TOPOLOGY PROCEEDINGS Volume 4, 1979

Pages 361–370

http://topology.auburn.edu/tp/

EMBEDDING FINITE COVERING SPACES INTO BUNDLES

by

P. F. DUVALL AND L. S. HUSCH

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOONT	01.10.110.1

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

EMBEDDING FINITE COVERING SPACES INTO BUNDLES

P. F. Duvall and L. S. Husch¹

1. Introduction

In [H], Hansen shows that if X has the homotopy type of a CW-complex of dimension $\ell \ge 1$ and if p: $X \to X$ is a finite covering map, then there exists an embedding g: $X \to X \times \mathbf{R}^{\ell+1}$ such that $\rho g = p$ where $\rho: X \times \mathbf{R}^{\ell+1} \to X$ is projection and $\mathbf{R}^{\ell+1}$ is Euclidean($\ell+1$)-space. He shows that this is the best possible result for trivial bundles since when the standard 2-fold covering, p: $S^{\ell} \to \mathbf{R}P^{\ell}$, of the real projective ℓ -space is considered, there exists no embedding g: $S^{\ell} \to \mathbf{R}P^{\ell} \times \mathbf{R}^{\ell}$ such that $\rho g = p$. We extend this result as follows.

Theorem 1. Let X be a connected, topological space with the homotopy type of a locally finite simplicial complex of dimension l. Let p: $\tilde{X} + X$ be a finite n-fold covering map and let f: V + X be an $\mathbf{R}^{\mathbf{k}}$ -bundle over X. If $\mathbf{k} > l$, then there exists an embedding g: $\tilde{X} + V$ such that f $\circ g = p$.

The proof of Theorem 1 reduces to showing the existence of a cross-section of a certain bundle over X with fiber $C_n(\mathbf{R}^k)$, the configuration space of n unordered points in \mathbf{R}^k . As a result, we also obtain the following.

Theorem 2. Let X, p, f be as in Theorem 1. If

¹Research of both authors was supported in part by an N.S.F. grant.

 $k = l \ge 4$, then there exists a unique obstruction in $H^{k}(X; \hat{\pi}_{k-1}(C_{n}(\mathbf{R}^{k})))$, the k^{th} cohomology group of X with local coefficients (in the sense of [B]) whose vanishing is a necessary and sufficient condition that there exists an embedding g: $\tilde{X} + V$ such that $f \circ g = p$.

In [D-H], we show that if X is a closed orientable manifold of even dimension k > 2 and if f: V \rightarrow X is an orientable \mathbf{R}^{k} -bundle over X, then the obstruction is the Euler class of the bundle f: V \rightarrow X. Results of this type have consequences in embedding k-dimensional compacta up to shape in Euclidean 2k-space, \mathbf{R}^{2k} .

2. Preliminaries

f: v + x is an \mathbf{R}^k -bundle if f is a bundle in the sense of [S]. In particular, f is a locally trivial map. We shall suppress the structure group which could be some subgroup of the group of homeomorphisms of \mathbf{R}^k with the compact-open topology.

Let $F_n(\mathbf{R}^k) = \{(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n) \in (\mathbf{R}^k)^n | \mathbf{x}_i \neq \mathbf{x}_j \text{ for } i \neq j\}.$ The symmetric group on n symbols, Σ_n , acts freely on $F_n(\mathbf{R}^k)$ by permutation of coordinates: if $\sigma \in \Sigma_n$, then $\sigma(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n) = (\mathbf{x}_{\sigma(1)}, \mathbf{x}_{\sigma(2)}, \cdots, \mathbf{x}_{\sigma(n)})$. Let $C_n(\mathbf{R}^k) = F_n(\mathbf{R}^k) / \Sigma_n$ be the orbit space of the action.

Two covering spaces $p_i: \stackrel{\sim}{X_i} \rightarrow X$ are *equivalent* if there exists a homeomorphism h: $\stackrel{\sim}{X_1} \rightarrow X_2$ such that $p_2h = p_1$.

Let f: V \rightarrow X be an \mathbf{R}^{k} -bundle and let p: $\tilde{X} \rightarrow$ X be an n-fold covering of X. Let $f_{(n)}$: $V_{(n)} \rightarrow$ X be the n-fold Whitney sum of f; i.e. consider the n-fold product bundle

 $\begin{aligned} & fx \cdots xf : \forall x \cdots xV \neq Xx \cdots xX \text{ and let } f_{(n)} : \forall_{(n)} \neq X \text{ be the} \\ & \text{pullback of the latter bundle induced by the diagonal map} \\ & X \neq Xx \cdots xX. \quad \forall_{(n)} = \{(x, (v_1, \cdots, v_n)) \in Xx \forall x \cdots xV | f(v_1) = \\ & f(v_2) = \cdots = f(v_n) = x\}. \quad \text{Let } \forall = \{(x, (v_1, \cdots, v_n)) \in \\ & \forall_{(n)} | v_i = v_j \text{ for some } i \neq j\} \text{ and let } F_n(\forall) = \forall_{(n)} | \forall. \text{ It} \\ & \text{ is easily checked that } \alpha = \{f_{(n)} | F_n(\forall) : F_n(\forall) \neq X\} \text{ is a bundle} \\ & \text{ over } X \text{ whose fiber is } F_n(\mathbf{R}^k). \end{aligned}$

The symmetric group Σ_n acts freely on $F_n(V)$: if $\sigma \in \Sigma_n$, define σ_{\star} on $F_n(V)$ by $\sigma_{\star}(x, (v_1, \cdots, v_n)) = (x, (v_{\sigma(1)}, \cdots, v_{\sigma(n)}))$. Let $C_n(V) = F_n(V) / \Sigma_n$ be the orbit space of this action and let τ : $F_n(V) \neq C_n(V)$ be the natural mapping. Since $\alpha \cdot \sigma_{\star} = \alpha$ for all $\sigma \in \Sigma_n$, we have an induced bundle mapping β : $C_n(V) \neq X$ whose fiber is $C_n(\mathbf{R}^k)$.

Let $\Sigma_{n-1}^{\prime} = \{ \sigma \in \Sigma_n | \sigma(1) = 1 \}$, let $E_n(V) = F_n(V) / \Sigma_{n-1}^{\prime}$ be the orbit space of this subaction and let $\mu : F_n(V) \neq E_n(V)$ be the natural mapping. Let $\gamma : E_n(V) \neq X$ be the induced bundle mapping. Note that we have an induced map $\rho : E_n(V) \neq C_n(V)$ which is an n-fold covering map [M-Z, p. 235].

We have the following analogue of Proposition 3.1 of [H].

Proposition 3. There exists an embedding $g: \stackrel{\sim}{X} \rightarrow V$ such that fg = p if and only if there exists a section $\emptyset: X \rightarrow C_n(V)$, of β (i.e. $\beta \emptyset = 1_X$ identity on X) such that the pullback of $\rho: E_n(V) \rightarrow C_n(V)$ by \emptyset is equivalent to p.

Proof. Let $g: X \to V$ be an embedding such that fg = p. Let $x \in X$ and let $p^{-1}(x) = \{x_1, \dots, x_n\}$. Define $\emptyset(x) = \tau(x, (g(x_1), g(x_2), \dots, g(x_n)));$ note that \emptyset is well-defined. We leave to the reader to supply the straightforward argument to show that β is continuous, and, hence, a section of β .

Let

be the pullback diagram where $E = \{(x,y) \in X \times E_n(V) | \emptyset(x) = \rho(y)\}$. Define h: $\tilde{X} + E$ by $h(y) = (p(y), \mu(p(y), (g(y), g(y_2), \cdots, g(y_n))))$ where $p^{-1}p(y) = \{y, y_2, \cdots, y_n\}$. Again it is straightforward to check that h is a continuous map and that the inverse of h is given by

 $h^{-1}(x,\mu(x,(v_1,\cdots,v_n))) = g^{-1}(v_1).$ Note that ρ 'h(x) = p(x); hence, the covering spaces p: $\stackrel{\circ}{X} \rightarrow X$

and $\rho': E \rightarrow X$ are equivalent.

Now suppose that the section \emptyset : $X \to C_n(V)$ exists so that there exists a homeomorphism h: $\tilde{X} \to E$ with ρ 'h = p where ρ ': $E \to X$ is the pullback of ρ by \emptyset . Define λ : $E_n(V) \to V$ by $\lambda(\mu(x, (v_1, v_2, \dots, v_n))) = v_1$; note that λ is a continuous map such that $f\lambda = \gamma$. Define g: $\tilde{X} \to V$ by $g(x) = \lambda \not{\theta}$ 'h(x). Note that $fg = f\lambda \not{\theta}$ 'h = $\gamma \not{\theta}$ 'h = $\beta \rho \not{\theta}$ 'h = $\beta \not{\theta} \rho$ 'h = p; hence g is "fiber-preserving." In order to show that g is one-toone, suppose that g(x) = g(y); thus p(x) = p(y). If

$$h(x) = (p(x), \mu(x', (v_1, \dots, v_n)))$$

and

 $h(y) = (p(y), \mu(y', (w_1, \dots, w_n))),$ then, from the definition of pullback, $\beta(p(x)) =$

364

 $\rho\mu(\mathbf{x'}, (\mathbf{v_1}, \cdots, \mathbf{v_n}))$ and

$$p(\mathbf{x}) = \beta \beta p(\mathbf{x}) = \beta \rho \mu(\mathbf{x}', (\mathbf{v}_1, \cdots, \mathbf{v}_n)) = \alpha(\mathbf{x}', (\mathbf{v}_1, \cdots, \mathbf{v}_n)) = \mathbf{x}'$$

Similarly, p(y) = y'. Since $\beta p = \beta \rho' h = \rho \beta' h$ and $\tau = \rho \mu, \{v_1, \dots, v_n\} = \{w_1, \dots, w_n\}. \text{ Also, } g(x) = \lambda \not \emptyset h(x) =$ $\lambda(\mu(\mathbf{x}', (\mathbf{v}_1, \cdots, \mathbf{v}_n))) = \mathbf{v}_1$ and $g(\mathbf{y}) = \mathbf{w}_1$, similarly. Hence, h(x) = h(y) and since h is one-to-one, x = y. g is the desired embedding.

where the rows and columns are from the exact sequences of bundles and covering spaces.

Lemma 4. If $k \ge 3$, then $\beta_* \times \partial_1 : \pi_1 C_n(V) \Rightarrow \pi_1 X \times \Sigma_n$ is an isomorphism whose inverse is given by

 $(\beta_{\star} \times \partial_{1})^{-1}(z_{1}, z_{2}) = \tau_{\star} \alpha_{\star}^{-1}(z_{1}) \cdot j_{\star}(\partial_{1})^{-1}(z_{2}).$ *Proof.* If $k \ge 3$, then $\pi_1 F_n(\mathbf{R}^k) = 1$ [F-N] and, hence, α_{\star} is an isomorphism. The rest of the proof is a straightforward diagram chasing argument.

In the proof of the latter lemma, one shows the following.

Lemma 5. If k > 3, then j_* is one-to-one.

3. Characteristic Maps for n-Fold Covering Maps

Let q: $\tilde{Y} + Y$ be an n-fold covering map, $Y_0 \in Y$ and let $q^{-1}(Y_0) = \{Y_1, \dots, Y_n\}$. Let k: [0,1] + Y represent an element of $\pi_1(Y, Y_0)$ and let k_i : $[0,1] + \tilde{Y}$ be a lifting of k so that $k_i(0) = Y_i$. Let $\sigma \in \Sigma_n$ be such that $k_i(1) = Y_{\sigma(i)}$. Let $\chi(q): \pi_1(Y, Y_0) \to \Sigma_n$ be the homomorphism defined by $\chi(q)[k] = \sigma; \chi(q)$ is called a *characteristic map* for q, [S] [H]. $\chi(q)$ depends upon the ordering of $q^{-1}(Y_0)$ and is welldefined up to conjugacy class; i.e. if $\chi'(q)$ is defined by using a different ordering, then there exists $\sigma_0 \in \Sigma_n$ such that $\chi(q)(\alpha) = \sigma_0[\chi'(q)(\alpha)]^{-1}\sigma_0$ for all $\alpha \in \pi_1(Y, Y_0)$. Characteristic maps determine the n-fold coverings of Y: two n-fold coverings $q_i: \tilde{Y}_i \to Y$ are equivalent if and only if their characteristic maps are conjugate.

Proposition 6. The boundary homomorphism $\partial_1: \pi_1 C_n(V)$ + Σ_n from the long exact homotopy sequence of the fiber space $\tau: F_n(V) \rightarrow C_n(V)$ is a characteristic map for the covering $\rho: E_n(V) \rightarrow C_n(V)$.

Proof. Let v_0 be the base point of $C_n(V)$ and let us identify $\tau^{-1}(v_0) = \Sigma_n$. Consider the cosets of Σ_{n-1}' in Σ_n' $\{w_1 \ \Sigma_{n-1}', w_2 \ \Sigma_{n-1}', \cdots, w_n \ \Sigma_{n-1}'\}$, where w_1 = identity and w_i is a permutation such that $w_i(1) = i$. Let k: $[0,1] \rightarrow C_n(V)$ represent an element of $\pi_1(C_n(V), v_0)$. Choose liftings \tilde{k}_i : $[0,1] \rightarrow F_n(V)$ such that $\tilde{k}_i(0) = w_i$.

Recall that the long exact homotopy sequence of the fiber space τ : $F_n(V) \rightarrow C_n(V)$ is obtained from the long exact homotopy sequence of the pair $(F_n(V), \Sigma_n = \tau^{-1}(v_0))$ using the isomorphism $\tau_*: \pi_*(F_n(V), \Sigma_n; w_1) \rightarrow \pi_*(C_n(V), v_0)$. In order to determine $\partial_{1}([k])$, we consider the class of $[\breve{k}_{1}] \in \pi_{1}(F_{n}(V), \Sigma_{n}; w_{1})$; then $\partial_{1}([k]) = \breve{k}_{1}(1) \equiv \sigma$. Since τ is a principal Σ_{n} -bundle, $\breve{k}_{i}(1) = \sigma \circ w_{i}$. Consider $k_{i} = \mu \circ \breve{k}_{i}; k_{i}(0) = \mu(w_{i}) \equiv v_{i}$. Note that $\rho^{-1}(v_{0}) = \{v_{1}, v_{2}, \dots, v_{n}\}$ and that $k_{i}(1) = \mu \breve{k}_{i}(1) = v_{i}$.

 $\mu(\sigma \circ w_i) = \mu(w_{\sigma(i)}) = v_{\sigma(i)} \text{ since } \sigma \circ w_i(1) = \sigma(i). \text{ Hence,}$ $\partial_1 \text{ is a characteristic map for } \rho.$

The proof of the following is straightforward.

Proposition 7. Let $\rho: \stackrel{\sim}{Y} \rightarrow Y$ be an n-fold covering map and let $\alpha: Z \rightarrow Y$ be a continuous map. Then $\chi(\stackrel{\sim}{\rho}) = \chi(\rho) \circ \alpha_*$ is a characteristic map for the pullback $\stackrel{\sim}{\rho}: \stackrel{\sim}{Z} \rightarrow Z$.

Lemma 8. If $k \ge 3$, there exists a homomorphism $\lambda: \pi_1 X \neq \pi_1 C_n(V)$ such that $\beta_* \lambda = identity$ and $\chi(p) = \partial_1 \lambda$. Proof. Define

$$\begin{split} \lambda(\mathbf{z}) &= (\beta_{\star} \times \partial_{1})^{-1} (\mathbf{z}, \chi(\mathbf{p}) (\mathbf{z})) \\ &= \tau_{\star} \alpha_{\star}^{-1} (\mathbf{z}) \cdot \mathbf{j}_{\star} (\partial_{1})^{-1} (\chi(\mathbf{p}) (\mathbf{z})) \quad [\text{cf. Lemma 4}]. \end{split}$$
Clearly $\beta_{\star} \lambda(\mathbf{z}) = \mathbf{z} \text{ and } \chi(\mathbf{p}) (\mathbf{z}) = \partial_{1} \lambda(\mathbf{z}). \end{split}$

Lemma 8'. If X has the homotopy type of a locally finite 1-dimensional simplicial complex, then there exists a homomorphism $\lambda: \pi_1 X \rightarrow \pi_1 C_n(V)$ such that $\beta_* \lambda =$ identity and $\chi(p) = \partial_1 \lambda$.

Proof. $\pi_1 X$ is free on generators $\{x_i\}$. Since ∂_1' : $\pi_1 C_n(\mathbf{R}^k) \rightarrow \Sigma_n$ is onto, there exists for each i, $y_i \in \pi_1 C_n(\mathbf{R}^k)$ such that $\chi(p)(x_i) = \partial_1'(y_i)$. Since $\alpha_* : \pi_1 F_n(\nabla) \rightarrow \pi_1 X$ is onto, there exists for each i, $\mathbf{z}_i \in \pi_1 F_n(\nabla)$ such that $\alpha_*(\mathbf{z}_i) = \mathbf{x}_i$. Define $\lambda: \pi_1 X \rightarrow \pi_1 C_n(V)$ by

 $\lambda(\mathbf{x}_{\mathbf{i}}) = \tau_{\mathbf{i}}(\mathbf{z}_{\mathbf{i}}) \cdot \mathbf{j}_{\mathbf{i}}(\mathbf{y}_{\mathbf{i}}).$

 λ is the desired homomorphism.

4. Proof of Theorem 1

Proposition 9. Let X be a locally finite simplicial complex and suppose that $k \ge 3$; then there exists a section $\emptyset: x^{k-1} + C_n(V)$ of β such that the pullback of ρ by \emptyset is equivalent to $p | p^{-1}(x^{k-1})$ where x^{k-1} is the (k-1)-skeleton of X.

Proof. For each vertex $v \in X$, choose a point $\emptyset(v) \in \beta^{-1}(v)$. Let T be a maximal tree in the 1-skeleton of X. Since the fiber of β is path-connected, we can extend \emptyset to a cross-section \emptyset over T as in [S; p. 148]. Recall the calculation of $\pi_1(X,v_0)$ using edge-paths [H-W; p. 241]: order the vertices of X, v_0, v_1, v_2, \cdots . For each i, let e_i be an edge-path in T from v_0 to v_i . We may assume that each e_i is an arc.

Let $[v_i v_j]$ be a 1-simplex in X\T, i < j; $[v_i v_j]$ determines an element ξ_{ij} of $\pi_1(X, v_0)$ which is given by the edge-loop $e_i * v_i v_j * \overline{e_j}$. Let F: $\beta^{-1}(e_i \cup [v_i v_j] + (e_i \cup [v_i v_j] \times C_n(\mathbf{R}^k))$ be a homeomorphism such that $\rho_1 F = \beta$ where ρ_t denotes the projection of $(e_i \quad [v_i v_j]) \times C_n(\mathbf{R}^k)$ onto the tth factor.

Let K: $[0,1] \rightarrow [v_i v_j]$ be a homeomorphism such that $K(0) = v_i, K(1) = v_j$ and let K': $[0,1] \rightarrow C_n(\mathbf{R}^k)$ be a path such that K'(0) = $\rho_2 F \emptyset(v_i)$ and K'(1) = $\rho_2 F \emptyset(v_j)$. K' determines a path K in $\beta^{-1}(e_i \quad [v_i v_j])$ defined by $\check{K}(t) = F^{-1}(K(t), K'(t))$ and, hence, a loop $\check{\xi}_{ij} = \emptyset(e_i) * K * \emptyset(\overline{e_j})$ in $C_n(V)$. Note that $\beta_*(\check{\xi}_{ij}) = \xi_{ij}$. Let $\lambda: \pi_1(X, v_0) \rightarrow \pi_1(C_n(V), \emptyset(v_0))$ be the homomorphism obtained in Lemma 8. Consider the element $\check{\xi}_{ij}^{-1}\lambda(\xi_{ij}) \in \pi_1(C_n(V), \emptyset(v_0));$ since $\beta_\star(\check{\xi}_{ij}^{-1}\lambda(\xi_{ij})) = 1$, $\check{\xi}_{ij}^{-1}\lambda(\xi_{ij})$ lies in the image of $\pi_1(C_n(\mathbf{R}^k))$ in $\pi_1(C_n(V))$. Hence, if we choose the path K' carefully, we can obtain $\check{\xi}_{ij} = \lambda(\xi_{ij})$. Extend \emptyset to $[v_i v_j]$ by $\emptyset(x) = \check{K}K^{-1}(x)$.

If we perform this construction for each 1-simplex in XNT, we obtain a section \emptyset defined on the 1-skeleton of X such that \emptyset_* takes the generators ξ_{ij} of $\pi_1(X, v_0)$ to $\lambda(\xi_{ij}) \in \pi_1(C_n(V), \emptyset(v_0)).$

Let $[v_i v_j v_k]$, i < j < k, be an ordered 2-simplex in X. Note that for one of the paths $e_s \in \{e_i, e_j, e_k\}$, $e_s \cap [v_i v_j v_k]$ $= \{v_s\}$. Suppose s = i. Let $F: \beta^{-1}(e_i \cup [v_i v_j v_k]) \rightarrow (e_i \cup [v_i v_j v_k]) \times C_n(\mathbf{R}^k)$ be a homeomorphism such that $\rho_1 F = \beta$. Note that $\Gamma = e_i \cup bdry [v_i v_j v_k]$ represents the loop $\xi_{ij}\xi_{jk}\xi_{ik}$ which is trivial in X. Consider $\emptyset_*(\Gamma) = \emptyset_*(\xi_{ij})$ $\emptyset_*(\xi_{jk}) \ \emptyset_*(\xi_{ik})^{-1} = \lambda(\xi_{ij}) \ \lambda(\xi_{ij}) \ \lambda(\xi_{ik})^{-1} = \lambda(\Gamma) = 1$. By Lemma 5, $\rho_1 F \ \emptyset$ (Γ) is homotopically trivial in $C_n(\mathbf{R}^k)$. By standard techniques [S; p. 149] we can extend \emptyset to a section over $[v_i v_j v_k]$ and, hence, over the 2-skeleton X^2 of X. Note that $\emptyset_*: \pi_1(X^2) \rightarrow \pi_1(C_n(V))$ is the homomorphism λj_* where $j: X^2 \rightarrow X$ is inclusion.

If $k \ge 4$, $\pi_i(C_n(\mathbf{R}^k)) = 0$ for $2 \le i \le k-2$ [F-N]; hence, by classical techniques [S] \emptyset extends to a section of x^{k-1} into $C_n(V)$.

Let $\rho: \xi \to \chi^{k-1}$ be the pullback of ρ by \emptyset . A characteristic map for $\rho, \chi(\rho) = \chi(\rho) \circ \emptyset_*$ by Proposition 7; but $\chi(\rho) = \partial_1$ by Proposition 6. Hence $\chi(\rho) = \partial_1 \circ \emptyset_* = \partial_1 \circ \lambda$ • $j_* = \chi(p) \circ j_*$ by Lemma 8. Again, by Proposition 7,

If $\ell \ge 2$, then Propositions 3 and 9 yield Theorem 1. If l = 1, the following Proposition, whose proof is similar to the proof of Proposition 9, and Proposition 3 yield the remaining case of Theorem 1.

Proposition 9'. Let X be a locally finite 1-dimensional simplicial complex; then there exists a section $\beta: X \rightarrow C_n(V)$ of β such that the pullback of ρ by β is equivalent to pwhen V is an \mathbf{R}^2 -bundle over X.

References

[B]	H. J. Baues, Obstruction theory, Lecture Notes in
	Mathematics 628 (1977), Springer-Verlag, New York.
[D-H]	P. F. Duvall and L. S. Husch, Embedding finite
	covers into vector bundles with an application to
	embedding continua up to shape (in preparation).
[F-N]	E. Fadell and L. Neuwirth, Configuration spaces, Math.
	Scand. 10 (1962), 111-118.
[H]	V. L. Hansen, Embedding finite covering spaces into
	trivial bundles, Math. Ann. 236 (1978), 239-243.
[H-W]	P. J. Hilton and S. Wylie, Homology theory, Cambridge
	University Press, Cambridge (1962).
[M-Z]	D. Montgomery and L. Zippin, Topological transforma-
	tion groups, John Wiley and Sons, Inc., New York
	(1955).
[S]	N. Steenrod, The topology of fibre bundles, Princeton
	University Press, Princeton (1951).
Oklahoma State University	
Stillwater, Oklahoma 74074	
and	
University of Tennessee 37916	
Knoxville, Tennessee	