TOPOLOGY PROCEEDINGS

Volume 4, 1979

Pages 173-176

http://topology.auburn.edu/tp/

NO INFINITE-DIMENSIONAL LOCALLY COMPACT ANR IS A TOPOLOGICAL GROUP

by H. Toruńczyk

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

NO INFINITE-DIMENSIONAL LOCALLY COMPACT ANR IS A TOPOLOGICAL GROUP

H. Toruńczyk

The combined results of Gleason [2] and Montgomery and Zippin [4] characterize Lie groups as the locally connected, locally compact metrizable topological groups of finite dimension. The assumption of finite-dimensionality is essential here, as the example of infinite product of circles shows. In this note we remark that a theorem of Iwasawa and results from Q-manifold theory allow this assumption to be replaced by the one that the space underlying the group be an Absolute Neighbourhood Retract:

Theorem. Let X be a locally compact, metrizable topological group. If $X \in ANR$ then dimX < ∞ and hence X is a Lie group.

In the proof we need the following (we write I = [0,1]):

Lemma. Let $Y \in ANR$. If there is an open cover U of Y consisting of sets having the disjoint n-cube property, then Y has the disjoint n-cube property, i.e. any map $I^{n} \times \{1,2\}$ Y is the uniform limit of maps sending $I^{n} \times 1$ and $I^{n} \times 2$ to disjoint sets.

Proof. (By induction on n). Fix f: $I^n \times \{1,2\} \to Y$, choose $\varepsilon > 0$ so that each subset of im(f) of diameter $< \varepsilon$ is contained in an element of U and let I be a triangulation of I^n such that diam $f(\sigma) < \varepsilon/3$ for $\sigma \in I \times \{1,2\}$. By

174 Toruńczyk

inductive assumption and properties of ANR's we may assume that $f(A \times 1) \cap f(A \times 2) = \phi$, where A is the (n-1)-skeleton of \mathcal{I} . Let $\{\sigma_1, \ldots, \sigma_k\}$ be all the n-simplices in \mathcal{I} . We construct maps $f_1, \ldots, f_k \colon \text{I}^n \times \{1,2\} \to \text{Y}$ such that, for $i \leq k$, the following holds

(1)_i
$$f_i((\sigma_1 \cup ... \cup \sigma_i) \times 1) \cap f_i(I^n \times 2) = \phi$$
,

(2)
$$f_i(x) = f(x) \text{ for } x \in A \times \{1,2\},$$

(3),
$$\operatorname{dist}(f_i, f_{i-1}) < \delta/k$$
,

where $f_0 = f$. Then f_k sends $I^n \times 1$ and $I^n \times 2$ to disjoint sets and approximates f within a given $\delta > 0$.

The construction of f_i (We assume $\delta < \epsilon/3$): Consider the set $J = \{j \colon f_{i-1}(\sigma \times 2) \cap f_{i-1}(\sigma_i \times 1) \neq \emptyset \}$. By (3) we have $dist(f, f_{i-1}) < \epsilon/3$ whence $diam\ f(\sigma) < \epsilon/3$ for $\sigma \in \mathcal{I} \times \{1,2\}$ and, with $F = \bigcup_{j \in J} f_{i-1}(\sigma_j \times 2) \cup f_{i-1}(\sigma_i \times 1)$ we have diam $F < \epsilon$. Thus F is contained in a member of \mathcal{U} and we may alter f_{i-1} on $\bigcup_{j \in J} \sigma_j \times 2 \cup \sigma_i \times 1$ modulo $A \times \{1,2\}$ by so small an amount that the resulting map satisfies (1) and (3);

Proof of the Theorem. Assume that $X \in ANR$ and $dimX = \infty$. Given an integer n it follows from a theorem of Iwasawa that each point $x \in X$ has a neighbourhood homeomorphic to $V_X \times R^{2n+1}$, for some space V_X . (See [3] or [5], p. 184). Since $V_X \times R^{2n+1}$ has the disjoint cube property (by general position applied to R^{2n+1}) it follows from the Lemma that X also has this property. A locally compact ANR having the disjoint n-cube property for each n is a manifold modeled on the Hilbert cube Q [6], and hence X is a Q-manifold. This, however, is impossible since no Q-manifold carries a

topological group structure (see [1]). Thus either X $\not\in$ ANR or dim X < ∞ .

The above result shows in particular that, among locally compact metrizable topological groups, the property of being an ANR forces the underlying space to have a manifold structure. It is unknown if the same is true for complete metrizable groups X, where by a manifold we now mean a space locally homeomorphic to a Hilbert space of infinite dimension. (Even the case of linear metric spaces is not settled and in general it is known only that $X \times \ell_2$ is a manifold, cf[7]). It is also unknown if the assumption "X \in ANR" in the theorem can be replaced by "X is locally contractible".

References

- [1] A. Fathi and Y.M. Visetti, Deformation of open embeddings of Q-manifolds, Trans. Amer. Math. Soc. 224 (1976), 427-435.
- [2] A. Gleason, Groups without small subgroups, Ann. of Math. 56 (1952), 193-212.
- [3] K. Iwasawa, On some types of topological groups, Ann. of Math. 50 (1949), 507-557.
- [4] D. Montgomery and L. Zippin, Small subgroups of finite-dimensional groups, Ann. of Math. 56 (1952), 213-241.
- [5] _____, Topological transformation groups, Interscience Tracts in Pure and Applied Mathematics, Vol. 1.
- [6] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds, to appear in Fund. Math.
- [7] _____, Characterizing Hilbert space topology, to appear in Fund. Math.

176

Institute of Mathematics
Polish Academy of Sciences

Vanderbilt University Nashville, Tennessee