TOPOLOGY PROCEEDINGS

Volume 4, 1979

Pages 201-211

http://topology.auburn.edu/tp/

HEREDITARY PROPERTIES IN GO-SPACES; A DECOMPOSITION THEOREM AND SOME APPLICATIONS

by

J. M. VAN WOUWE

Topology Proceedings

 $\textbf{Web:} \qquad \text{http://topology.auburn.edu/tp/}$

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

HEREDITARY PROPERTIES IN GO-SPACES; A DECOMPOSITION THEOREM AND SOME APPLICATIONS

J. M. van Wouwe

Introduction

During the last years considerable research has been done about what it means for a space that each of its subspaces satisfies a certain, in general not hereditary property. This kind of problem was more or less started by A. V. Arhangel'skii in [1]. He proved that a space, each of which subspaces is a Lindelöf p-space is metrizable.

H. Bennett and D. J. Lutzer ([2]) proved that a GO-space that is hereditarily an M-space (p-space) is metrizable.

We here prove a theorem about decompositions of GO-spaces from which Bennett and Lutzers result can be derived. Also it can be used to prove something about GO-spaces that are hereditarily a \(\Sigma - \space \).

1. The Decomposition Theorem

First we give some terminology. A subset D of a topological space X is called *discrete in* X if it is closed in X and carries as a subspace the discrete topology. A subset is said to be a σ -discrete (in X) if it is the union of countably many discrete (in X) sets. For a GO-space $X = (X, \leq, \tau)$ we define

$$E(X): = \{x \in X | [x, \rightarrow) \in \tau \text{ or } (\leftarrow, x] \in \tau\}$$

If X is metrizable than obviously E(X) is σ -discrete, since X has a σ -discrete base.

For more terminology on GO-spaces we refer to [4]. Finally we state here a well-known result about decompositions of GO-spaces, which will be used several times.

Proposition 1.1. If $X = (X, \leq, \tau)$ is a GO-space and \hat{D} is an equivalence relation on X such that the decomposition space X/\hat{D} consists of convex closed sets then the triple $(X/\hat{D}, \leq, \delta)$ is a GO-space, where \leq is the obvious order on X/\hat{D} and δ is the quotient topology on X/\hat{D} .

Theorem 1.2. Let $X=(X,\leq,\tau)$ be a GO-space and \hat{D} an equivalence relation on X with convex equivalence classes, such that

- (i) X/D is metrizable
- (ii) each equivalence class of D has a G_{δ} -diagonal. If each subspace of X is a p-space (resp. M-space, resp. Σ -space) then X is metrizable.

Proof. Denote the quotient space X/∂ by dX and let d: $X \to dX$ be the quotient map. Whenever $x \in X$ we shall denote $d^{-1}(d(x))$ by \tilde{x} . Define the following subsets of X:

 $K: = \{x \in X | \tilde{x} = \{x\}\}$

L: = $\{x \in X | x \text{ is left endpoint of } \tilde{x}, \text{ and } |\tilde{x}| > 1\}$

R: = $\{x \in X | x \text{ is right endpoint of } \tilde{x}, \text{ and } |\tilde{x}| > 1\}.$

Moreover

A: = L U $\{x \in R | \tilde{x} \text{ has no left endpoint} \}$.

B: = R U $\{x \in R | \tilde{x} \text{ has no right endpoint} \}$.

The set $V:=\{y\in dX\,|\,y \text{ is not isolated}\}$ is closed in dX and hence a G_{δ} -set. Let O(n) $(n=1,2,\ldots)$ be open sets in dX such that $V=\bigcap_{n=1}^{\infty}O(n)$ and $O(n+1)'\subset O(n)$, and put $U(n):=d^{-1}[O(n)]$. Now observe that if Z is a subset of X such

that $d \mid Z$ is one-to-one then Z has a G_{δ} -diagonal, and hence is metrizable, since a GO-space with a G_{δ} -diagonal is paracompact and hence metrizable if its is a p-space or M-space, by the Okuyama-Borges theorem ([6] or [3]). Also, by [5] a paracompact Σ -space with a G_{δ} -diagonal is a σ -space, and hence metrizable if it is a GO-space. This implies that K U A and K U B are metrizable. Clearly A (resp. B) is contained in E(K U A) (resp. E(K U B)) so A (B) is σ -discrete in K U A (K U B respectively). Consequently A can be written as $\bigcup_{n=1}^{\infty} A(n)$ where $A(n+1) \supset A(n)$, and for each $x \in K$ U A and $n \in \mathbb{N}$ there exists an open (in X) convex neighbourhood O(x,n) of x such that

$$O(x,n) \cap (A(n) \setminus \{x\}) = \emptyset$$

and B can be written as $\bigcup_{n=1}^{\infty} B(n)$ where $B(n+1) \supset B(n)$ and for each $x \in K \cup B$ and $n \in N$ there exists an open (in X) convex neighbourhood U(x,n) of x with

$$U(x,n) \cap (B(n) \setminus \{x\}) = \emptyset.$$

We may suppose that if x' belongs to O(x,n) (U(x,n) resp.) and $d(x') \neq d(x)$ then \tilde{x}' is contained in O(x,n) (U(x,n) respectively) for there are at most two points $y \neq d(x)$ such that $d^{-1}(y)$ meets O(x,n) but is not contained in it. Subtracting $d^{-1}(y)$ from O(x,n) for those y, we obtain a set with all the required properties. The same applies to U(x,n). We will now prove that X has a G_{δ} -diagonal too, from which it follows in all cases that X is metrizable. Let $(V(n))_{n=1}^{\infty}$ be a sequence of open covers of dX, such that $\bigcap_{n=1}^{\infty} \operatorname{St}(y,V(n)) = \{y\}$ for each $y \in dX$, and for each $n \in \mathbb{N}$, $y \in dX$ let $W(d^{-1}(y),n)$ be an open neighbourhood of $d^{-1}(y)$ in X that is mapped by d into some element of V(n), with

the additional property that $W(d^{-1}(y), n+1) \subset W(d^{-1}(y), n)$.

Furthermore, for each $y \in dx$ let $({}^{W}_{y}(n))_{n=1}^{\infty}$ be a sequence of open (in $d^{-1}(y)$) covers of $d^{-1}(y)$ such that $\bigcap_{n=1}^{\infty} \operatorname{St}(x, {}^{W}_{y}(n)) = \{x\}$ for each $x \in d^{-1}(y)$. For each $n \in \mathbb{N}$, $x \in d^{-1}(y)$ choose an open (in $d^{-1}(y)$) neighbourhood $W_{y}(x,n)$ of x, contained in some element of $W_{y}(n)$ such that $W_{y}(x,n+1) \subset W_{y}(x,n)$ and such that $W_{y}(x,n)$ contains no endpoints of $d^{-1}(y)$ except possibly x itself. In particular, this implies that $W_{y}(x,n)$ is open in X if x is an interior point of \tilde{x} .

Now for $x \in X$, $n \in \mathbb{N}$ define W(x,n) as follows:

- if $x \in Int(\tilde{x})$ then $W(x,n) := W_{d(x)}(x,n)$.
- if $x \notin Int(\tilde{x})$ then we have the following possibilities:
- (i) x ∈ K

 $W(x,n) := U(x,n) \cap O(x,n) \cap U(n) \cap W(d^{-1}(d(x)),n).$

(ii) $x \in L$ $W(x,n) := [(O(x,n) \cap (\leftarrow,x]) \cup W_{d(x)}(x,n)] \cap U(n)$ $\cap W(d^{-1}(d(x)),n).$

(iii) $x \in R$ $W(x,n) := [(U(x,n) \cap [x,*)) \cup W_{d(x)}(x,n)] \cap U(n)$ $\cap W(d^{-1}(d(x)),n).$

Observe that in all cases $W(x,n) \cap \tilde{x} = W_{\tilde{d}(x)}(x,n)$ (*)

$$W(n) := \{W(x,n) | x \in X\}$$
 $(n = 1,2,...)$

then each $\mathcal{W}(n)$ is an open cover of X. We shall prove that $\bigcap_{n=1}^{\infty} \operatorname{St}(\mathbf{x}, \mathcal{W}(n)) = \{\mathbf{x}\} \text{ for each } \mathbf{x} \in X. \text{ To this end fix distinct points } \mathbf{x}_1 \text{ and } \mathbf{x}_2 \text{ in X.} \text{ We claim that there exists a natural number n, depending only on } \mathbf{x}_1 \text{ and } \mathbf{x}_2 \text{ such that each } \mathbf{W}(\mathbf{x}, \mathbf{n}) \text{ misses either } \mathbf{x}_1 \text{ or } \mathbf{x}_2.$

Let x be an arbitrary element of X. We have the following possible cases:

(I) $d(x_1) \neq d(x_2)$.

Take n such that $d(x_2) \notin St(d(x_1), V(n))$. Since W(x,n) is contained in $W(d^{-1}(d(x)),n)$ and hence is mapped into some element of V(n), which cannot contain both $d(x_1)$ and $d(x_2)$ either x_1 or x_2 does not belong to W(x,n).

- (II) $d(x_1) = d(x_2)$ (Clearly x_1 and x_2 do not belong to K).
- a) $d(x_1)$ is an isolated point of dX. Take n such that $d(x_1)$ does not belong to O(n) and $x_2 \not\in St(x_1, \overset{W}{d}(x_1))$. If $d(x) = d(x_1)$ then (*) and the condition $x_2 \not\in St(x_1, \overset{W}{d}(x_1))$ (n) imply that W(x, n) does not contain both x_1 and x_2 . If $d(x) \neq d(x_1)$ then $W(x, n) \cap \tilde{x}_1 = \emptyset$ if W(x, n) is contained in \tilde{x} , and if W(x, n) is not contained in \tilde{x} then $W(x, n) \subset U(n)$ because d(x) is not isolated; so $W(x, n) \cap \tilde{x}_1$ is empty too.
 - b) $d(\mathbf{x}_1)$ is not an isolated point of $d\mathbf{X}$. We have three possible subcases
 - 1) \tilde{x}_1 has a left endpoint 1 and no right endpoint. Consequently 1 \in A \cap B.

Take n such that $1 \in A(n) \cap B(n)$ and $x_2 \notin St(x_1, \overset{W}{\cup}_{d(x_1)}(n))$. If $d(x) = d(x_1)$ then again (*) implies that W(x,n) misses either x_1 or x_2 ; if $d(x) \neq d(x_1)$ then $W(x,n) \cap \tilde{x}_1 = \emptyset$ if W(x,n) is contained in \tilde{x} . If $W(x,n) \setminus \tilde{x}$ is non-empty then $x \in K \cup A$ or $x \in K \cup B$, and hence U(x,n) (or O(x,n) respectively) is defined and contains $W(x,n) \setminus \tilde{x}$. Consequently, W(x,n) misses 1, and hence by the extra condition on O(x,n) (or U(x,n)) it also misses x_1 .

2) \tilde{x}_1 has a right endpoint r and no left endpoint. The argument for this case is completely analogous to that for the preceding case.

- 3) \tilde{x}_1 has a left endpoint 1 and right endpoint r. Fix n such that $1 \in A(n)$, $r \in B(n)$ and $x_2 \notin St(x_1, \mathcal{W}_{d(x_1)}(n))$. Assume that $d(x) \neq d(x_1)$ and that W(x,n) is not contained in \tilde{x} (Else argue as under 1)). Then $W(x,n)\setminus \tilde{x}$ is contained in either O(x,n) or U(x,n), so it misses either 1 or r, and hence $W(x,n)\cap \tilde{x}_1=\emptyset$. It follows that in all possible cases x_2 does not belong to $St(x_1,\mathcal{W}(n))$ for some n. So $\bigcap_{n=1}^{\infty} St(x,\mathcal{W}(n))=\{x\}$ for each $x\in X$ which proves the theorem.
- Note. In this proof p-, M-, or Σ -space can of course be replaced by any other property that together with the existence of a G_{δ} -diagonal implies metrizability in a GO-space, as is clear from the proof. However, the condition cannot be dropped altogether; the lexicographic ordered square L is an example of a non-metrizable space while the equivalence relation ∂ on L, defined by

 $(x,y) \, \hat{\partial}(x',y') <=> \ x = y \qquad ((x,y),(x',y') \in L)$ satisfies (i) and (ii) in Theorem 1.2.

2. Applications

First we prove the following theorem.

Theorem 1.2. Let $X=(X,\leq,\tau)$ be a GO-space such that $X=A\cup B$ where A and B are dense, metrizable subspaces of X. Then X is metrizable.

Proof. We claim that a σ -discrete (in A) subset of A is σ -discrete in X. To prove this take a discrete (in A)

subset F of A. Since X is hereditarily collectionwise normal, there exists for each $x \in F$ an open (in X) convex neighbourhood U(x) of X such that $U(x) \cap U(x') = \emptyset$ if $x \neq x'$. Since B is dense in X, $\{U(x) \cap B | x \in F\}$ is a disjoint collection of non-empty open convex subsets of B. It follows from ([4], Theorem 2.4.5) that this collection can be written as $U_{n=1}^{\infty} \theta(n)$, where each $\theta(n)$ is a discrete collection in B. Now put

 $F(n):=\{x\in F\big|U(x)\ \cap\ B\in \ \hbox{∂\,(n)$}\} \qquad (n=1,2,\ldots)\,.$ Then each F(n) is discrete in X and $F=\bigcup_{n=1}^\infty F(n)\,.$

Hence each discrete subset of A is σ -discrete in X, and the same holds for a σ -discrete (in A) subset of A. Of course an analogous statement is true for a σ -discrete (in B) subset of B.

It follows that X has a σ -discrete dense subset, since A has one; moreover $E(X) \subset E(A) \cup E(B)$, and since both E(A) and E(B) are σ -discrete in X, E(X) is σ -discrete in X. Hence, X is metrizable by ([4], Theorem 3.1).

We are now ready to prove Bennett and Lutzers theorem of [2] with the help of Theorem 1.2. Let X be a GO-space that is hereditarily a p-space or an M-space. It was proven in [2] that X is paracompact. Define an equivalence relation $\mathcal{G}_{\mathbf{x}}$ on X by

 $xg_Xy \iff$ the closed interval between x and y is compact $(x,y \in X)$.

By ([7], Theorem 2.1.3) the decomposition space X/\mathcal{G}_X is metrizable. Hence, to show that X is metrizable it suffices to show that each equivalence class is metrizable; and to show that an equivalence class G is metrizable, we only have

to prove, by paracompactness of X, that for $x,y \in G(x < y)$ the interval [x,y] is metrizable.

Now fix $C = [x,y] \subset X$ such that [x,y] is compact. We define another equivalence relation \sim on C by

 $x \sim y \iff$ the closed interval between x and y is metrizable $(x,y \in C)$.

Clearly, each equivalence class is metrizable, so we have to prove that C': = $C/^{\sim}$ is metrizable. Note that C' is also a hereditary p-space since the quotient mapping is perfect.

Now observe that C' is a compact, connected GO-space, since it cannot have neighbours by the definition of \sim . Suppose that C' consists of more than one point; then it is easy to define two disjoint dense subsets P and Q of C' such that P U Q = C'. Then P and Q are p-spaces; hence the quotient spaces P/ \mathcal{G}_{p} (\simeq P) and Q/ \mathcal{G}_{Q} (\simeq Q) are metrizable by ([7], Theorem 2.1.3). Consequently C' is metrizable by Theorem 2.1, and we are done.

Another application of Theorem 1.2 lies in the field of generalized ordered Σ -spaces. A Σ -network for a space X is a σ -locally finite closed cover $\mathcal{F} = \bigcup_{n=1}^{\infty} \mathcal{F}(n)$ of X (where each $\mathcal{F}(n)$ is locally finite) with the following properties:

- (i) $C(x) := \bigcap \{F | x \in F \in \mathcal{F}\}\$ is countably compact
- (ii) If U is an open set containing C(x) then there exists an $F \in \mathcal{F}$ such that $C(x) \subset F \subset U$ $(x \in X)$ A space that admits a Σ -network is called a Σ -space (Nagami, [5]).

In [7] we proved the following fact about generalized ordered Σ -spaces: Define for a GO-space X an equivalence

relation / in the following way:

 $x / y \iff$ the closed interval between x and y is a Lindelöf-space $(x,y \in X)$,

and let 1X: = X/L be the quotient space. Again, 1X is a GO-space, and we have

Theorem 2.2. Let $X = (X, \le, \tau)$ be a paracompact GO-space. Then X is a Σ -space \iff 1X is metrizable and each $L \in X/L$ has a Σ -network.

Now the following facts are known about GO-spaces that are hereditarily Σ -spaces (see [7]):

- 1) Let X be a GO-space that is a hereditary Σ -space. Then X is hereditarily paracompact. (Note that for instance the ordinal space ω_1 is not a hereditary Σ -space; a bistationary set in ω_1 is not a Σ -space).
- 2) Let X be a GO-space that is both a Σ -space and hereditarily paracompact. Then X is first countable.

Corollary. If X is a hereditarily Σ -space then X is first countable.

Furthermore, we state the following theorem, without proof.

Theorem 2.3. ([7], Theorem 4.1.3) Let $X = (X, \stackrel{<}{-}, \tau)$ be a perfectly normal GO-space. Then

X is a Σ -space \iff X is an M-space.

It is an unsolved problem whether a GO-space that is a hereditary Σ -space is metrizable. However, with the help of the facts stated above, we are able to prove that the

following conjectures are equivalent.

Conjecture I: Each GO-space that is a hereditary Σ -space is metrizable.

Conjecture II: Each Lindelöf GO-space that is a hereditary Σ -space is hereditarily Lindelöf.

That Conjecture II follows if Conjecture I holds, is trivial, so suppose that the second conjecture is true, and let X be a GO-space that is a hereditary Σ -space. By Theorem 2.2. the quotient space lX is metrizable. Hence, by Theorem 1.2. it is sufficient to prove that each L of the decomposition X/L is metrizable. By paracompactness of X we only have to prove this for each subset $L' \subset L$ with two endpoints. Now let L' = [a,b] be a subset of some $L \in X/L$. Then L' is Lindelöf by the definition of L, and hence, by Conjecture II it is hereditarily Lindelöf. Consequently, L' is perfectly normal so L' is an M-space by Theorem 2.3. Since the same applies to each subset of L', it follows from the Bennett-Lutzer Theorem that L' is metrizable. Consequently, Conjecture I holds.

References

- A. V. Arhangel'skii, On hereditary properties, Gen. Top. Appl. 3 (1973), 39-46.
- [2] H. R. Bennett and D. J. Lutzer, Certain hereditary properties and metrizability in generalized ordered spaces, Fund. Math. (to appear).
- [3] C. J. R. Borges, On stratifiable spaces, Pacific. J. Math. 17 (1966), 1-16.
- [4] M. J. Faber, Metrizability in generalized ordered spaces, MC Tract 53, Amsterdam (1974).

- [5] K. Nagami, Σ-spaces, Fund. Math. LXV (1969), 169-192.
- [6] A. Okuyama, On metrizability of M-spaces, Proc. Japan Acad. 40 (1964), 176-179.
- [7] J. M. van Wouwe, GO-spaces and generalizations of metrizability, MC Tract 104, Amsterdam (1979).

Subfaculteit Wiskunde
Vrije Universiteit
De Boelelaan 1081
1007 MC Amsterdam
The Netherlands