}(\gamma)^{n}\gamma$. Furthermore, let $y_{\alpha} = x_{\alpha}^{r}$ for each $\alpha \in A_{0}$, and let p denote the least common multiple of the orders of the elements x_{α} , $\alpha \in E_{o}$. Then, for any integer j, $y_{a} = x_{\alpha}^{r} = x_{\alpha}^{r+pj}$, for each $\alpha \in E_{o}$.

For each $\alpha \in E_1 \setminus E_2$, let $C_{\alpha} = \{\gamma \in A_2 : \alpha \in G_{\gamma}\}$, and $C = \bigcup \{C_{\alpha} : \alpha \in E_1 \setminus E_2\}$. For each $\alpha \in C$, define $\beta_{\alpha}' = \beta_{\alpha}/n_{\alpha}$, and $t_{\alpha}' = t_{\alpha}/n_{\alpha}$; for $\alpha \in A \setminus C$, $\beta_{\alpha}' = \beta_{\alpha}$ and $t_{\alpha}' = t_{\alpha}$. It is then trivial to see that $\{\beta_{\alpha}' : \alpha \in A\} \cup \{1\}$ is rationally independent, and that

$$\mathbf{t}_{\alpha} = \sum_{\gamma \in \mathbf{C}_{\alpha}} \mathbf{d}_{\alpha, \mathbf{i}(\gamma)} \mathbf{t}_{\gamma}^{*}$$

for each $\alpha \in E_1 \setminus E_2$.

For all $\alpha \in C$, select neighbourhoods $V_{\alpha}^{"}$ of $t_{\alpha}^{!}$ such that $\sum_{\gamma \in C_{\alpha}} d_{\alpha,i(\gamma)} V_{\gamma}^{"} \subseteq V_{\alpha}^{!}$. Let $Y = \prod_{\alpha \in A} Y_{\alpha}$ be the neighbourhood of $(t_{\alpha}^{!})$ given by

$$\mathbf{Y}_{\alpha} = \begin{cases} \mathbf{V}_{\alpha}^{"}, \ \alpha \in \mathbf{C} \\ \mathbf{V}_{\alpha}^{'}, \ \alpha \in \mathbf{A} \backslash \mathbf{C} \end{cases}$$

Now, by the Lemma, there exists $j \equiv r \pmod{p}$ such that $e(j\beta_{\alpha}^{\prime}) \in e(Y_{\alpha})$ for each $\alpha \in E_{1} \cup C$. Then $e(j\sum_{i=1}^{n(\alpha)} c_{\alpha i}\beta_{\alpha i}) = e(j\sum_{\gamma \in C_{\alpha}} d_{\alpha,i}(\gamma)\beta_{\gamma}^{\prime})$ $= e(\sum_{\gamma \in C_{\alpha}} d_{\alpha,i}(\gamma)j\beta_{\gamma}^{\prime}) = e(\sum_{\gamma \in C_{\alpha}} d_{\alpha,i}(\gamma)[Y_{\gamma} + k_{\gamma}]),$ for some integers k_{γ} and $Y_{\gamma} \in Y_{\gamma}$, $= e(\sum_{\gamma \in C_{\alpha}} d_{\alpha,i}(\gamma)Y_{\gamma}) \cdot 1 \subseteq e(\sum_{\gamma \in C_{\alpha}} d_{\alpha,i}(\gamma)Y_{\gamma}) \subseteq$ $e(V_{\alpha}^{\prime}) \subseteq V_{\alpha}.$

It therefore follows that $x^r \in V$, and our claim is established.

Corollary. $U^{\mathbf{A}}$ is a minimal Hausdorff topological group for any set $\mathbf{A}.$

Remark. Prodanov [P] has defined a topological group to be totally minimal if all its Hausdorff quotient groups are minimal. Since the B(A) property and precompactness are both divisible, and together imply minimality, it follows that U^A has this stronger property, as well.

Question. If every finite power of a group is minimal or a B(A) group, must arbitrary powers of the group have the same property?

Bibliography

- [B] B. Banaschewski, Minimal topological algebras, Math.
 Ann. 211 (1974), 107-114.
- [D] D. Doitchinov, Produits des groupes topologiques minimaux, Bull. Sci. Math. 96 (1972), 59-64.
- [G] D. L. Grant, Topological groups which satisfy an open mapping theorem, Pac. J. Math. 68 (1977), 411-423.
- [H] T. Husain, Introduction to topological groups, Saunders, Philadelphia, 1966.
- [HW] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Fourth Edition, Oxford University Press, London, 1960.
- [P] I. Prodanov, Some minimal group topologies are precompact, Math. Ann. 227 (1977), 117-125.
- [So] T. Soundararajan, Totally dense subgroups of topological groups, in General topology and its relations to modern analysis and algebra, Proceedings of the Kanpur Topological Conference, 1968, Academia, Prague, 1971, 299-300.
- [Stl] R. M. Stephenson, Jr., Minimal topological groups, Math. Ann. 192 (1971), 193-195.
- [St2] _____, Some unsolved problems concerning P-minimal and P-closed spaces, in Studies in topology, Proceedings of the Charlotte Topology Conference, Academic Press, 1974, 249-256.
- [Su] L. J. Sulley, A note on B- and B_r-complete topological Abelian groups, Proc. Camb. Phil. Soc. 66 (1969), 275-279.

College of Cape Breton Box 760 Sydney, Nova Scotia, Canada BlP 6J1

Editor's Note:

When this paper was first received, the referee B. Banaschewski, found a major error in the proof. This fact was communicated to the author and some weeks later, Prof. Banaschewski sent to the editor a correct proof by entirely different reasoning. The existence--but not the essence--of this proof was communicated to the author who responded some months later with his own corrected version which is here printed.