TOPOLOGY PROCEEDINGS Volume 4, 1979

Pages 133–137

http://topology.auburn.edu/tp/

AN EXAMPLE CONCERNING THE CANCELLABILITY OF CYCLES

by

K. KUPERBERG AND W. KUPERBERG

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

AN EXAMPLE CONCERNING THE CANCELLABILITY OF CYCLES

K. Kuperberg and W. Kuperberg

1. Introduction

Throughout this note, *space* means compact metric space and *map* means continuous function. If X is a space and G is an Abelian group, then $H_n(X,G)$ denotes the n-dimensional Vietoris-Čech homology group of X with coefficients in G (see for instance [2], p. 36).

Let X and Y be spaces and let \underline{f} be a fundamental sequence from X to Y (see [2] as a reference to this and other notions of shape theory). The homomorphism from $H_n(X,G)$ into $H_n(Y,G)$ induced by \underline{f} is denoted by $\underline{f}_{\star n}$.

Let A be a subset of $H_n(X,G)$ and let a be a k-dimensional cycle. Following K. Borsuk [1], we say that the cycle a is *cancellable rel*. A provided that there exists a fundamental sequence \underline{f} from X to X such that $f_{\star n}(x) = (x)$ for every $x \in A$ and $\underline{f}_{\star k}(a) = 0$. Each \underline{f} with these properties is called a *cancellation of a rel*. A.

The notion of cancellability of cycles was used in [1] to establish some facts about simplicity of certain shapes. The aim of this note is to solve the following problem posed in [1]: Let A be a subset of $H_n(X,G)$ and $k \neq n$. Is the set of cycles a $\in H_k(X,G)$ cancellable rel. A always a subgroup of $H_k(X,G)$? We construct an example solving this problem in the negative.

2. Preliminaries

Let P denote the projective plane and let X be the infinite countable "bouquet" of projective planes; that is, let X = $\bigcup_{i=1}^{\infty} P_i$ where each set P_i is homeomorphic to P, the sequence of diameters of the P_i 's converges to zero, and, for some $x_0 \in X$, $P_i \cap P_j = \{x_0\}$ whenever $i \neq j$. Assume the following notation: let $X_n = \bigcup_{i=1}^n P_i$ (for $n = 1, 2, 3, \cdots$), let r_{ni} be the retraction of X_n onto P_i (for $i \leq n$) defined by the formula

$$\mathbf{r}_{ni}(\mathbf{x}) = - \begin{cases} \mathbf{x} \text{ if } \mathbf{x} \in \mathbf{P}_{i} \\ \mathbf{x}_{0} \text{ if } \mathbf{x} \in \mathbf{X}_{n} \setminus \mathbf{P}_{i} \end{cases}$$

and let s_{in} be the inclusion map of P_i into $X_n (i \le n)$. Let Z denote the group of integers and let Z_2 denote the group of integers reduced modulo 2.

Notice that the groups $H_1(P,Z)$, $H_1(P,Z_2)$ and $H_2(P,Z_2)$ are all isomorphic to Z_2 , and therefore the groups $H_1(X_n,Z)$, $H_1(X_n,Z_2)$ and $H_2(X_n,Z_2)$ are all isomorphic to the product of n copies of Z_2 .

If ϕ is a homomorphism between two groups, we say that ϕ is *trivial* and we write $\phi \approx 0$ provided that $\phi(\mathbf{x}) = 0$ for every \mathbf{x} . Otherwise we say that ϕ is non-trivial and we write $\phi \neq 0$.

3. Some Homological Properties of the Projective Plane and

the Bouquets of Projective Planes

Lemma 1. For every map $f: P \rightarrow P$, the homomorphisms $f_{*1}: H_1(P,Z_2) \rightarrow H_1(P,Z_2)$ and $f_{*2}: H_2(P,Z_2) \rightarrow H_2(P,Z_2)$ are either both trivial or both non-trivial.

Proof. From the Universal Coefficient Theorem (see [3], p. 160) it follows that there exists a functorial

isomorphism α : $H_2(P,Z_2) \rightarrow Tor(H_1(P,Z),Z_2)$, thus we get the following cummutative diagram

$$\begin{array}{ccc} H_{2}(P,Z_{2}) & \xrightarrow{\alpha} & \operatorname{Tor}(H_{1}(P,Z),Z_{2}) \\ & & \downarrow f_{\star 2} & & \downarrow \operatorname{Tor}(f_{\star 1},Z_{2}) \\ H_{2}(P,Z_{2}) & \xrightarrow{\alpha} & \operatorname{Tor}(H_{1}(P,Z),Z_{2}) \end{array}$$

This yields that $f_{\star 2} = 0$ if and only if $\operatorname{Tor}(f_{\star 1}, Z_2) = 0$. Now, notice that $\operatorname{Tor}(H_1(P, Z), Z_2) \approx \operatorname{Tor}(Z_2, Z_2) \approx Z_2 \approx H_1(P, Z_2)$. Hence, $f_{\star 1}$ is either 0 or the identity (these are the only two homomorphisms on Z_2). Since $\operatorname{Tor}(0, Z_2) = 0$ and $\operatorname{Tor}(\cdot, Z_2)$ is a functor, we get $\operatorname{Tor}(f_{\star 1}, Z_2) = 0$ if and only if $f_{\star 1} = 0$, which concludes the proof.

Lemma 2. Let f be a map from X_n to X_k and denote by $f_{(ij)}$ the composition $r_{kj}fs_{in}$, $f_{(ij)}$: $P_i + P_j$. Then the homomorphism f_{*q} : $H_q(X_n,G) + H_q(X_k,G)$ induced by f is uniquely determined by the collection $\{f_{(ij)}*_q\}$ of homomorphisms induced by the maps $f_{(ij)}$, where $i = 1, 2, \dots, n$, $j = 1, 2, \dots, k$.

We omit the quite simple and natural routine proof of the above lemma.

As we noticed before, the groups $H_1(X_n, Z_2)$ and $H_2(X_n, Z_2)$ are isomorphic, namely $H_1(X_n, Z_2) = \bigoplus_{i=1}^n H_1(P_i, Z_2) \approx \bigoplus_{i=1}^n Z_2$ and $H_2(X_n, Z_2) = \bigoplus_{i=1}^n H_2(P_i, Z_2) \approx \bigoplus_{i=1}^n Z_2$. Let h: $H_1(X_n, Z_2) \rightarrow H_2(X_n, Z_2)$ be the isomorphism which carries the non-zero element e_i of $H_1(P_i, Z_2)$ onto the non-zero element E_i of $H_2(P_i, Z_2)$, for every $i = 1, 2, \dots, n, n = 1, 2, \dots$.

Lemmas 1 and 2 yield immediately that, for every map f: $X_k \rightarrow X_n$, the diagram

(*)
$$\begin{array}{cccc} & & & f_{*1} & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

is commutative, for every $k = 1, 2, \dots$ and every $n = 1, 2, \dots$

The Example

Since the inclusion map of P_i into X induces a monomorphism of the homology groups in every dimension, we may assume that $e_i \in H_1(X,Z_2)$ and $E_i \in H_2(X,Z_2)$, for every $i = 1,2,3,\cdots$. Let a be the element of $H_1(X,Z_2)$ which can be written as $\sum_{i=1}^{\infty} e_{2i-1}$, similarly, let $b = \sum_{i=1}^{\infty} e_{2i}$, and let $c = \sum_{i=1}^{\infty} E_i$. Both a and b are cancellable rel. {c}. Indeed, the map of X onto X which collapses each P_{2i-1} into x_0 and maps P_{2i} homeomorphically onto P_i keeping x_0 fixed, is a cancellation of a rel. {c}. A cancellation of b rel. {c} is constructed in the same fashion. However, as we prove below, a + b is not cancellable rel. {c}, which solves the problem. Assume then that \underline{f} is a fundamental sequence from X to X with $\underline{f_{*1}}(a + b) = 0$. Our claim is that $\underline{f_{*2}}(c) = 0$.

For every positive number ε there exists an integer n such that, for every i > n, diam $P_i < \varepsilon$. The map $r_n : X \to X_n$ which collapses $X \setminus X_n$ into x_0 and leaves every point of X_n fixed is an ε -displacement. Since ε is arbitrary, it is sufficient to prove that $(\underline{r}_n \underline{f})_{*2}(c) = 0$, where \underline{r}_n is the fundamental sequence from X to X_n , generated by r_n .

Since X_n is an ANR-space, the fundamental class $[\underline{r}_n \underline{f}]$ is generated by a map, say g: $X \neq X_n$. Obviously, $g_{\star 1}(a + b)$ = 0 and it is sufficient to prove that $g_{\star 2}(c) = 0$. Again, since X_n is an ANR-space, we may assume that, for some integer k, g maps the set X\X_k into the point x_0 , replacing the map g by a map homotopic to g, if necessary. In other words, we assume that $g = \overline{g} r_k$, where \overline{g} is a map from X_k into X_n and $r_k: X + X_k$ is a retraction which maps X\X_k into x_0 . By our assumption, we get $\overline{g}_{*1}r_{k*1}(a + b) = 0$ which means $\overline{g}_{*1}(e_1 + e_2 + \cdots + e_k) = 0$. Applying diagram (*) from Section 3, we get $\overline{g}_{*2}(E_1 + E_2 + \cdots + E_k) = 0$. This yields $\overline{g}_{*2}r_{k*2}(c) = 0$ and $g_{*2}(c) = 0$, which completes the proof.

References

- K. Borsuk, On a new shape invariant, Topology Proceedings 1 (1976), 1-9.
- [2] ____, Theory of shape, Monografie Matematyczne 59, Warszawa, 1975.
- [3] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, 1952.

Auburn University

Auburn, Alabama 36830