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A TECHNIQUE FOR PROVING INEQUALITIES 

IN CARDINAL FUNCTIONS 

R. E. Hodel 

Introduction 

Let d, L, c, s, X andW denote the following standard 

cardinal functions: density, Lindelof degree, cellularity, 

spread (= hereditary cellularity), character, and pseudo-

character. (For definitions, see [7J or [14].) The fol

lowing inequalities are basic in the theory of cardinal 

invariants: (1) if X is Hausdorff, then Ixi ~ 2c (X)X(X); 

(2) if X is T then Ixi ~ 2s (X)w(X); (3) if X is Hausdorff,
l

, 

then d(X) ~ 2s (X); (4) if X is Hausdorff, then IXI ~ 22S (X); 

(5) if X is Hausdorff, then IXI ~ 2L (X)X(X). (See [11] and 

[1].) Partition calculus and ramification arguments are 

used in the original proofs of these five inequalities. 

(See [8] and [9].) Specifically, the 'Erdos-Rado theorem 

(i< )+ ~ (K +): is used in the proof of (1) and- (2), the Erdos 

theorem K + k,w)2 ,is used in the proof of (3), the Erdos-

Rado theorem (2 2 
K

) 
+ 

~ (K+)3 is used in the proof of (4), and 
K 

in proving (5) Arhangel'skii uses a difficult ramification 

argument to construct a free sequence of length .K+. 

In [16] sapirovskii proved' a fuhdamental theorem about 

the cardinal function s, and from this theorem one easily 
s(X) 2s (X)

obtains the two inequalities d(X) ~ 2 and Ixi ~ 2 

Pol [15] has modified Sapirovskii's technique to give proofs 

of the two inequalities IXI ~ 2c (X)X(X) and Ixi ~ 2L (X)X(X), 

and I have used this technique to prove the inequality 



116 Hodel 

Ixl ~ 2 s (X)W(X). In summary, the work of Pol and sapirovskil 

gives an alternate, unified approach to the five inequalities 

stated above. 

The point I would like to emphasize in this paper is 

that the Pol-Sapirovskii technique plays a fundamental, uni

fying role in the theory of cardinal invariants and can be 

used to prove a wide variety of cardinal function inequali 

ties. Specifically, I will illustrate their technique by 

proving that every Xl-compact space with a Go-diagonal has 

cardinality at most 2w• The generalized version of this 

inequality is due to Ginsburg and Woods [10]; their proof 

uses the Erdos-Rado theorem (2 K) + -+ (K +) 2 • In addition, I 
K 

will survey several other inequalities in cardinal functions,
 

each of which can be proved using the pol-sapirovskii tech

nique.
 

The Technique Illustrated 

In order to take advantage of well known terminology, 

I will just prove the countable version of the Ginsburg-

Woods inequality. (The proof I giv~can easily be extended 

to higher cardinality.) The following notation is used: 

if X is a set, ~ is a cover of X, and D is a subset of X, 

then st(~,~) = U{st(x,~): x £ D}. Recall that a space is 

Xl-compact if every uncountable subset has a limit point. 

Lemma. Let X be a Tl-space which is Xl-compact, let
 

~ be an ~pen cover of X, let C ~ X. Then there is a count

abl~ subset D of C such that C ~ st(D,~).
 

Proof. Suppose false. Construct a subset E = {xa: 

o ~ a < wI} of C such that for all a < wI' x i US<ast(XS'~).a 
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Let p be a limit point of E, and let G be a member of § 

such that p belongs to G. Since p is a limit point of E 

and X is Tl , there exists a and S, a > S, such that x and 
a 

X s belong to G. This contradicts x i US<ast(xS'~). a 

Theorem (Ginsburg and Woods). Let X be an Xl-compact 

eth G de "1 Then Ixi _< 2w •space ~~ a 0- ~agona~. 

Proof. Since X has a Go-diagonal, there is a countable 

sequence §l' §2' ... of open covers of X such that if p and 

q are any two distinct points in X, then for some n < w, 

q i st(p'§n). (See [4].) Construct a sequence {E : 
a 

2wo ~ a < wl~ of subsets of X such that (1) lEal ~ , 

o ~ a < wI; (2) for 1 ~ a < wI' if {D : n < w} is a countable n 

collection of countable subsets of US<aES' and Un=~st(Dn'§n) 

~ X, then En - U:=lst (D ,Y ) ~ ~.n n 

Let E = U E; since lEI ~ 2w, the proof is complete
a<w l a 

if we can show that E = X. Suppose not, and let p £ X, 

piE. For each n < w let C {x: x £ E, P i st(x'§n)};n 
00 

clearly E = For each n < w, apply the Lemma toUn=lCn · §n 

and C : there is a countable subset D of C such that n n n 

en ~ st(Dn,yn )· Note that E ~ U:=lst(Dn,yn ) and 

p i U:=lst(Dn'~n)· Now choose a < wI such that Un=lD ~ n 

US<aES. By (2), there is some q in E such that q i a 

U:=lst(Dn,yn). This contradicts E ~ U:=lst(Dn,yn). 

Survey of Other Inequalities 

First we need some definitions. For a T space X,l 

the point separating ~eight of X, denoted psw(X), is the 

smallest infinite cardinal K such that X has a separating 

open cover 5 with the property that every point of X is in 
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at most K members of 5. (The cover 5 is sepapating if 

given any two distinct points p and q in x, there is some 

S ~n 5 such that p £ S, q is.) If psw(X) = w, we say that 

X has a point-countable sepapating open covep. The extent 

of X, denoted e(X), is the smallest infinite cardinal K such 

that every closed, discrete subset of X has cardinality at 

most K. (See [7], [13]). Note that for a T space X,l 

e(X) = w if and only if X is Xl-compact. The weak Lindelof 

numbep of X, denoted wL(X), is the smallest infinite cardi

nal K such that every open cover of X has a subcollection 

of cardinality ~ K whose union is dense in X. Note that 

wL(X) S L(X) and wL(X) ~ c(X). If wL(X) = w, we say that 

X is weakly LindeZof. 

Each of the following inequalities can be proved using 
v v 

the Pol-Sapirovskii technique. (1) If X is Tl , then Ixi ~
 

2e (X)psw(X). (2) If X is T , then Ixi ~ psw(X)L(X)~(X).
 
l 

(3) If X is normal and T
l 

, then Ixl ~ 2wL (X) X (X). (See [3], 

[5], and [2] respectively.) 

The countable version of (1) states that an Xl-compact 

space with a point-countable separating open cover has car

dinality at most 2w• (In fact, the number of compact sub

sets has cardinality at most 2w.) This result should be 

compared with the Ginsburg-Woods inequality. Two proofs of 

(1) are given in [3]; the first uses an intersection theorem   

of Erdos and Rado while the second proof uses the Pol

sapirovskii technique. (This second proof is also closely 

r~lated to a construction due to M. E. Rudin [6].) 

Arhangel'skil has asked if every Lindelof Hausdorff 
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space with countable pseudo-character has cardinality at 

2wmost , and (2) gives a partial answer to this question. 

Specifically, the countable version of (2) states that a 

Lindelof space having countable pseudo-character and point 

separating weight at most 2w has cardinality at most 2w• 

The	 countable version of (3) states that a weakly 

Lindelof first countable Hausdorff space which is also nor

mal	 has cardinality at most 2w• Except for the ~ormality 

assumption, inequality (3) unifies the two inequalities 

Ixi ~ 2c (X)X(X) and Ixi ~ 2L (X)X(X). 

The reader is referred to [2], [5], [15], and [17] for 

additional inequalities in cardinal functions which can be 
v v 

proved using the Pol-Sapirovskii technique. 
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