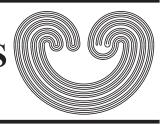
TOPOLOGY PROCEEDINGS

Volume 4, 1979 Pages 235–237



http://topology.auburn.edu/tp/

Research Announcement:

REFINABLE MAPS ON ANR'S

by

JO FORD AND GEORGE KOZLOWSKI

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

REFINABLE MAPS ON ANR'S

Jo Ford and George Kozlowski

In [F,R], Ford and Rogers define a map $F: X \rightarrow Y$ to be *refinable* if for each $\varepsilon > 0$ there is an ε -map from X onto Y whose distance from F is less than ε . They ask if a refinable map defined on a compact ANR must map onto an ANR. One reason this question is of interest is that Kozlowski has shown that a refinable map onto an ANR is a cell-like map [K,R] and hence by a result of Ferry [F] a refinable map defined on an n-manifold, n > 4, is a near homeomorphism if the image is an ANR.

The following is a brief outline of the main results from [F,K], "Refinable Maps on ANR's."

I. Geometric Results

(1) If F: X $\rightarrow \gamma$ Y is refinable, and X is a finitedimensional compact ANR, then Y is an ANR if Y is LC^1 at each point. [Note: This result for infinite-dimensional ANR's will appear in a forthcoming paper by Kozlowski and Torunczyk.]

(2) If F: X $\rightarrow \rightarrow$ Y is refinable and X is a finite dimensional compact ANR, then Y is LC^1 at each point (and hence an ANR) if either

	(a) $F^{-1}(y)$ is nearly 1-movable for all y \in Y,
or	(b) $F^{-1}(y)$ is locally connected for all $y \in Y$,
or	(c) $F^{-1}(y)$ is approximately 1-connected for all
	у є У,
or	(d) F has a monotone $\epsilon\text{-refinement}$ for every ϵ > 0.

(3) If F: $S^3 \rightarrow S^3/A$ is refinable then F is a near-homeomorphism.

II. Algebraic Results

(1) If F: X \leftrightarrow Y is refinable and X is a compact ANR then F induces an isomorphism on each Čech cohomology group of any compactum in the range. A similar result holds for homology.

Definition. A closed set A in X is "N-elementary in X with respect to the group G (or the R-module G)" if for any neighborhood U of A in X there is a neighborhood V of A such that the homomorphism $\check{H}^{N}(U;G) \rightarrow \check{H}^{N}(V;G)$ induced by the inclusion V \rightarrow U has a finitely generated image.

(2) In a more general setting, suppose $F: X \rightarrow Y$ is a refinable map between compacta. Then,

(i) if B is a compactum in Y such that $F^{-1}(B)$ is N-elementary in X with respect to a group G, then F induces an isomorphism on the Nth Čech cohomology group of B, and

(ii) if every subcompactum of X is N-elementary in X with respect to Z for each N and B is any compactum in Y, then F induces an isomorphism of the Čech homology of B to the Čech homology of $F^{-1}B$.

(3) If F: X $\rightarrow \rightarrow$ Y is a refinable map between compacta then F induces an isomorphism on each Čech cohomology group of X that is finitely generated.

(4) If F: X $\rightarrow \rightarrow$ Y is refinable and X is an orientable n-gcm over R (see [W] or [M,S]), then Y is also an orientable n-gcm over R.

III. Questions

(1) Does there exist an ANR X containing a Case-Chamberlin set A such that $X \rightarrow X/A$ is refinable? (See [C,C] for the definition.)

(2) If F: S³ → Y is refinable, must Y be an ANR?
(3) If F: Sⁿ → Sⁿ/A is refinable, then must A be cellular?

Bibliography

- [C,C] J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960), 73-84. MR 22 #1868.
- [F] S. Ferry, Homotoping ε -maps to homeomorphisms (to appear).
- [F,K] J. Ford and G. Kozlowski, Refinable images of ANR's (to appear).
- [F,R] J. Ford and J. W. Rogers, Jr., Refinable maps, Colloq. Math. XXXIX (1978), 263-269.
- [K,R] G. Kozlowski and J. W. Rogers, Jr., Shape-theoretic properties involving refinable maps (to appear).
- [M, S] S. Mardesić and Jack Segal, ε-mappings and generalized manifolds, Mich. Math. J. 14 (1967), 171-182.
- [W] R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloquium Publications 32 (1949).

Auburn University

Auburn, Alabama 36830