TOPOLOGY PROCEEDINGS

Volume 4, 1979
Pages 133-137
http://topology.auburn.edu/tp/

AN EXAMPLE CONCERNING THE CANCELLABILITY OF CYCLES

by
K. Kuperberg and W. Kuperberg

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

AN EXAMPLE CONCERNING THE CANCELLABILITY OF CYCLES

K. Kuperberg and W. Kuperberg

1. Introduction

Throughout this note, space means compact metric space and map means continuous function. If X is a space and G is an Abelian group, then $H_{n}(X, G)$ denotes the n-dimensional Vietoris-Čech homology group of X with coefficients in G (see for instance [2], p. 36).

Let X and Y be spaces and let f be a fundamental sequence from X to Y (see [2] as a reference to this and other notions of shape theory). The homomorphism from $H_{n}(X, G)$ into $H_{n}(Y, G)$ induced by \underline{f} is denoted by $\underline{f}_{*_{n}}$.

Let A be a subset of $H_{n}(X, G)$ and let a be a k-dimensional cycle. Following K. Borsuk [1], we say that the cycle a is cancellable rel. A provided that there exists a fundamental sequence $£$ from X to X such that $f_{*_{n}}(x)=(x)$ for every $x \in A$ and $\underline{f}_{k}(a)=0$. Each \underline{f} with these properties is called a cancellation of a rel. A.

The notion of cancellability of cycles was used in [1] to establish some facts about simplicity of certain shapes. The aim of this note is to solve the following problem posed in [1]: Let A be a subset of $H_{n}(X, G)$ and $k \neq n$. Is the set of cycles $a \in H_{k}(X, G)$ cancellable rel. A always a subgroup of $H_{k}(X, G)$? We construct an example solving this problem in the neqative.

2. Preliminaries

Let P denote the projective plane and let X be the infinite countable "bouquet" of projective planes; that is, let $X=U_{i=1}^{\infty} P_{i}$ where each set P_{i} is homeomorphic to P, the sequence of diameters of the P_{i} 's converges to zero, and, for some $x_{0} \in X, P_{i} \cap P_{j}=\left\{x_{0}\right\}$ whenever $i \neq j$. Assume the following notation: let $X_{n}=U_{i=1}^{n} P_{i}$ (for $n=1,2,3, \ldots$), let $r_{n i}$ be the retraction of X_{n} onto $P_{i}($ for $i \leq n)$ defined by the formula

$$
r_{n i}(x)=\left\{\begin{array}{l}
x \text { if } x \in P_{i} \\
x_{0} \text { if } x \in x_{n} \backslash P_{i}
\end{array}\right.
$$

and let $s_{i n}$ be the inclusion map of p_{i} into $X_{n}(i \leq n)$. Let z denote the group of integers and let z_{2} denote the group of integers reduced modulo 2.

Notice that the groups $H_{1}(P, Z), H_{1}\left(P, Z_{2}\right)$ and $H_{2}\left(P, Z_{2}\right)$ are all isomorphic to Z_{2}, and therefore the groups $H_{1}\left(X_{n}, Z\right)$, $H_{1}\left(X_{n}, z_{2}\right)$ and $H_{2}\left(X_{n}, Z_{2}\right)$ are all isomorphic to the product of n copies of z_{2}.

If ϕ is a homomorphism between two groups, we say that ϕ is trivial and we write $\phi=0$ provided that $\phi(x)=0$ for every x. Otherwise we say that ϕ is non-trivial and we write $\phi \neq 0$.

3. Some Homological Properties of the Projective Plane and the Bouquets of Projective Planes

Lemma 1. For every map $\mathrm{f}: \mathrm{P} \rightarrow \mathrm{P}$, the homomorphisms $\mathrm{f}_{*_{1}}: \mathrm{H}_{1}\left(\mathrm{P}, \mathrm{Z}_{2}\right) \rightarrow \mathrm{H}_{1}\left(\mathrm{P}, \mathrm{Z}_{2}\right)$ and $\mathrm{f}_{*_{2}}: \mathrm{H}_{2}\left(\mathrm{P}, \mathrm{Z}_{2}\right) \rightarrow \mathrm{H}_{2}\left(\mathrm{P}, \mathrm{Z}_{2}\right)$ are either both trivial or both non-trivial.

Proof. From the Universal Coefficient Theorem (see [3], p. 160) it follows that there exists a functorial
isomorphism $\alpha: H_{2}\left(P, Z_{2}\right) \rightarrow \operatorname{Tor}\left(H_{1}(P, Z), Z_{2}\right)$, thus we get the following cummutative diagram

This yields that $f_{\star_{2}}=0$ if and only if $\operatorname{Tor}\left(f_{\star_{1}}, Z_{2}\right)=0$. Now, notice that $\operatorname{Tor}\left(\mathrm{H}_{1}(\mathrm{P}, \mathrm{Z}), \mathrm{Z}_{2}\right) \approx \operatorname{Tor}\left(\mathrm{Z}_{2}, \mathrm{Z}_{2}\right) \approx \mathrm{Z}_{2} \approx \mathrm{H}_{1}\left(\mathrm{P}, \mathrm{Z}_{2}\right)$. Hence, f_{*} is either 0 or the identity (these are the only two homomorphisms on Z_{2}). Since $\operatorname{Tor}\left(0, Z_{2}\right)=0$ and $\operatorname{Tor}\left(\cdot, Z_{2}\right)$ is a functor, we get $\operatorname{Tor}\left(\mathrm{f}_{*_{1}}, \mathrm{Z}_{2}\right)=0$ if and only if $\mathrm{f}_{* 1}=0$, which concludes the proof.

Lemma 2. Let f be a map from X_{n} to X_{k} and denote by $\mathrm{f}_{(\mathrm{ij})}$ the composition $\mathrm{r}_{\mathbf{k j}} \mathrm{fs}_{\mathbf{i n}}, \mathrm{f}_{(\mathrm{ij})}: \mathrm{P}_{\mathrm{i}} \rightarrow \mathrm{P}_{\mathrm{j}}$. Then the homomorphism $\mathrm{f}_{\text {* }}: \mathrm{H}_{\mathrm{q}}\left(\mathrm{X}_{\mathrm{n}}, \mathrm{G}\right) \rightarrow \mathrm{H}_{\mathrm{q}}\left(\mathrm{X}_{\mathrm{k}}, \mathrm{G}\right)$ induced by f is unique Zy determined by the collection $\left\{\mathbf{f}_{(\mathrm{ij}){ }_{\mathrm{q}} \mathrm{q}}\right\}$ of homomorphisms induced by the maps $f_{(i j)}$, where $i=1,2, \ldots, n, j=1,2, \ldots, k$.

We omit the quite simple and natural routine proof of the above lemma.

As we noticed before, the groups $H_{1}\left(X_{n}, Z_{2}\right)$ and $H_{2}\left(X_{n}, Z_{2}\right)$ are isomorphic, namely $H_{1}\left(X_{n}, Z_{2}\right)=\boldsymbol{\oplus}_{i=1}^{n} H_{1}\left(P_{i}, Z_{2}\right) \approx \oplus_{i=1}^{n} Z_{2}$ and $H_{2}\left(X_{n}, Z_{2}\right)=\Theta_{i=1}^{n} H_{2}\left(P_{i}, Z_{2}\right) \approx \oplus_{i=1}^{n} Z_{2}$. Let $h: H_{1}\left(X_{n}, Z_{2}\right) \rightarrow H_{2}\left(X_{n}, Z_{2}\right)$ be the isomorphism which carries the non-zero element e_{i} of $H_{1}\left(P_{i}, Z_{2}\right)$ onto the non-zero element E_{i} of $H_{2}\left(P_{i}, z_{2}\right)$, for every $i=1,2, \ldots, n, n=1,2, \ldots$

Lemmas 1 and 2 yield immediately that, for every map $\mathrm{f}: \mathrm{X}_{\mathrm{k}} \rightarrow \mathrm{X}_{\mathrm{n}}$, the diagram
(*)

is commutative, for every $k=1,2, \ldots$ and every $n=1,2, \ldots$

The Example

Since the inclusion map of P_{i} into X induces a monomorphism of the homology groups in every dimension, we may assume that $e_{i} \in H_{1}\left(X, Z_{2}\right)$ and $E_{i} \in H_{2}\left(X, Z_{2}\right)$, for every $i=1,2,3, \ldots$ Let a be the element of $H_{1}\left(X, Z_{2}\right)$ which can be written as $\sum_{i=1}^{\infty} e_{2 i-1}$, similarly, let $b=\sum_{i=1}^{\infty} e_{2 i}$, and let $c=\sum_{i=1}^{\infty} E_{i} . \quad$ Both a and b are cancellable rel. \{c\}. Indeed, the map of X onto X which collapses each $P_{2 i-1}$ into x_{0} and maps $P_{2 i}$ homeomorphically onto P_{i} keeping x_{0} fixed, is a cancellation of a rel. \{c\}. A cancellation of b rel. $\{c\}$ is constructed in the same fashion. However, as we prove below, $a+b$ is not cancellable rel. $\{c\}$, which solves the problem. Assume then that \underline{f} is a fundamental sequence from X to X with $\underline{f}_{*}(\mathrm{a}+\mathrm{b})=0$. Our claim is that $\underline{f}_{* 2}(\mathrm{c})=0$.

For every positive number ε there exists an integer n such that, for every $i>n, \operatorname{diam} P_{i}<\varepsilon$. The map $r_{n}: X \rightarrow X_{n}$ which collapses $X \backslash X_{n}$ into x_{0} and leaves every point of X_{n} fixed is an ε-displacement. Since ε is arbitrary, it is sufficient to prove that $\left(\underline{r}_{n} \underline{f}\right)_{*_{2}}(c)=0$, where \underline{r}_{n} is the fundamental sequence from X to X_{n}, generated by r_{n}.

Since X_{n} is an ANR-space, the fundamental class [$\underline{r}_{n} \underline{f}$] is generated by a map, say $g: X \rightarrow X_{n}$. Obviously, $g_{*}(a+b)$ $=0$ and it is sufficient to prove that $g_{*_{2}}(c)=0$. Again, since X_{n} is an ANR-space, we may assume that, for some integer
k, g maps the set $X \backslash X_{k}$ into the point x_{0}, replacing the map g by a map homotopic to g, if necessary. In other words, we assume that $g=\bar{g} r_{k}$, where \bar{g} is a map from X_{k} into X_{n} and $r_{k}: X \rightarrow X_{k}$ is a retraction which maps $X \backslash X_{k}$ into X_{0}. By our assumption, we get $\bar{g}_{*_{1}} r_{k * 1}(a+b)=0$ which means $\bar{g}_{*_{1}}\left(e_{1}+\right.$ $e_{2}+\cdots+e_{k}$) $=0$. Applying diagram (*) from Section 3, we get $\bar{g}_{* 2}\left(E_{1}+E_{2}+\cdots+E_{k}\right)=0$. This Yields $\bar{g}_{*_{2}} r_{k * 2}(c)$ $=0$ and $g_{*_{2}}(c)=0$, which completes the proof.

References

[l] K. Borsuk, On a new shape invariant, Topology Proceedings 1 (1976), l-9.
\qquad , Theory of shape, Monografie Matematyczne 59, Warszawa, 1975.
[3] S. Eilenberg and N. Steenrod, Foundations of algebraic topoZogy, Princeton, 1952.

Auburn University
Auburn, Alabama 36830

