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CONCERNING EQUIVALENCIES OF ALMOST 

CONTINUOUS AND CONNECTIVITY FUI~CTIONS 

OF BAIRE CLASS 1 ON PEANO CONTINUA 

B. D. Garrett and D. L. Alexander 

Kuratowski and Sierpinski showed, in 1922 [6], that 

whenever a function of Baire class 1, f: I + I, has the 

Darboux property, then that function is a connected subset 

of the plane. For real functions with domain a connected 

sUbset of the real line, the property of a function being a 

connected subset of the plane, and the property of a function 

being a connectivity function are the same. Stating the 

Kuratowski-Sierpinski result in this terminology we have: a 

necessary and sufficient condition that the Baire class 1 

function f: I + I, be a Darboux function is that it be a con

nectivity function. Intuitively, when considering various 

generalizations of continuity, there are three classes of 

discontinuous functions which seem to be inherently compara

ble or interrelated: Darboux functions, connectivity func

tions, and almost continuous functions. Thus there was the 

obvious question of whether or not the Kuratowski-Sierpinski 

characterization could be extended to include the almost con

tinuous functions. Brown has answered that question affirma

tively [1]. Herein we are concerned with the extension of 

such properties to cases where the domain space of the func

tions is other than a subset of the real line. 

We will consider only real functions having domain a 

Peano Continuum (a compact separable locally connected metric 
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space). For the definitions or properties of such things as 

"hereditarily locally connected space," "continuum of con

vergence," etc., see [10]. Most of the notation and termi

nology, such as R being the real line or I being the closed 

unit interval, is stapdard or it will be clear from context. 

When each of X and Y is a topological space and M is a subset 

of the product space X x Y, then (M)X denotes the projection 

of Minto X. 

Definition 1. The function f: X ~ Y is said to be a 

Dapboux function or to have the Dapboux ppopepty if, when

ever C is a connected subset of X, then f(C) is connected. 

Definition 2. The function f: X ~ Y is said to be a 

connectivity function provided that, whenever C is a connected 

subset of X, then flc is connected. 

Definition 3. The function f: X ~ Y is said to be an 

almost continuous function provided that, whenever 0 is an 

open set in X x Y which contains f, then 0 contains a con

tinuous function from X to Y. 

There are examples in the literature which can be used 

to show that, for functions f: X ~ Y, where X is a Euclidean 

space other than the real line, equivalences like those found 

by Kuratowski and Sierpinski or by Brown do not hold [1] 

[5]. Using the Theorem below, Example 1 of [5] can be shown 

to be a Baire class 1, almost continuous, Darboux function 

which is not a connectivity function. There is some character 

to the real line not possessed by the other Euclidean spaces 

which allows those equivalences, or, looking at it from the 
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other side, such equivalences impose restrictions on the 

domain of the functions which rule out the other Euclidean 

spaces. Clearly though, there are other spaces (such as a 

simple triod) where those same equivalences hold. 

It is interes'ting to consider problems of this type. 

Generally, if the Baire class 1 function f: X ~ Y belongs to 

some one of the classes determined by Definition 1, Defini

tion 2, or Definition 3 only in case it also belongs to some 

other of those classes, then what sort of space is X? 

After building (or in other cases being unable to 

build) a number of examples, a conjecture resulted: for 

connectivity and almost continuity to be equivalent for real 

functions of Baire class 1, having domain a topological 

space X, it is necessary and sufficient that X be hereditarily 

locally connected. The question of the sUfficiency of this 

conjecture remains open; however, we show that the necessity 

is true whenever X is a Peano Continuum. 

Theorem. Suppose X is a Peano Continuum and the func

tion f: X ~ R is of Baire cLass 1. In order that it be true 

that f is aLmost continuous if and onLy if f is a connec

tivity function, then X must be hereditarily locally connected. 

Proof. Under the hypotheses, assume that X is not 

hereditarily locally connected and so has a continuum of 

convergence. Then X has a pondegenerate subcontinuum M and 

there is a sequence Nl ,N2 ,N
3
,··· of subcontinua of X such 

that no two of them intersect and no one of them intersects 

M, and the sequence of continua converges to M [10]. Denote 

by P a point of M and by T an open set of X containing P but 
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not all of M. Select a subsequence M ,M ,M
3 
,---, ofl 2 

N ,N2 ,N3 ,---, each term of which intersects T.l 

There is a monotonic collection (D ,D ,D ,---) of open
l 2 3 

subsets of X such that 

(1) D is X,l 

(2) for each integer i ~ 2, D is a subset of Di - l ,i 

(3) M is the common part of all of them, and 

(4) for each integer i ~ 1, M is a subset of D buti i 

has no point in D .i +l 

For each positive integer n, An is the set M + Bd(D2 ) + 

Bd(D ) + Bd(D ) + --- + Bd(D _ ) and B is the set Ml + M +3 4 n l n 2 

M + --- + M . Because each of these is closed, by using3 n 

Urysohn's lemma, there is a continuous function gn: X ~ R 

such that gn is 0 on An and 1 on B . It is clear that this n 

sequence of gn's need not converge; however, suppose 

f ,f2 ,f3 ,---, is a sequence such that: f l is gl' and, if nl 

is a positive integer greater than 1, f is f - on X-Dn and n n l 

Each of these f 's will be continuous on all n 

of X and whenever x is in X, there is an integer N such that, 

if nand m are greater than N, fn(x) = fm(x). Denote by f 

the function which is the limit of the sequence of fn's so 

that we have a function f: X ~ R which is of Baire class 1. 

We will show that this Baire class I function f is 

almost continuous, which, by hypothesis, requires it to be a 

connectivity function and then reach a contradiction by find

ing a connected subset e of X such that fie is not connected. 

To show that f is almost continuous, consider X and its 

various subsets as objects in X x R, i.e., M is M x 0, D l is 

D x 0, and so on. Thus, if U is an open set in X x Rl 
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containing M x 0 (that is, U contains M), then U· (X x 0) is 

open in D plus its boundary relative to X. Suppose V is an n 

open subset of X x R containing f, and suppose the subset U 

of V is open in X x R and contains M x O. There is a posi

tive integer k such that k is in U·(X x 0). 

Define g: X ~ R as follows: g(x) = 0 if x is in Dk 

and g(x) = fk(x) for x not in Dk • Notice that since f k is 

o on Ok - Dk , then this function is continuous. Clearly 

each point (x,g(x)), with x in Ok is in U and therefore in 

v, by the construction of the fils, outside of Ok' g is f 

so that this function g: X ~ R is continuous and is a subset 

of V. Thus f is almost continuous and must be a connectivity 

function. 

We can show that f cannot be a connectivity function if 

we can find a connected subset C of X such that fl is notc 
connected. Describe such a connected set as follows. Sup

pose A is an arc containing the point P of M, intersecting 

each Mi , and which is a subset of the open set T of X con

taining P but not all of M. To the set A + M + M + M +
I 2 3 

add a single point q of M which is not in T and call 

the resulting connected set C. It is easy to see that each 

sequence of points of f which converges in X x R to a point 

(q,y) is not the point (q,f(q)). The point (q,f(q)) is an 

isolated point of fl c . Thus fl cannot be connected and soc 
f is not a connectivity function even though it is almost 

continuous. With this contradiction we have proved that X 

must be hereditarily locally connected. 

In order to more concisely state some problems concerning
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the possibilities of extending the Kuratowski-Sierpinski and 

the Brown results, we use the following definitions. 

Definition 4. Suppose X is a topological space. 

(1) If for each Baire class 1 function f: X -+ R, f is 

a connectivity function if and only if f is a Darboux func

tion, then X is said to be a KS-spaae or to have property 

KS · 

(2) If for each Baire class 1 function f: X -+ R, f is 

a Darboux function if and only if f is almost continuous, 

then X is said to be a B-spaae or to have property B. 

(3) If for each Baire class 1 function f: X -+ R, f is 

a connectivity function if and only if it is almost continu

ous, X is said to be a G-spaae or to have property G. 

Problems: 

(1) We know that I is a KS-space, a B-space and a 

G-space, and we have shown above that other n-cells are not 

G-spaces. From known examples it seems to be true that if 

n > 1, then In would not be either a B-space of a KS-space. 

What sort of spaces will be those defined in definition 4? 

(2) Does hereditary local connectedness imply property 

G? 

(3) Are the properties defined in definition 4 equiva

lent? 

(4) Stallings [9] showed that f: In -+ R is almost con

tinuous if it is a connectivity function, for n > 1, and f 

is a connectivity function if it is an almost continuous 

function, for n = 1. Would it be true in general that, in 

a G-space almost continuity implies connectivity, and in a 
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non-G-space connectivity implies almost continuity? (What 

about B-spaces and KS-spaces?) 

(5) Extending local characterizations [3] [4] of the 

Darboux property and connectivity to n-cells other than I 

has	 been successful only with severe restrictions [2] [5], 

apparently because I is the only one of them which is heredi

tarily locally connected. It seems reasonable to conjecture 

that	 for G-spaces, and probably KS-spaces and B-spaces, 

extensions of local properties such as are found in [3], 

[4],	 [7], and [8] could be -proved. 
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