TOPOLOGY PROCEEDINGS

Volume 4, 1979
Pages 103-108
http://topology.auburn.edu/tp/

ARBITRARY POWERS OF THE ROOTS OF UNITY ARE MINIMAL HAUSDORFF TOPOLOGICAL GROUPS

by

Douglass L. Grant

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

ARBITRARY POWERS OF THE ROOTS OF UNITY ARE MINIMAL HAUSDORFF TOPOLOGICAL GROUPS

Douglass L. Grant

It is well-known [B, D] that minimality in the category of Hausdorff groups may fail to be preserved even in finite products. However, it has also been shown [D, G] that the group U of complex roots of units is well-behaved in this respect, all finite powers of U being minimal.
R. M. Stephenson asked [St2, Question 10] whether the countably infinite power of U is a minimal group. We answer this question in the affirmative, as a corollary of a stronger result.

Let us recall from [H] that a topological group G is called a $B(A)$ (resp., $B_{r}(A)$) group is every continuous, almost open (resp., and one-to-one) homomorphism from G onto a Hausdorff group is open. The author, generalizing earlier results of L. J. Sulley [Su], showed [G, Theorem l.4] that G is a $B(A)$ group (resp., $\mathrm{B}_{\mathrm{r}}(\mathrm{A})$ group) if and only if its completion H with respect to the two-sided uniformity is a $B(A)$ (resp., $\left.B_{r}(A)\right)$ group and $G \cap N$ is dense in N for every closed normal subgroup N of H (resp., $G \cap N$ is non-trivial for every nontrivial closed normal subgroup of H). Stephenson showed [Stl] that a condition identical to the one stated for the $\mathrm{B}_{r}(\mathrm{~A})$ property guarantees the inheritance of minimality by precompact groups from their compact completions. It therefore follows that, for precompact groups, the $\mathrm{B}_{\mathrm{r}}(\mathrm{A})$ property is equivalent
to minimality, and both are consequences of the $B(A)$ property. It is now evident that the following theorem implies an affirmative answer to Stephenson's question.

Theorem. Let A be any set. Then U^{A} is a $B(A)$ topological group.

Let T denote the circle group, e the function $R \rightarrow T$ given by $e(t)=e^{2 \pi i t}$, (t) the fractional part of t. A subset $\left\{t_{1}, \cdots, t_{n}\right\}$ of R is said to be rationally independent if $r_{1} t_{1}+\cdots+r_{n} t_{n}=0$ with each r_{i} rational implies $r_{i}=0$ for each i. We will require the following lemma which is a trivial extension of Theorem 443 of [HW].

Lemma. Let $\left\{1, \beta_{1}, \cdots, \beta_{n}\right\}$ be rationally independent, p a positive integer, $\mathbf{r} \in\{0,1, \cdots, p-1\}$. Then $\left\{\left(\left(k \beta_{1}\right), \cdots\right.\right.$, $\left.\left.\left(k \beta_{\mathrm{n}}\right)\right): \mathrm{k} \equiv \mathrm{r}(\bmod \mathrm{p})\right\}$ is dense in the n -dimensional unit cube, and its image under e^{n} therefore dense in T^{n}.

We now proceed to the proof of the theorem.

Proof. The case where A is finite has already been proved as Example 2 of [G]. We therefore assume A to be infinite. By a result of Soundararajan [So], it is sufficient to show that U^{A} intersects the closure of every singly-generated subgroup of T^{A} in a dense subgroup of that closure.

Let $x=\left(x_{\alpha}\right)_{\alpha \in A} \in T^{A},\langle x\rangle$ the subgroup it generates, and X the closure of this subgroup in T^{A}. If supp $x=$ $\left\{\alpha \in A: x_{\alpha} \neq l\right\}$ is finite, then a similar argument to that in [G] will establish that $U^{A} \cap X$ is dense in X. One may then further assume, without loss of generality, that supp $x=A$.

Let $A_{o}=\left\{a \in A: x_{\alpha} \in U\right\}, A_{1}=A \backslash A_{o}$. Let $x_{\alpha}=e\left(\beta_{\alpha}\right)$; then $\beta_{\alpha} \in Q$ iff $\alpha \in A_{0}$. Let B be a maximal subset of $\left\{\beta_{\alpha}: \alpha \in A_{1}\right\}$ such that $B \cup\{1\}$ is rationally independent, $A_{2}=\left\{\alpha \in A_{1}: B_{\alpha} \in B\right\}$. Then, for each $\gamma \in A_{1} \backslash A_{2}$, there exist an integer $n(\gamma)$, a finite subset $F_{\gamma}=\left\{\beta_{\gamma 1}, \cdots, \beta_{\gamma n(\gamma)}\right\}$ of B of minimal size, and a finite set of non-zero rational numbers $Q_{\gamma}=\left\{c_{\gamma l}, \cdots, c_{\gamma n(\gamma)}\right\}$ such that $\beta_{\gamma}=\sum_{i=1}^{n(\gamma)} c_{\gamma i} \beta_{\gamma i}$.

The elements of $\langle x\rangle$ can then be characterized as follows: $y=\left(y_{\alpha}\right) \in\langle x\rangle$ if and only if, for some integer $r, y_{\alpha}=e\left(r \beta_{\alpha}\right)$ for each α. In particular, for $\alpha \in A_{1} \backslash A_{2}, y_{\alpha}=\sum_{i=1}^{n(\alpha)} r c_{\alpha i} \beta_{\alpha i}$.

Let $K=\left\langle\left(x_{\alpha}\right)_{\alpha \in A_{0}}\right\rangle \subseteq U^{A_{0}}$. For $\left(y_{\alpha}\right) \in T^{A} l$, let $y_{\alpha}=$ $e\left(t_{\alpha}\right)$. For $\gamma \in A_{1} \backslash A_{2}$, define a subgroup L_{γ} of $U^{A} l$ by

$$
L_{\gamma}=\left\{\left(y_{\alpha}\right): t_{\gamma}=\sum_{i=1}^{n(\gamma)} c_{\gamma i} t_{\gamma i}\right\}
$$

the coefficients being those from Q_{γ}. Let L denote the intersection of the subgroups L_{γ} for all $\gamma \in A_{1} \backslash A_{2}$.

Clearly, $\langle x\rangle$ is a subset of $K \times L$, and we claim that it is in fact a dense subset. Since $(K \times L) \cap \mathrm{U}^{\mathrm{A}}$ is dense in $K \times L$ and so in its closure, it would then follow that

$$
\operatorname{cl}\left[U^{A} \cap \operatorname{cl}\langle x\rangle\right]=\operatorname{cl}\left[U^{A} \cap \operatorname{Cl}(K \times L)\right]=\operatorname{cl}(K \times L)=\operatorname{cl}\langle x\rangle .
$$

To establish this density property, we let $y=\left(y_{\alpha}\right) \in$ $K \times L, y_{\alpha}=e\left(t_{\alpha}\right)$ for each α. Let $V=\prod_{\alpha \in A} V_{\alpha}$ be a neighbourhood of $y, E=\left\{\alpha \in A: V_{\alpha} \neq T\right\}, E_{i}=E \cap A_{i}$ for $i=0,1,2$. For $\alpha \in E$, let V_{α}^{\prime} be a neighbourhood of t_{α} such that $e\left(V_{\alpha}^{\prime}\right) \subseteq$ V_{α}. Now, for $\alpha \in E_{1} \backslash E_{2}, t_{\alpha}=\sum_{i=1}^{n(\alpha)} c_{\alpha i} t_{\alpha i}, c_{\alpha i}=m_{\alpha i} / n_{\alpha i}$, g.c.d. $\left(m_{\alpha i}, n_{\alpha i}\right)=1$. For each $\gamma \in E_{2}$, let $G_{\gamma}=\left\{a: \beta_{\gamma}=\right.$ $\beta_{\alpha, i(\gamma)}$ for some $\left.i(\gamma) \in\{1, \ldots, n(\alpha)\}\right\}$, and $n_{\gamma}=1 . c \cdot m \cdot\left\{n_{\alpha, i(\gamma)}\right.$: $\left.\alpha \in G_{\gamma}\right\}$. For each $\gamma \in E_{2}$ and $\alpha \in G_{\gamma}$, let $d_{\alpha, i(\gamma)}$ be the integer $c_{\alpha, i(\gamma)^{n}}$. Furthermore, let $y_{\alpha}=x_{\alpha}^{r}$ for each $\alpha \in A_{o}$, and
let p denote the least common multiple of the orders of the elements $x_{\alpha}, \alpha \in E_{0}$. Then, for any integer $j, y_{a}=x_{\alpha}^{r}=$ $x_{\alpha}^{r+p j}$, for each $\alpha \in E_{o}$.

For each $\alpha \in E_{1} \backslash E_{2}$, let $C_{\alpha}=\left\{\gamma \in A_{2}: \alpha \in G_{\gamma}\right\}$, and $C=$ $U\left\{C_{\alpha}: \alpha \in E_{1} \backslash E_{2}\right\}$. For each $\alpha \in C$, define $\beta_{\alpha}^{\prime}=\beta_{\alpha} / n_{\alpha}$, and $t_{\alpha}^{\prime}=t_{\alpha} / n_{\alpha}$; for $\alpha \in A \backslash C, \beta_{\alpha}^{\prime}=\beta_{\alpha}$ and $t_{\alpha}^{\prime}=t_{\alpha}$. It is then trivial to see that $\left\{\beta_{\alpha}^{\prime}: \alpha \in A\right\} U\{1\}$ is rationally independent, and that

$$
t_{\alpha}=\sum_{\gamma \in C_{\alpha}}{ }^{d}{ }_{\alpha, i(\gamma)^{t_{\gamma}^{\prime}}}
$$

for each $\alpha \in E_{1} \backslash E_{2}$.
For all $\alpha \in C$, select neighbourhoods $V_{\alpha}^{\prime \prime}$ of t_{α}^{\prime} such that $\sum_{\gamma \in C_{\alpha}} a_{\alpha, i(\gamma)} V_{\gamma}^{\prime \prime} \subseteq V_{\alpha}^{\prime}$. Let $Y=\prod_{\alpha \in A} Y_{\alpha}$ be the neighbourhood of (t_{α}^{\prime}) given by

$$
Y_{\alpha}= \begin{cases}V_{\alpha}^{\prime \prime}, & \alpha \in C \\ V_{\alpha}^{\prime}, \alpha \in A \backslash C .\end{cases}
$$

Now, by the Lemma, there exists $j \equiv r(\bmod p)$ such that $e\left(j \beta_{\alpha}^{\prime}\right) \in e\left(Y_{\alpha}\right)$ for each $\alpha \in E_{1} \cup C$. Then

$$
e\left(j \sum_{i=1}^{n(\alpha)} c_{\alpha i}{ }^{\beta}{ }_{\alpha i}\right)=e\left(j \sum_{\gamma \in C_{\alpha}}{ }_{\left.\alpha, i(\gamma)^{\beta}{ }_{\gamma}^{\prime}\right)}\right.
$$

$$
=e\left(\sum_{\gamma \in C_{\alpha}} d_{\alpha, i(\gamma)}{ }^{j \beta}{ }_{\gamma}^{\prime}\right)=e\left(\sum_{\gamma \in C_{\alpha}} d_{\alpha, i(\gamma)}\left[y_{\gamma}+k_{\gamma}\right]\right),
$$

for some integers k_{γ} and $y_{\gamma} \in Y_{\gamma}$,
$=e\left(\sum_{\gamma \in C_{\alpha}} d_{\alpha, i(\gamma)} Y_{\gamma}\right) \cdot 1 \subseteq e\left(\sum_{\gamma \in C_{\alpha}} d_{\alpha, i(\gamma)} Y_{\gamma}\right) \subseteq$ $e\left(V_{\alpha}^{\prime}\right) \subseteq V_{\alpha}$.
It therefore follows that $\mathrm{x}^{r} \in \mathrm{~V}$, and our claim is established.
Corollary. U^{A} is a minimal Hausdorff topological group for any set A.

Remark. Prodanov [P] has defined a topological group to be totally minimal if all its Hausdorff quotient groups are minimal. Since the $B(A)$ property and precompactness are both
divisible, and together imply minimality, it follows that U^{A} has this stronger property, as well.

Question. If every finite power of a group is minimal or a $B(A)$ group, must arbitrary powers of the group have the same property?

Bibliography

[B] B. Banaschewski, Minimal topological algebras, Math. Ann. 211 (1974), 107-114.
[D] D. Doĭtchinov, Produits des groupes topologiques minimaux, Bull. Sci. Math. 96 (1972), 59-64.
[G] D. L. Grant, Topological groups which satisfy an open mapping theorem, Pac. J. Math. 68 (1977), 411-423.
[H] T. Husain, Introduction to topological groups, Saunders, Philadelphia, 1966.
[HW] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Fourth Edition, Oxford University Press, London, 1960.
[P] I. Prodanov, Some minimal group topologies are precompact, Math. Ann. 227 (1977), 117-125.
[So] T. Soundararajan, Totally dense subgroups of topological groups, in General topology and its relations to modern analysis and algebra, Proceedings of the Kanpur Topological Conference, 1968, Academia, Prague, 1971, 299-300.
[Stl] R. M. Stephenson, Jr., Minimal topological groups, Math. Ann. 192 (1971), 193-195.
[St2] \qquad , Some unsolved problems concerning P-minimal and P-closed spaces, in Studies in topology, Proceedings of the Charlotte Topology Conference, Academic Press, 1974, 249-256.
[Su] L. J. Sulley, A note on B- and B_{r}-complete topological Abelian groups, Proc. Camb. Phil. Soc. 66 (1969), 275-279.

College of Cape Breton
Box 760
Sydney, Nova Scotia, Canada
BlP 6Jl

Editor's Note:
When this paper was first received, the referee
B. Banaschewski, found a major error in the proof. This
fact was communicated to the author and some weeks later, Prof. Banaschewski sent to the editor a correct proof by entirely different reasoning. The existence--but not the essence--of this proof was communicated to the author who responded some months later with his own corrected version which is here printed.

