TOPOLOGY PROCEEDINGS Volume 4, 1979

Pages 173–176

http://topology.auburn.edu/tp/

NO INFINITE-DIMENSIONAL LOCALLY COMPACT ANR IS A TOPOLOGICAL GROUP

by

H. TORUŃCZYK

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

NO INFINITE-DIMENSIONAL LOCALLY COMPACT ANR IS A TOPOLOGICAL GROUP

H. Toruńczyk

The combined results of Gleason [2] and Montgomery and Zippin [4] characterize Lie groups as the locally connected, locally compact metrizable topological groups of finite dimension. The assumption of finite-dimensionality is essential here, as the example of infinite product of circles shows. In this note we remark that a theorem of Iwasawa and results from Q-manifold theory allow this assumption to be replaced by the one that the space underlying the group be an Absolute Neighbourhood Retract:

Theorem. Let X be a locally compact, metrizable topological group. If $X \in ANR$ then dimX < ∞ and hence X is a Lie group.

In the proof we need the following (we write I = [0,1]):

Lemma. Let $Y \in ANR$. If there is an open cover U of Y consisting of sets having the disjoint n-cube property, then Y has the disjoint n-cube property, i.e. any map $I^n \times \{1,2\}$ + Y is the uniform limit of maps sending $I^n \times 1$ and $I^n \times 2$ to disjoint sets.

Proof. (By induction on n). Fix f: $I^n \times \{1,2\} \rightarrow Y$, choose $\varepsilon > 0$ so that each subset of im(f) of diameter $< \varepsilon$ is contained in an element of U and let \mathcal{I} be a triangulation of I^n such that diam $f(\sigma) < \varepsilon/3$ for $\sigma \in \mathcal{I} \times \{1,2\}$. By

inductive assumption and properties of ANR's we may assume that $f(A \times 1) \cap f(A \times 2) = \phi$, where A is the (n-1)-skeleton of \mathcal{I} . Let $\{\sigma_1, \ldots, \sigma_k\}$ be all the n-simplices in \mathcal{I} . We construct maps f_1, \ldots, f_k : $I^n \times \{1, 2\} \rightarrow Y$ such that, for $i \leq k$, the following holds

- (1)_i $f_i((\sigma_1 \cup \ldots \cup \sigma_i) \times 1) \cap f_i(I^n \times 2) = \phi,$ (2)_i $f_i(x) = f(x)$ for $x \in A \times \{1,2\},$
- (3), $dist(f_{i}, f_{i-1}) < \delta/k$,

where $f_0 = f$. Then f_k sends $I^n \times 1$ and $I^n \times 2$ to disjoint sets and approximates f within a given $\delta > 0$.

The construction of f_i (We assume $\delta < \varepsilon/3$): Consider the set $J = \{j: f_{i-1}(\sigma \times 2) \cap f_{i-1}(\sigma_i \times 1) \neq \phi\}$. By (3) we have dist(f, f_{i-1}) $< \varepsilon/3$ whence diam f(σ) $< \varepsilon/3$ for $\sigma \in \mathcal{I} \times \{1,2\}$ and, with $F = \bigcup_{j \in J} f_{i-1}(\sigma_j \times 2) \cup f_{i-1}(\sigma_i \times 1)$ we have diam $F < \varepsilon$. Thus F is contained in a member of \mathcal{U} and we may alter f_{i-1} on $\bigcup_{j \in J} \sigma_j \times 2 \cup \sigma_i \times 1$ modulo $A \times \{1,2\}$ by so small an amount that the resulting map satisfies (1)_i and (3)_i.

Proof of the Theorem. Assume that $X \in ANR$ and dim $X = \infty$. Given an integer n it follows from a theorem of Iwasawa that each point $x \in X$ has a neighbourhood homeomorphic to $V_X \times R^{2n+1}$, for some space V_X . (See [3] or [5], p. 184). Since $V_X \times R^{2n+1}$ has the disjoint cube property (by general position applied to R^{2n+1}) it follows from the Lemma that X also has this property. A locally compact ANR having the disjoint n-cube property for each n is a manifold modeled on the Hilbert cube Q [6], and hence X is a Q-manifold. This, however, is impossible since no Q-manifold carries a topological group structure (see [1]). Thus either $X \notin ANR$ or dim X < ∞ .

The above result shows in particular that, among locally compact metrizable topological groups, the property of being an ANR forces the underlying space to have a manifold structure. It is unknown if the same is true for complete metrizable groups X, where by a manifold we now mean a space locally homeomorphic to a Hilbert space of infinite dimension. (Even the case of linear metric spaces is not settled and in general it is known only that $X \times \ell_2$ is a manifold, cf[7]). It is also unknown if the assumption "X \in ANR" in the theorem can be replaced by "X is locally contractible".

References

- [1] A. Fathi and Y.M. Visetti, Deformation of open embeddings of Q-manifolds, Trans. Amer. Math. Soc. 224 (1976), 427-435.
- [2] A. Gleason, Groups without small subgroups, Ann. of Math. 56 (1952), 193-212.
- [3] K. Iwasawa, On some types of topological groups, Ann. of Math. 50 (1949), 507-557.
- [4] D. Montgomery and L. Zippin, Small subgroups of finitedimensional groups, Ann. of Math. 56 (1952), 213-241.
- [5] _____, Topological transformation groups, Interscience Tracts in Pure and Applied Mathematics, Vol. 1.
- [6] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds, to appear in Fund. Math.
- [7] _____, Characterizing Hilbert space topology, to appear in Fund. Math.

Torunczyk

Institute of Mathematics

Polish Academy of Sciences

Vanderbilt University

Nashville, Tennessee