TOPOLOGY PROCEEDINGS Volume 4, 1979

Pages 453-461

http://topology.auburn.edu/tp/

A DIFFERENTIABLE, PERFECTLY NORMAL, NONMETRIZABLE MANIFOLD

by

G. Kozlowski and P. Zenor

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOONT	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A DIFFERENTIABLE, PERFECTLY NORMAL, NONMETRIZABLE MANIFOLD

G. Kozlowski and P. Zenor*

In answer to a question originally raised by Alexandroff in [A], Rudin and Zenor, using the continuum hypothesis, displayed an example of a perfectly normal, hereditarily separable, non-metrizable topological manifold [R,Z]. In this paper, we show that the Rudin-Zenor manifold can be constructed so that it is analytic. A key step in our construction is a modification of a theorem of Brown [B] which is interesting in its own light; namely, we show that if a differentiable manifold M has an atlas $\{(V_i, \phi_i) | i \in \omega_0\}$ such that $V_{i+1} \supset V_i$ and $\phi_i(V_i) = \mathbf{R}^n$ for all $i \in \omega_0$, then M is diffeomorphic to \mathbf{R}^n .

The construction of the manifold follows very closely that of [R,Z] and we recommend that the reader be familiar with that paper before proceeding.

Let X be a set, and let n be a fixed positive integer.

A *chart* is a pair (U,ϕ) where $\phi: U \rightarrow \mathbf{R}^n$ is an injective function of a subset U of X onto an open subset ϕU of \mathbf{R}^n .

Two charts (U,ϕ) , (V,ϕ) are *compatible*, if $\phi(U \cap V)$ and $\psi(U \cap V)$ are open subsets of **R**ⁿ and $\psi\phi^{-1}|\phi(U \cap V): \phi(U \cap V)$ + $\psi(U \cap V)$ is a diffeomorphism.

An *atlas* on the set X is a collection $\{(U_j, \phi_j) | j \in J\}$

^{*}This author's research was partially supported by NSF Grant #MSC 7813270.

454

of charts such that $X = \bigcup \{ U_j | j \in J \}$ and any two charts are compatible.

A differential structure \hat{D} on a set X is a maximal atlas. It is clear that any atlas is contained in a unique differential structure which is said to generate.

If A is an atlas on the set X, it is also clear that there is a unique topology on X with the property that $\phi: U \rightarrow \phi U$ is a homeomorphism of the open set U onto ϕU for every chart (U, ϕ) .

A smooth manifold is a set X together with a differential structure \hat{D} or X; notation: (X, \hat{D}) . When there is no danger of confusion, one simply refers to the smooth manifold X.

Let $D(r) = \{u \in \mathbf{R}^n | |u| \leq r\}$, and let M be a smooth n-manifold. A subset D of M is said to be an n-disk, provided there is a chart (U,ϕ) of M such that $\phi D = D(r)$ for some psoitive number r. (This definition allows us to avoid some technicalities regarding differentiability on sets which are not open.)

If D is an n-disk in M, then a map f: $M \rightarrow M$ is said to be a *radial diffeomorphism* in D, if there exist a chart (U,ϕ) of M, a positive number ε , and a diffeomorphism $\lambda: \mathbf{R} \rightarrow \mathbf{R}$ such that $\phi D = D(1)$, $\lambda(t) = t$ for all $t < \varepsilon$ and all $t > 1 - \varepsilon$, f(x) = x for all $x \in M - D$, and $f(x) = \phi^{-1}\Lambda\phi(x)$ for $x \in D$, where $\Lambda: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ if defined by $\Lambda(u) = \lambda(|u|)u/|u|$ if $u \neq 0$ and $\Lambda(0) = 0$. Because f is the identity on M - Dand a diffeomorphism of Int D, f: $M \rightarrow M$ is in fact a diffeomorphism.

Lemma 1. If D₁, D₂, D₃, D₄ are n-disks in a smooth

manifold M such that $D_i \subset Int D_{i+1}$ for i = 1,2,3, then there is a diffeomorphism f: $M \rightarrow M$ such that f(x) = x for $x \in D_1 \cup (M - D_A)$ and $Int fD_2 \supset D_3$.

Proof. There is a radial diffeomorphism g: M + M in D_4 which is the identity on a nonempty open subset B of Int D_1 and which maps D_3 into D_1 , and there is a radial diffeomorphism h: $M \neq M$ in D_2 which maps D_1 into V. Put $f = h^{-1}g^{-1}h$. If $x \in D_3$, then $h(x) \in D_3$ and $gh(x) \in D_1$ and consequently $h^{-1}gh(x) \in Int D_2$; hence $f^{-1}D_3 \in Int D_2$, and therefore $D_3 \subset g(Int D_2) = Int fD_2$.

Theorem 1. If a differentiable manifold M has an atlas $\{(U_i, \phi_i) | i \in w_0\}$ such that $U_i \subseteq U_{i+1}$ and $\phi_i U_i = \mathbf{R}^n$ for all $i \in w_0$, then M is diffeomorphic to \mathbf{R}^n .

Proof. Let $h_i = \phi_i^{-1}$: $\mathbb{R}^n \neq U_i \subset M$. From the hypothesis that $U_i \subset U_{i+1}$ for $i \in \omega_0$ it follows that there is a strictly increasing sequence of positive integers r_i , $i \in \omega_0$ such that $U\{h_i D(r_i) | i \in \omega_0\} = M$ and $h_i D(r_i) \subset Int h_{i+1} D(r_{i+1})$ for $i \in \omega_0$. Put $Q_i = h_i D(r_i)$.

We assert that there exist a sequence of diffeomorphisms $f_i: M \rightarrow M$, $i \in \omega_0$ and a strictly increasing sequence of positive numbers s_i , $i \in \omega_0$ with limit r_1 such that $A(i): f_i$ is the identity on $M - Q_{i+1}$ and on $f_{i-1} \cdots f_1 f_0 h_1 D(s_{i-1})$ and such that $B(i): f_i \cdots f_1 f_0 h_1 D(s_i) \supset Q_i$. To verify this assertion assume inductively that f_i and s_i for $i = 0, 1, \cdots, k$ satisfy A(i) and B(i) for $i = 0, 1, \cdots, k$. Since $f_k \cdots f_1 f_0 Q_1 \subset Int Q_{k+1}$, there is $s_{k+1} > s_k$ such that $0 < r_i - s_{k+1} < 1/(k+1)$, and the lemma applies to $D_1 = f_k \cdots f_1 f_0 h_1 D(s_k)$, $D_2 = f_k \cdots f_1 f_0 h_1 D(s_{k+1})$, $D_3 = Q_{k+1}$, and $D_4 = Q_{k+2}$ to provide

To complete the proof of the Theorem, define F: Int $Q_1 \neq M$ by $F(x) = \lim_{k \neq \infty} F_k(x)$ where $F_k = f_k \cdots f_1 f_0$: $M \neq M$. Since $F(x) = F_k(x)$ for $x \in h_1 D(s_k)$, F is welldefined and clearly a homeomorphism onto M. Since F is a diffeomorphism on each of the open sets Int $h_1 D(s_k)$, $k \in \omega_0$, it is a diffeomorphism of Int Q_1 (which is diffeomorphic to \mathbf{R}^n) onto M.

Lemma 2. Any closed smooth embedding $\mathbf{R} \rightarrow \mathbf{R}^2$ extends to a diffeomorphism of \mathbf{R}^2 onto itself.

Proof. Any closed embedding of **R** into \mathbf{R}^2 extends to a closed embedding f: $\mathbf{R} \times [-2,2] \rightarrow \mathbf{R}^2$ by means of the Collaring Theorem.

Take a rectilinear triangulation T of $\mathbf{R}^2 \setminus f(\mathbf{R} \times \{0\})$. The 1-simplices of T which are not contained in $f(\mathbf{R} \times [-1,1])$ comprise a sequence $\{A(j) \mid j \in \omega\}$ with the property that for any compact set K in \mathbf{R}^2 there is an index j(K) such that $A(j) \cap K = \emptyset$ for all $j \ge j(K)$.

For each positive real number r define the band B(r) = $\mathbf{R} \times [-2 + 1/r, 2 - 1/r]$. We claim there is a sequence of closed embeddings $F_m: \mathbf{R} \times [-2, 2] \rightarrow \mathbf{R}^2$ ($n \in \omega$) such that $F_0 = F$ and for all $n \in \omega$:

(1) $F_{n+1}(x) = F_n(x)$ for the points x of B(n) and (2) $F_n(B(n)) \supset A(j)$ for all j < n.

If such a sequence exists, define F: $\mathbf{R} \times (-2,2) \rightarrow \mathbf{R}^2$ by $F(\mathbf{x}) = \lim_{n \to \infty} F_n(\mathbf{x})$; then F extends f|B(1) and is a diffeomorphism onto an open set which contains every 1-simplex of the triangulation T of $\mathbf{R}^2 - f(\mathbf{R} \times 0)$ and hence by simpleconnectivity every point of \mathbf{R}^2 . It follows easily that there is a diffeomorphism of \mathbf{R}^2 onto itself extending the original closed embedding $\mathbf{R} \neq \mathbf{R}^2$.

The claim is proved by induction. Assume F_n has been obtained satisfying (2).

If $A(n) \cap F_n(B(n)) = \emptyset$, it is easy to construct a diffeomorphism f of \mathbf{R}^2 onto itself so that g is the identity on $F_n(B(n))$ and $g(A(n)) \subset F_n(B(n+1))$. In this case, take $F_{n+1} =$ $g^{-1}F_n$. If A(n) \cap $F_n(B(n)) \neq 0$, there is a finite sequence of closed subintervals $\{C_1, C_2, \dots, C_r\}$ so that $A(n) - \bigcup \{C_i \mid i \leq r\}$ is contained in $F_n(B(n+\frac{1}{2}))$ and so that $C_i \cap F_n(B(n)) = \emptyset$ for i \leq r. By a preliminary diffeomorphism, if necessary, we may assume the set of endpoints of C_i is a subset of $F_n(B(n+\frac{1}{2}))$ for $i \leq r$. For each C_i let C_i^{t} be an arc lying in $F(B(n+\frac{1}{2}))$ -F(B(n)) so that $C_{i}^{!} \cup C_{i}^{!}$ is a simple closed curve so that $C_{i}^{!} \cap C_{j} = \emptyset$ for all $i \neq j$. Let $M = \{i \leq r | if j \neq i, C_{j} \}$ is not a subset of the bounded domain of $C_{\frac{1}{2}} \, \cup \, C_{\frac{1}{2}}^{\, \prime}$. For each $i \in M$, let $C_i^{"}$ be an arc so that $C_i \cup C_i^{!} \cup C_i^{"}$ is a θ -curve with C, as the cross-arc such that if i \neq j are in M, then the 2-cells bounded by $C_i^! \cup C_i^*$ and $C_j^! \cup C_j^*$ are mutually exclusive and the 2-cells bounded by $C_i^* \cup C_i^*$ does not intersect $F_n(B(n))$. Let $M = \{i(1), i(2), \dots, i(t)\}$. For each $i \in M$, let h_i be a diffeomorphism which is the identity on the complementary domain of $C_i^t \cup C_j^u$ and so that h_i takes the 2-cells bounded by $C_i \cup C_i$ into Int $F_n(B(n+1))$. Let $h = h_{i(1)} \circ h_{i(2)} \circ \cdots \circ h_{i(t)}$ and let $F_{n+1} = h^{-1} \circ F_{n}$.

Notation. Throughout Lemma 2 and Theorem 3, we let

457

 $H = \{ (0, y) | y \leq 0 \}.$

Definition. We will say that the set K is enveloped by the open set U if $K \subset int \overline{U}$.

Lemma 3. Suppose that $\{U(j)\}_{j\in\omega}$ is a sequence of open and connected subsets of \mathbb{R}^2 , cl $U(j+1) \subset U(j)$ and $\bigcap_{j\in\omega} U(j)$ = ϕ . Suppose further that:

- A. $\{p(j)\}_{j\in\omega}$ is a sequence of points so that $p(j) \in U(n)$ with $\{|p(j)|\}_{j\in\omega}$ increasing and unbounded.
- B. $\{N(j)\}_{j \in \omega}$ is a family of disjoint, infinite subsets of ω .

Then there is a diffeomorphism g of \mathbf{R}^2 onto an open subset of \mathbf{R}^2 such that

(1) $\mathbf{R}^2 - g(\mathbf{R}^2)$ is H.

(2) each point of H is a limit point of $\{g(p(n)) | n \in N(j)\}$ for each $j \in \omega$.

(3) $g(U_n)$ envelopes H for each $n \in \omega$.

Proof. We construct G in several steps:

Step 1. Let h_0 be a diffeomorphism from $\{(x,0) | x \in \mathbf{R}\}$ into \mathbf{R}^2 so that $h_0(n,0) = p(n)$ and $h_0(\{(x,0) | x > n\}) \subset U(n)$. Let h_1 be the extension of h_0 taking \mathbf{R}^2 onto \mathbf{R}^2 given by Lemma 2. Let $h = h_1^{-1}$.

Step 2. Let f be a diffeomorphism from \mathbf{R}^2 onto \mathbf{R}^2 which leaves the set {(x,0) | x > 0} fixed and so that {(x,y) | x > n} $\subset f(h(U(n)))$.

Step 3. Let $S = \{s_i | i \in \omega\}$ be a countable dense subset of **R**. Let ϕ be a diffeomorphism from \mathbf{R}^2 into \mathbf{R}^2 so that

458

- (a) φ(x,y) = (x,y') (i.e., φ is fixed on its first coordinate).
- (b) If $N(j) = \{j(1), j(2), \dots\}$, then $\phi(j(i) + 1, 0) = (j(i) + 1, s_i)$.

Thus, j(i) is the ith number in N(j) and $\phi \circ f \circ h$ takes p(j(i)) onto $(j(i) + 1, s_i)$.

Step 4. Let $\beta: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\beta(x,y) = (e^{-x},y)$. Step 5. Let $\gamma: \{(x,y) | x > 0\} \to \mathbb{R}^2$ - H be defined by $\gamma(x,y) = (\sqrt{x^2 + y^2} \cos (\pi/2 + 2 \arctan (y/x), \sqrt{x^2 + y^2})$ sin $(\pi/2 + 2 \arctan (y/x))$. Finally $g = \gamma \circ \beta \circ \phi \circ f \circ h$ is the desired diffeomorphism.

Theorem 2. Assuming the continuum hypothesis, there is a hereditarily separable, perfectly normal, analytic manifold that is not metrizable.

Proof. We will build a C^{∞} -manifold; the existence of an analytic manifold will then follow from [K,P]. The construction is simply a "careful" version of the construction developed in [RZ]. Let $D = D(1) = \{x \in \mathbf{R}^2 | |x| \leq 1\}$ and let $D^0 = \text{int } D$. Let $\{x_{\alpha} | \alpha \in \omega_1\}$ be an indexing of $D - D^0$ (using CH). Let $\{H_{\alpha} | \alpha \in \omega_1\}$ be a collection of mutually exclusive copies of H. Let $x_0 = \mathbf{R}^2$ and let $x_{\alpha} = x_0 \cup [\cup_{\beta < \alpha} H_{\beta}]$ and using CH, let $\{A_{\alpha} | \alpha \in \omega_1\}$ be an indexing of the countable subsets of X so that $A_{\alpha} \subset X_{\alpha}$. Let f_0 be diffeomorphism from \mathbf{R}^2 onto D^0 and let F be the function defined by

$$f(\mathbf{x}) = \begin{cases} f_0(\mathbf{x}) & \text{if } \mathbf{x} \in \mathbf{R}^2 \\ \mathbf{x}_{\alpha} & \text{if } \mathbf{x} \in \mathbf{H}_{\alpha} \end{cases}$$

and let $f_{\alpha} = f | x_{\alpha}$. We will inductively construct a

differentiable structure \hat{D}_{α} on X_{α} such that:

1. $(X_{\alpha}, \hat{\partial}_{\alpha})$ is diffeomorphic to \mathbf{R}^2 : i.e. $\hat{\partial}_{\alpha}$ contains a chart $(X_{\alpha}, \phi_{\alpha})$ with $\phi_{\alpha}(X_{\alpha}) = \mathbf{R}^2$.

2. If $\beta < \alpha$, then $(X_{\beta}, \phi_{\beta}) \in \partial_{\alpha}$.

3. If $\gamma \leq \beta < \alpha$, $x \in H_{\beta}$ and x_{β} is a limit point of $f(A_{\alpha})$ in D, then x is a limit point of A_{α} in (X_{α}, T_{α}) , where T_{α} is the topology on X_{α} given by ∂_{α} .

Let ∂_0 be the usual differential structure on $x_0 = \mathbf{R}^2$ generated by the atlas consisting of the single chart (x_0 , identity map).

Suppose we have \hat{D}_{α} satisfying (1)-(3) for all $\alpha < \lambda < \omega_1$.

Case I. λ is a limit ordinal: Let ∂_{λ} be the differential structure generated by $\{(\mathbf{x}_{\theta}, \partial_{\theta}) | \theta < \lambda\}$. That $(\mathbf{X}_{\lambda}, \partial_{\lambda})$ is diffeomorphic to \mathbf{R}^2 is given by Theorem 1.

Case II. $\lambda = \alpha + 1$: For each $n \in \omega$, let $U_n = f_{\alpha}^{-1}(D_{1/n}(x_{\alpha}))$, where $D_{1/n}(x_{\alpha}) = \{x \in D | d(x, x_{\alpha}) < 1/n\}$.

Then $\{U_n\}$ is a nested sequence of open sets in X_{α} such that $\bigcap_{n \in \omega} \overline{U}_n = \phi$. Let $\{N_j\}_{j \leq \omega}$ be a disjoint family of infinite subsets of ω and fix a l-l map i: $\alpha + 1 + \omega$. For each $n \in \omega$, choose $p_n \in U_n$ so that if $\beta \leq \alpha$ and x_{α} is a limit point of $f(A_{\beta})$ in D, then $p_n \in A_{\beta} \cap U_n$ for all $n \in N_{i(\beta)}$.

Let ϕ be the diffeomorphism from $(X_{\alpha}, \partial_{\alpha})$ onto \mathbf{R}^2 given by our induction and let g be the diffeomorphism given by Lemma 3 from \mathbf{R}^2 into \mathbf{R}^2 so that (1) $\mathbf{R}^2 - g(\mathbf{R}^2)$ is H, (2) each part of H is a limit point of $\{g(\phi(p(k))) | k \in N_j\}$ for each $j \in \omega$, and (3) $g(U_n)$ envelopes H for each $n \in \omega$. Let $\partial_{\alpha+1}$ be the differential structure on $X_{\alpha+1}$ generated by the atlas $\partial_{\alpha} \cup \{(X_{\alpha+1}, \phi_{\alpha+1})\}$ where $\phi_{\alpha+1}|X_{\alpha} = g \circ \phi_{\alpha}, \phi_{\alpha+1}|H_{\alpha}$ is the identification of H_{α} with H.

As in [RZ], the construction of $\partial_{\alpha+1}$ is such that $f_{\alpha+1}$ is continuous and our induction is complete. We will let ∂ be the atlas on X generated by $\cup_{\alpha < \omega_1} \partial_{\alpha}$ and let T be the topology on X given by ∂ . The argument that (X,T) is hereditarily separable, perfectly normal, but not Lindelöf follows exactly as in [R,Z].

Note. As with the Rudin-Zenor manifold, we can, using **\$**, obtain a differentiable, perfectly normal, countably compact, hereditarily separable, non-metrizable manifold. It remains an open question if there is a complex analytic, perfectly normal, non-metrizable manifold.

References

- [A] P. Alexandroff, On local properties of closed sets, Ann. Math. 36 (1935), 1-35.
- [B] M. Brown, The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc. 12 (1961), 812-814.
- [K,P] W. Koch and D. Puppe, Differenzierbare Structuren auf Mauigfaltigkeiten ohne abzahlbare Basis, Archiv der Math. 19 (1968), 95-102.
- [R,Z] M. E. Rudin and P. Zenor, A perfectly normal nonmetrizable manifold, Houston J. Math. 2 (1976), 129-134.

Auburn University

Auburn, Alabama 36849