TOPOLOGY PROCEEDINGS Volume 4, 1979

Pages 339–343

http://topology.auburn.edu/tp/

ON OPEN-COMPACT IMAGES OF METACOMPACTSPACES

by

H. R. BENNETT

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON OPEN-COMPACT IMAGES OF METACOMPACT SPACES

H. R. Bennett

In his classic paper "Mappings and Spaces" [A] A. V. Arhangel'skii introduced the class MOBI. In [B₁] it was shown that a space X is in MOBI if there is a metric space M and a finite set $\{\phi_1, \phi_2, \dots, \phi_n\}$ of open-compact maps (= open continuous functions with compact fibers) such that

 $X = \phi_n \circ \cdots \circ \phi_1 (M)$.

This characterization greatly facilitated the study of the class MOBI.

In $[B_1]$ and $[BB_1]$ many of the questions asked by Arhangel'skii were answered negatively. Unfortunately a non-regular T_2 space was used. It became clear that the study of MOBI becomes much more interesting (and difficult) if all the spaces in MOBI must be at least regular T_1 -spaces. The use of non-regular spaces did, however, give a great deal of useful insight into what could be expected to be found in the class MOBI. In [C] Chaber answered many of Arhangel'skii's original questions using spaces that are at least regular T_1 -spaces. He exploited a construction first used by Tall [T] in answering questions in completeness.

Recall that a space X is weak θ -refinable if for each open covering l' of X there is an open refinement $\mathcal{G} =$ $\cup \{\mathcal{G}_n | n = 1, 2, \cdots\}$ such that each \mathcal{G}_n is a collection of open sets and if $x \in X$, then there is a natural number n such that x is in only finitely many mmebers of \mathcal{G}_n [BL].

Bennett

The study of MOBI would be greatly advanced if it could be proved that the oc-image (= open compact image) of a hereditarily weak θ -refinable space is hereditarily weak θ -refinable. If this were the case, then, since each metric space is hereditarily weak θ -refinable, it would follow that each space in MOBI would be hereditarily weak θ -refinable. Then, since each space in MOBI has a base of countable order [WW], it would follow that each space in MOBI was quasi-developable [B₂]. This last result follows since each hereditarily weak θ -refinable space with a base of countable order is quasi-developable [BB₂].

Unfortunately, as the next example illustrates, it is not true that the oc-image of a hereditarily metacompact space is even weak θ -refinable. However, since spaces in MOBI have additional structure, it still may be the case that each space in MOBI is hereditarily weak θ -refinable (and, hence, quasi-developable). The example does use a non-regular domain space but it still gives valuable insight into the problem.

Before describing the example some notation is needed. Let Z be a linearly ordered topological space with order \leq . Then, if a < b,

 $[a,b] = \{x \in Z | a \le x \le b\},\]a,b[= \{x \in Z | a < x < b\}, and\]a,b[= \{x \in Z | a \le x < b\}, and\]a,b[= \{x \in Z | a \le x < b\}.\]$

Example. There is a hereditarily metacompact, nonregular T_2 -space X and a linearly ordered topological space Y that is not weakly θ -refinable such that Y is the oc-image of X.

340

Let $X = \{ (\alpha, \beta) \in [0, \omega_1[\times [0, \omega_1] | \beta > \alpha \}$ where, as usual, ω_1 denotes the first uncountable ordinal. For each $\beta < \omega_1$, topologize $L_{\beta} = \{ (\alpha, \beta) | 0 \leq \alpha < \beta \}$ so L_{β} is homeomorphic to $[0, \beta[$ with usual interval topology. Since L_{β} is countable it can be indexed by the natural numbers. If α is a limit ordinal construct a local base for (α, β) such that each member of the local base is a convex set that does not contain a point of L_{β} that precedes (α, β) in the indexing of L_{β} . If α is a non-limit ordinal, let $\{ (\alpha, \beta) \}$ be the only member of the local base for (α, β) .

Let the local base for (α, ω_1) consist of all sets of

 $\{(\alpha, \omega_1)\} \cup (\bigcup \{U(\alpha, \beta) \mid \beta \in]\alpha, \omega_1[NF\})$

where F is a finite subset of $]\alpha, \omega_1[$ and $U(\alpha, \beta)$ is a member of the local base for (α, β) .

It is easy to see that X topologized in this fashion is a T_2 -space.

Let α be a limit ordinal and let U be a member of the local base for (α, ω_1) . If V is an open set such that $\mathbf{x} \in \mathbf{V} \subseteq \mathbf{U}$, then there is an ordinal $\eta < \alpha$ such that $(\delta, \beta) \in \mathbf{V}$ for uncountably many $\beta > \alpha$. Thus $(\delta, \omega_1) \in \overline{\mathbf{V}}$. Since $(\delta, \omega_1) \notin \mathbf{U}$ it follows that X cannot be regular.

Let l' be an open covering of X. For each $\alpha < \omega_1$ let U_{α} be a basic open set that refines some member of l' such that $(\alpha, \omega_1) \in U_{\alpha}$ and, if $\alpha \neq \beta$, then $(\beta, \omega_1) \notin U_{\alpha}$. The collection $l'_1 = \{U_{\alpha} \mid \alpha < \omega_1\}$ is obviously a point finite at each (α, ω_1) . If $\beta \neq \omega_1$ and $(\alpha, \beta) \in U_{l_1}$ then, by construction, $(\alpha, \beta) \in U_{n}$ only if (η, β) precedes (α, β) in the indexing of

 L_{β} . Since only finitely many (η,β) precede (α,β) in the indexing it follows that U_1 is point finite for each point in UU_1 . Since $X \setminus UU_1$ is a metric space, an open (in X) refinement U_2 of U may be found that is point-finite and covers $X - UU_1$. Hence $U_1 \cup U_2$ is a point-finite open refinement of U. Thus X is metacompact. Arguing in similar fashion it is readily seen that X is, in fact, hereditarily metacompact.

Let $Y = [0, \omega_1]$ (with the usual linear order topology. It was shown in [BL] that Y is not weakly θ -refinable.

Let ϕ : X + Y be defined by $\phi((\alpha,\beta)) = \alpha$. It is easy to check that ϕ is an open-compact map of X into Y.

This example also answers some questions in [G].

References

- [A] A. V. Arhangel'skii, Mappings and spaces, Usp. Mat.
 Nouk 21 (1966), 133-184 (Russian).
- [B1] H. R. Bennett, On Arhangel'skii's class MOBI, PAMS 26 (1970), 178-180.
- [B2] _____, On quasi-developable spaces, Gen. Top. and Appl. 2 (1972), 49-54.
- $[BB_1] \qquad \text{and E. S. Berney, Subparacompactness and} \\ G_{\delta}-diagonals in Arhangel'skii's class MOBI, PAMS \\ 30 (1971), 573-581.$
- [BB₂] _____, On certain generalizations of developable spaces, Gen. Top. and Appl. 4 (1974), 48-50.
- [BL] H. R. Bennett and D. J. Lutzer, A note on weak θ-refinability, Gen. Top and Appl. 2 (1972), 49-54.
- [C] J. Chaber, Metacompactness and the class MOBI, Fund. Math. XCI (1976), 211-217.
- [G] R. F. Gittings, Open mapping theory, Set-theoretic topology, Academic Press, 1977, 141-191.

- [T] F. Tall, On the existence of normal metacompact Moore spaces which are not metrizable, Canad. J. Math. 26 (1974), 1-6.
- [WW] H. H. Wicke and J. M. Worrell, Open continuous mappings of spaces having bases of countable order, Duke Math. J. 34 (1967), 255-271.

Texas Tech University

Lubbock, Texas 79409