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ON a-SPACES AND PSEUDOMETRIZABLE SPACES 

Heikki J. K. Junnila 

1.	 Introduction 

According to the Nagata-Smirnov Theorem, a topological 

space is pseudometrizable iff the space is regular and the 

topology of the space has a a-locally finite base. This 

theorem has quite generally been accepted as a "natural" 

characterization of pseudometrizable spaces in purely topo­

logical terms. This characterization has given rise to the 

definitions of several "generalized metric spaces". One of 

the most successful and natural generalizations of pseudo­

metrizable spaces is obtained by substituting "network" for 

"base" in the condition of the Nagata-Smirnov Theorem (recall 

that a family L of subsets of a set X is a net~opk for a 

topology T on X provided that every set in T is the union of 

some subfamily of L). If we require that the network con­

sists of closed sets, then we can omit the condition of regu­

larity of the space (note that if L is a a-locally finite 

network for the topology T of a regular space (X,T), then 

the family {Cl (L) IL E L} is a a-locally finite closed net­
T 

work	 for T); accordingly, we make the following definition. 

Definition 1.1. A topological space (X,T) ia a a-space 

provided that T has a a-locally finite closed network. 

Spaces with a a-locally finite (in fact, a-discrete) 

network were first considered by A. V. Arhangel'skij in [1]. 

These spaces were thoroughly studied by A. Okyama in [8]; 
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this paper contains many of the basic results on a-spaces. 

The term "a-space" was introduced by F. Siwiec and J. Nagata 

in [10]; this paper also contains the important result that 

if the topology of a space has a a-c1osure-preserving closed 

network, then the topology has a a-discrete closed network. 

As a consequence of the last-mentioned result, the topology 

of a a-space always admits a a-discrete closed network. In 

[4], R. W. Heath and R. E. Hodel gave a characterization for 

a-spaces that yields the result of Siwiec and Nagata as a 

corollary. 

In this paper we characterize a-spaces in terms of the 

existence of pseudometrizab1e topologies tied in certain 

ways with the original topologies of the spaces; in the end 

of the paper we show that for first countable spaces, one of 

the conditions in our characterization mayor may not be 

requndant, depending on some extra set-theoretic assumptions. 

We also prove some results concerning the existence of closed 

pseudometrizab1e subspaces in a-spaces. 

Notation. The set {1,2, ••• } consisting of the natural
 

numbers is denoted by N. A sequence whose nth term is x
 n
 

(fqr n EN) is' denoted by ( X >:=l.
 n 

If {Knln E N} is a cover of a set X such that for each 

n EN, K c K +1' then we say that {K In EN} is an inarea­n n n
 

sing aover of X, and we write K ~x. If L is a family of
 n
 

subsets of X, then for each A c X, we denote by (L)A the
 

fa~i1y {L E LIL n A # ~}; if A ~ {x}, then we write (L)x
 

instead of (L)A.
 

When (X,T) is a topological space, we denote by J (T)

a 
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the family consisting of all Fa-subsets of X. Note that the 

space (X,T) is perfect iff T c Fa(T). 

For the meaning of concepts used without definition in 

this paper, see [3]; note, however, that in our terminology, 

regular spaces are not necessarily Tl . 

2.	 a -Spaces and Pseudometrizable Spaces 

Most of the following results deal with the existence 

of finer pseudometrizable topologies on the ground-set of 

a a-space. The discrete topology is, of course, always a 

finer pseudometrizable topology; to exclude this trivial 

case, we only consider topologies whose sets are Fa-sets 

with respect to the original topology. Hence, for a topo­

logical space (X,T) we consider the existence of a pseudo­

metrizable topology TI such that T C TI c Fa(T). 

It is a simple matter to show that for a a-space (X,T), 

there always exists a pseudometrizable topology TI on X such 

that T TI c Fa(T); in the next section we attend to theC 

question whether the existence of such a topology TI is suf­

ficient to make (X,T) a a-space. 

Lemma 2.1. Let (X,T) be a a-spaae 3 and let F be a 

a-locally finite closed network for T. Denote by TI the 

topology that has F as a subbase. Then TI is a pseudometri­

zable topology~ ~nd T C TI c F (T).
a 

Proof. Denote by F' the family consisting of all fi­

nite intersections of sets from the family F. Since F is 

a-locally finite and closed in (X,T), so is F'. The family 

F' is a base for the topology TI and a network for the top01­

ogy T; consequently T C TI. It follows that F' is a-locally 
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finite and closed with respect to the topology TI. Since TI 

has a closed base, TI is a regular topology. By the Nagata-

Smirnov Theorem, the space (X,TI) is pseudometrizable. 

We already know that T C TI. To see that TI c Fa(T), we 

only have to observe that any set belonging to TI is the 

union of some subfamily of the family F' and that any such 

union belongs to the family Fa(T) since F' is a-locally fi­

nite and closed with respect to T. 

Remark 2.1.1. In the above lemma, if F = U F with 
nEN n 

each F locally finite, then we obtain a pseudometric d n 

compatible with the topology TI by setting d(x,y) = inf{~ln EN n 

and ( U Fk)x = ( U Fk ) } for all x,y in X. 
k<n k<n y 

Remark 2.1.2. In Lemma 2.1, if F is a semicompact 

family (that is, if nK ~ $ whenever K is a subfamily of F 

with the finite intersection property), then the space (X,TI) 

is completely pseudometrizable. 

We now use Lemma 2.1 to obtain a characterization of 

a-spaces in terms of the existence of pseudometrizable 

topologies. 

Proposition 2.2. A topological space (X,T) is a 0­

space iff there exists a pseudometrizable topology TI on X 

such that T C TI C Fa(T) and every locally finite family of 

subsets of the space (X,TI) has a refinement that is 0­

locally finite in the space (X,T). 

Proof. Necessity. Assume that (X,T) is a a-space. 

Let F be a a-locally finite closed network for T. We may 

assume that F is a base for a topology ~ on X. By Lemma 
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2.1, the topology TI is pseudometrizable and T C TI C Fa{T). 

Let L be a locally finite family of subsets of the space 

(X,TI). Let K = {F E Flthe family {L)F is finite}. Since 

F is a base for TI and the family L is locally finite with 

respect to TI, the family K covers X. It is easily seen 

that the family N = {K n LIK E K and L E {L)K} is a refine­

ment of L and that this family is a-locally finite with 

respect to T. 

Sufficiency. Assume that there exists a topology TI on 

X which satisfies the conditions stated in the proposition. 

To show that (X, T) is a a-space, let B = U B be a base 
nEN n 

for TI such that for each n E N, the family B is discrete n 

wi th respect to TI. For each n EN, there exists a refine­

ment N of the family B such that N is a-locally finite n n n 

with respect to T. Since TI C Fa{T), there exist closed sets 

Fk{B), kEN and B E B, in the space (X,T) such that for 

each B E B, we have U Fk{B) = B. For all n E N and kEN, 
kE N 

let F = {Cl (N) n F (B) IN E N and N C B E B } and noten,k T k n n 

that this family is a-locally finite and closed with respect 

to T. It is easily seen that for every n E N and for each 

B E B , we have B = U{F E U F kiF c B}. It follows that n kE N n, 
the family F = u{F kin E Nand kEN} is a network forn, 

TIi since T C TI, the family F is also a network for T. This 

completes the proof since F is a a-locally finite and closed 

with respect to T. 

Rema~k 2.2.1. The result of the proposition remains 

true if "locally finite" is replaced by "discrete" in the 

proposition (once or twice). 
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The class of a-spaces is considerably larger than the 

class of pseudometrizable spaces; nevertheless, the above 

result shows that large portions of the theory of pseudo­

metrizable spaces, e.g. much of the Borel-theory for pseudo­

metrizable spaces, carryover to the setting of a-spaces. 

The remaining results of this section deal with the 

existence of closed pseudometrizable subspaces in a-spaces. 

Proposition 2.3. Let (X,T) be a a-space. Then there 

are increasing closed covers {F k IkE N }., n EN., of the n, 

space (X,T) and there is a pseudometrizable topology TI on 

X such that for every sequence (k(n»~=l of natural numbers., 

the topologies T and n agree on the set n F k( ).
nEN n, n
 

Proof. Let F = U F be a network for T such that
 
nE N n
 

each F is a discrete family of closed subsets of (X,T).

n 

For every n E N , be a sequence of closed sub­let <Kn,k>;=l 

sets of (X, T) such that K k tX-UF • For all n E N and 
n, k n 

k E N , let F K U (U Fn) and note that every set ofn,k n,k 

the family F is open in the topology inherited by Fn,kn 

from T. For every n E N , the family {Fn,k1k E N} is an 

increasing closed cover of the space (X,T). 

Denote by n the topology generated on X by the family 

F. By Lemma 2.1, the topology n is pseudometrizable and 

T c: n. To complete the proof, let <k(n»~=l be a sequence 

of natural numbers, and let S = n F Denote by T'
nE N n,k(n)· 

and n', respectively, the restrictions of T and n to S. 

Since Ten, we have T' en'. On the other hand, for each 

n EN, and for every F E F , we have F n SET' since n 

S c Fn,k(n) and F is open in the topology inherited by 
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Fn,k(n) from T. Consequently, {F n slF E F} C T ' • Since F 

is a	 subbase for TI, we see that TI' C T •' 

Coro l lary 2. 3.1. ( [2] ) Every a-space is the union of 
Ho a family of not more than 2 closed pseudometrizable sub­

spaces. 

Corollary 2.3.2. If ~ is a finite measure defined for 

all Borel-subsets of a a-space (X,T), then for every £ > 0, 

there is a closed pseudometrizable subspace S of X such that 

1.1	 (X '" S) < £. 

Proof. Let the increasing closed covers {F k1k EN}n, 

of X satisfy the conclusion of Proposition 2.3. Let £ be a 

positive real number. For each n EN , since F k t X, there 
n, k 

-n
exists k(n) E N such that 1.1 (X '" Fn,k(n)) < 2 • £. The 

set S = n F k() has the properties required in the
nE N n, n 

corollary. 

Note that there are a-spaces (X,T) which admit finite 

Borel-measures such that for no pseudometrizable A c X does 

the set X '" A have zero measure (e.g. any countable Tl ­

space that is not first countable). For meager sets we do 

get the following result: every a-space contains a pseudo­

metrizable subspace whose complement is meager in the space 

[if (X,T) is a a-space, and if F is a a-discrete closed net­

work for T, then the subspace X '" U{aFIF E F} has the re­

quired properties (note that for any discrete family L, the 

sets u{aLIL E L} and a uL coincide)]. 

3.	 Pseudometrizable Topologies and a-Spaces 

In Proposition 2.2 we characterized a-spaces in terms 
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of the existence of certain pseudometrizable topologies on 

the ground-set of a space; in the following we try to deter­

mine whether the result of that proposition can be improved. 

More precisely, we try to answer the following question. 

Question 3.1. Is it true for every topological space 

(X,T) that (X,T) is a a-space if there exists a pseudomet­

rizable topology TI on X such that T C TI C Fa(T)? 

Putting a further restriction on the topology TI, we 

get an affirmative answer to the above question. 

Proposition 3.2. The topology T of a space (X,T) has 

a countable closed network iff there exists a separable 

pseudometrizable topology TI on X such that T C TI C Fa(T). 

Proof. Necessity follows from Lemma 2.1. Sufficiency 

is obvious. 

Note that for regular spaces, Proposition 3.2 charac­

terizes cosmic spaces (see [6]). 

In general, we cannot hope to obtain an affirmative 

answer to Question 3.1 if we stay within the framework of 

ordinary set-theory (ZFC). Recall that a Q-set is an un­

countable set A c R such that every subset of A is an F -set a 
relative to the Euclidean topology on A. It is known (see 

e.g. [9]) that if ZFC is consistent, then so is (ZFC + 

there is a Q-set); assuming the existence of a Q-set, it is 

easy to find a space (X,T) which provides a negative answer 

to Question 3.1. 

Example 3.3. Let A c R be a Q-set. Then there are 
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two topologies T and TI on A such that the following condi­

tions are satisfied: 

(i) (A,T) is a first countable regular Lindelof-space 

(ii) (A,T) is not a a-space 

(iii) (A, TI) is a metrizable space 

(iv) T C TI c Fa (T). 

Proof. Let TI be the discrete topology on A, and let T 

be the topology that A inherits from the Sorgenfrey line. 

Clearly, conditions (i) and (iii) hold, and T C TI. Since 

every subset of A is an F -set in the Euclidean topology of a 
A and since T is finer than the Euclidean topology, we have 

Fa(T) = peA); consequently, condition (iv) is satisfied. 

It remains to show that (A,T) is not a a-space. Assume on 

the contrary that T has a a-locally finite network, and let 

F be such a network. For each a E A, the set A n (+,al is 

open in A and hence there exists Fa E F such that a E Fa C 

(+,a]. For any two distinct elements a and b of A, the 

sets Fa and F are distinct. Since the set A is uncountable,b 

it follows that the family F is uncountable; this, however, 

is a contradiction since any a-locally finite family of sub­

sets of a Lindelof-space is countable. 

Remark 3.3.1. If IAI = wI' and if we take T to be the 

supremum of the Euclidean topology on A and the order topol­

ogy obtained by identifying A with the well-ordered set wl ' 

then conditions (ii), (iii) and (iv) of the above example 

still hold and (i) can be replaced by the following: 

(A,T) is a regular first countable space that is not sub­

paracompact. 
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Our next result shows that under the Product Measure 

Extension Axiom (PMEA), Question 3.1 does have an affirma­

tive answer in the class of first countable spaces; this 

result and Example 3.3 make it seem likely that at least 

for first countable spaces, Question 3.1 cannot be settled 

using only the axioms of ZFC (for a discussion on the con­

sistency of PMEA relative to that of some other axioms, as 

well as for other background on PMEA, see [7]). 

First, an auxiliary result. To state the result, we 

use the following terminology: a family L of subsets of a 

space (X,T) is F -additive in (X,T) if UL' E F (T) for every
a a
 

L' c L.
 

Lemma 3.4. Let (X,T) be a topological space such that 

every F -additive partition of (X,T) has a a-discrete re­
o 

finement. Assume that there exists a pseudometrizable 

topology 7T on X such that T c 1T c F (T). Then (X,T) is a a 

a-space. 

Proof. The proof of sufficiency for Proposition 2.2 

shows that (X,T) is a a-space provided that every discrete 

family of open subsets of the space (X,TI) has a refinement 

that is a-discrete in the space (X,T). Let U be a discrete 

family of open sets in (X,n). Since TI cFa{T), we have 

UU' E Fa{T) for each U' c U. In particular, there are 

closed subsets F , n E N, of the space (X,T) such that n 

U F = UU. For each n EN, let L = {X - F } U {U n Fnl 
nEN n n n
 

U E U} and note that L is a part~tion of X. For each n E N,
n 

the family L is Fa-additive in (X,T) [note that X - F E n n 

Fa (T) since T c Fa (T) ]. For each n EN, let M be a n 
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a-discrete refinement of L in the space (X,T), and let 
n 

M~ = {M E MnlM C F }. Then the family U M' is a-discrete n nE N n 
in the space (X,T) and this family is a refinement of the 

family	 U. 

Note that a set A c R is a Q-set iff the partition 

{{a}la E A} is F -additive with respect to the Euclidean a 

topology on A. Consequently, if there exists a Q-set, then 

there exists a metrizable space and an Fa-additive partition 

of the space such that the partition has no a-discrete re-

finement. In our last result we show that if PMEA holds, 

then	 Fa-additive partitions of a-spaces always have a-dis­

crete refinements. 

Proposition 3.5. (PMEA) Let (X,T) be a topo~ogica~ 

space such that there exists a pseudometrizab~e topo~ogy 

~ on	 X such that T c ~ c Fa(T). 

A.	 If (X,T) is weak~y first countab~e, then (X,T) is 

a-space

B.	 The fo~~owing conditions on (X,T) are mutua~~y

equiva~ent: 

(i) (X, T) is a a-space 

(ii)	 (X,T) is semi-stratifiab~e 

(iii)	 Every Fa-additive partition of (X,T) has a 

a-discrete refinement. 

Proof. In [5], it is shown that if PMEA holds and if 

(X,T) is either weakly first countable or semi-stratifiable, 

then condition (iii) holds. By Lemma 3.4, if condition 

(iii) holds, then (X,T) is a a-space. This completes the 

proof since every a-space is semi-stratifiable. 
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