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EVOLUTIONARY METRIC SPACES 

Harold W. Martin 

1.	 Introduction 

The biological problem of finding the evolutionary 

distance between two DNA sequences has led to the abstract 

problem of defining and computing the distance between two 

finite sequences, e.g., see [1], [2], [3], [4]. One approach 

to this problem is to define the distance as the least num­

ber of interchanges or deletions which would transform one 

sequence into another, reflecting the number of mutations 

and deletions separating two DNA sequences. This approach 

suffers the defect that it treats all genes as equally 

important. In [4], P. Sellers remedied this defect by first 

assigning a weight to each mutation and deletion and then 

computing the least weighted distance between two sequences. 

We now give a formal description of Seller's procedure. 

Let (X,r,e) be a pointed metric space, that is, a metric 

space X = (X,r) with a distinguished or neutral element e. 

An evolutionapy sequenae is any sequence in X which is 

eventually constant with the constant value being the neutral 

element e. Let P(X) denote the set of all evolutionary 

sequences. Define a metric s on P(X) in the following way. 

If x = {x } and y = {y } are elements of P(X), then let n 00 n 
s(x,y) = L rex ,y ).

n=l n n 
We call the metric space (P(X) ,s) the evolutionapy ppoduat 

of (X,r,e). 

Define an equivalence relation - on P(X) as follows: 
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{x } - {y } iff the finite subsequence of all non-neutraln n 

elements of {x }is identical to the finite subsequence of n 

all non-neutral elements of {Yn}. If x E P(X), let 

x {y E P(X): x - y}. Let E(X) {x: x E P(X)}. Define 

a distance function d on E(X) by 

d(x,y) = min{s(a,b): a E x and bEY}. 

That d is a metric for E(X) was established in [4]. We call 

the metric space (E(X) ,d) the evoZutionary metria spaae 

associated with (X,r,e). 

Observe that E(X) is the quotient image of P(X) and 

that P(X) is a subspace of a product of countably many copies 

of X. The questions of what kind of a product topology and 

what kind of a quotient map are in use here are answered in 

Sections 2 and 3. In Section 2 it will be seen that the 

product topology usually lies strictly between the Tychonoff 

and the box, a feature in common with the familiar sequence 

space ~l in the sense that neither the Tychonoff topology 

nor the box topology on the set of all real sequences rela­

tivizes to the usual norm topology for ~l. Also in Section 

2 we shall note a few properties of X that carryover to 

P(X), but a detailed study of the impact of X upon P(X) is 

not carried out. In Section 3 we shall establish the inter­

esting fact that the quotient map from P(X) onto E(X) is 

always a local isometry. This, of course, implies that many 

properties of X which carryover to P(X) must also carryover 

to E(X). 

We shall also see in Sections 2 and 3 that the nature 

of the neutral element e is crucial, for if e is an isolated 

point, then complete topological descriptions of P(X) and 
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E(X) are easily given in terms of X, while no such simple 

descriptions of P(X) and E(X) are apparent if e is not 

isolated. 

In Section 4 we look at a generalization of the con­

struction of P(X) from X, namely, the box metric product. 

We are motivated by two goals. One is to remove the reli­

ance upon the distinguished element e. The second objective 

in constructing a generalization of P(X) is to replace the 

product of countably many copies of X by a product of 

countably many (possibly distinct) metric spaces. These 

considerations lead naturally to the idea of a box metric 

product, which will be defined and studied in Section 4. 

2. Evolutionary Products 

Let (X,r,e) be a pointed metric space with neutral 

element e, let P(X) be the set of all evolutionary sequences 

in (X,r,e) and let s be the metric on P(X) defined by 

s(x,y) = 2 r(x ,y )
n=l n n 

If T denotes the topology generated on P(X) by the 
s 

metric sand T denotes the relativized Tychonoff product 
00 

topology on P (X) c n~l {X } where each space X is a copy of n n 

(X,r), then it is easy to show that T C T • That the in­s 

clusion T C T may be proper is seen in the following example.s 

2.1 Example. Let X = {O,l} and let r(O,l) = 1. Let 

o be the distinguished element. For each natural number n, 

let {x } denote the evolutionary sequence with x = 1 and n n 

xi = 0 if i ~ n. Let Xo denote the sequence {xi} with xi 0 

for all i. Then s(xn'xO) = 1 for n 1,2,---, but x + Xn o 
in the relative Tychonoff topology on P(X), so that in this 



482	 Martin 

case T and T are distinct. s 

The following example shows that if (x,rl,e) and (x,r ,e)
2 

are pointed metric spaces such that and r are equivalentr l 2 

metrics for the set X, and if (P(X),sl) and (P(X),s2) are 

the associated evolutionary products, then sl and s2 are 

not necessarily equivalent metrics for P(X) . 

-1 -1
2.2 Example. Let X = {O,1,2 ,···,n , ••• } have the 

usual relative topology and let 0 be the	 neutral element. 

Let rl(a,b) = la-bl for a and b in X and	 define a metric 

-1 -nr2' equivalent to r as follows: r (O,n ) = 2 andl , 2 
-1 -1 12-n -mlr (n ,m ) 2.2 

Let qn {Xi} E P(X) be defined inductively as follows: 

-1 -1 -1ql {l,O,O,···}; q2 = {O,2 ,3',4 ,O,···}; for general n, 

-1 -1 n -1 
qn = {O,···, 0 , n , (n+1 ) , • • • , (2) , 0 , 0 , • • • } 

where the first non-zero term occurs in the nth position. 

-1
Let qo = {O,O,O,···}. Note that sl(qn,qO) > 2 for all n 

and that s2(qn,qO) + 0 as n + 00, so that sl and s2 are not 

equivalent metrics for P(X) • 

If the distinguished point e is isolated, then the 

phenomenon of Example 2.2 cannot occur and the topological 

structure of P(X) is completely determined by the topological 

structure of X. 

2.3 Theorem. Let (X,r,e) be a pointed metric space 

and suppose that {e} is an open set. Let N denote the set 

of all positive integers and let F = {A ,A ,A ,···} be the
O l 2 

set of all finite subsets of N; let AO be the empty set. 

Let YO be a one point space and, for n >	 0, let Y be an 

space homeomorphic with the Tychonoff product of m copies of 
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(X,r)~ where m = card(A ). Then the evolutionary product
n 

(P(X) ,s) is homeomorphic to 

Yo ED Yl ED Y2 ED 

where ED denotes the disjoint or topological sum. 

Proof. Let YO be a singleton consisting of the constant 

sequence {e,e,e,···}. Then YO is an open and closed subspace 

of (P(X),s). For n > 0, let Y {{x } E P (X): x e iff 
n n n 

n f An}. Because {e} is open in (X,r), we have r(e,X-{e}) 

> O. From this it follows that Y is an open and closed 
n 

subspace of P(X). Moreover, Y is clearly homeomorphic to n 

the Tychonoff product of m copies of X, where m = card (An) , 

completing the proof. 

The space X may be embedded as a closed subspace of P(X) . 

Define a map ~: X + P(X) by ~(x) = (x,e,e,···). It is not 

difficult to show that ~ is a homeomorphism from X onto ~[X] 

and that ~[X] is closed in P(X). 

For each natural number n, define 

Z {{x.} E P(X): x. = e if i > n}.
n 1 1 

Each	 set Zn is closed in P(X), Zl C Z2 c ••• , and P(X) 

U {Z	 } 
n=l	 n. 

Theorem 2.3 together with the observations of the pre­

ceding two paragraphs lead to an easy proof of the following. 

2.4 Corollary. Let X be a pointed metric space with 

neutral element e and P(X) be the evolutionary product of 

X.	 Then the following hold: 

a) The space X is discrete iff P(X) is discrete. 

b) The space X is separable ~ff P(X) is separable. 
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cJ	 The space X ii a-compact iff P(X) is a-compact. 

Furthermore, if {e} is open, then the following 

also hold: 

dJ The space X is locally connected iff P(X) is locally 

connected. 

eJ The space X is locally compact iff P(X) is locally 

compact. 

fJ The space X is completely metrizable iff P(X) is 

completely metrizable. 

3.	 Evolutionary Metric Spaces 

Let (P(X),s) be the evolutionary product for the pointed 

space (X,r,e). Recall that {x } - {y } iff the subsequence
n n 

of	 non-neutral terms of {x } is identical to the subsequence
n 

of non-neutral terms of {Y } and that if x = {x }, then n n 

x = {y E P(X): x - y}. Let E(X) {x: x E P(X)} and define 

min{s(a,b): a - x and b - y}. 

Then (E(X) ,d) is the evolutionary metric space associated 

with X and d is called the evolutionary metric. 

Let F: P(X) ~ E(X) be defined by F(x) = x. We shall now 

show that the mapping F is a local isometry. 

3.1 Theorem. Given x in P(X), there e~ists E > a such 

that if y E P(X) satisfies s(x,y) < E, then s(x,y) = d(x,y). 

Proof. First suppose that x 

for all n. Then s(x,y) = d(x,y) for any y in P(X). 

Now suppose that there exists a positive integer i such 

th t x 1of T ~ ° and ~ e. Let E = 2-l .r(xo,e). Ifa = e n 1 Xi	 1n 

y = {Yn} satisfies s(x,y) < E, then r(xi'Yi) < E, and in 

particular, r(e'Yi) > E. Therefore, if b = {b } - Y and if n 
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~ then s(x,b) > E; for if b ~ Yi~ then Yi = b forb l Yi , i k 

some.k ~ i so that s(x,b) ~ f(xk,bk ) = r(e'Yi) > E. If 

b = Y then s(x,b) = s(x,y) since the non-neutral terms ofi ,i 

{b } are identical to the non-neutral terms of {y } and n n 

x e for all n except i. It follows that s(x,y) = d(x,y).
n 

Suppose that there exist two positive integers, i and 

j, with x. ~ e and x. 1 e but x = e if n ~ i and n ~ j.
1 J n 

-1
If x. x " let E = 2 -r(x.,e). If x. ~ x., let 

1 J 1 1 J 
-1 .

E 2 -mln { r (x. ,x . ), r (x. ,e), r (x . , e) } . 
1 J 1 J 

Assume that Y {Y } satisfies s(x,y) < E. Then r(xi'Yi)n

< E, r (x . ,y .) < E, r (e, y .) > E and r (e, Y .) > E. It follows 
1J J J 

that if b = {b } - Y and if it is not the case that both 
n 

Yi = b i and Yj = b j , then either Yi = b k or Yj = b k for 

some k for which x = e, that is, s(x,b) ~ r(e'Yi) > E ork 

s(x,b) > r(e'Yj) > E. In the case that both Yi = b i and 

y. = b., then clearly s(x,b) = s(x,y). It follows that 
J J 

s (x,y) = d (x,y) . 

In the general case, let {wl ,w
2
,---,w } be the subse­

m

quence of all non-neutral terms of {x }. Set W = e and n o 
define 

-1 .
E = 2 -mln{r(wi ,w j ): wi ~ wj }. 

An analysis similar to that for the case in which {x } had 
n 

two non-neutral terms shows that if Y satisfies s(x,y) < E, 

then d(x,y) = s(x,y), completing the proof. 

From Theorem 3.1 and the nature of the map F, we have 

the following simple description of E(X) in the case in which 

the distinguished point e is isolated. 

3.2 Theopem. Let E(X) denote the evolutionapy metpic 
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space associated with a metric space X with distinguished 

point e. Suppose that {e} is open and let X = {e}. Foro 
each	 positive integer n let X be a space which is homeo­n 

morphic to the Tychonoff product of n copies of the space 

X. Then E(X) is homeomorphic to the topological sum 

In Section 2 we remarked that X may be embedded as a 

closed subspace of P(X) by means of the map ~: X ~ P(X), 

where ~(x) = (x,e,e,···). The composition Fo~ is a homeo­

morphism from X into E(X) and F[~[X]] is a closed subspace 

of E(X), so that X may also be regarded as a closed subspace 

of E(X). This fact together with previous results in this 

section and Section 2 yield the following. 

3.3 Corollary. Corollary 2.4 remains true if "P(X)" 

is replaced by "E(X)" throughout. 

4.	 Box Metrics 

Let {(X ,d ): a E A} be a non-empty family of metric a a 

spaces. Let X = IT {X } and define an extended real-valued 
aEA a 

metric t on X by 

t(x,y) = L d (x ,y )
aEA a a a 

where x (x ) , y = (Ya) , and t(x,y) if it is not finite. a 

Using a common technique of constructing an equivalent bounded 

metric from an unbounded metric, define 

_ t(x,y))d(x,y - l+t(x,y) 

where we set d(x,y) = I if t(x,y) = 00 We call d a box 

metric and (X,d) the box metric product of the family 
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For a non-empty family {X : a E A} of metrizable spaces,a 

let T denote the box topology on n{x}. If for each a in 
a 

A, d is a compatible metric for X , then let T({d }) denote a a a 

the box metric topology for the family {(X ,d )}. It is not 
a a 

difficult to show that the union of all such box metric 

topologies T({d }) forms a base for T, so there exist a a 

great many non-equivalent box metrics on n{x}. Here is a 
a 

simple example. 

4.1 ExmapZe. Let X = {O,l} and d (0,1) = 2-n for 
n n 

n = 1,2,···. Then the box metric product in this case is 

homeomorphic to the Tyohonoff product. If dn(O,l) = 1 for 

all n, then the resulting box metric product is homeomorphic 

-1to the box product. And, if dn(O,l) n for all n, then 

the resulting box metric topology lies strictly between the 

Tychonoff and the box topologies. 

Generalizing Example 4.1, let {X } denote a sequence of n 

metrizable spaces. For each n, let r and sn be equivalentn 

compatible metrics for the space X . Let r be the box metric n 

associated with the family {(X ,r )} and s be the box metric n n 

associated with the family {(Xn,sn)}· The general problem 

arises of finding necessary and sufficient conditions on the 

sequences {r } and {sn} in order to ensure that rand s be n

equivalent metrics on n{X }. We first solve this problemn 

for the case in which X = {O,l} for all n. Although this n 

is the simplest non-trivial case, it is interesting since 

n{X } with the Tychonoff topology is homeomorphic to the n

Cantor set. 

Let {x } be a sequence of positive real numbers. Define n 
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dn(O,l) = x for each n and let r({x }) denote the box metric 
n n 

for the family {(X ,d )} where X = {O,l}. The problem is n n n 

to find necessary and sufficient conditions on the sequences 

{x } and {y } in order to ensure that the metrics r({x }) and 
n n n

r({y }) be equivalent. First define an extended metric 
n 

d = d({x }) as follows: let a = {a } and b = {b } be ele­n n n 

ments of IT{X }, that is, an and b are either 0 or 1 for all n n 

n. Define d by 

d(a,b) 

Note that 

d(a,b)
r(a,b) = l+d(a,b) 

and that the metric r and the extended metric d generate the 

same topology. Therefore r({x }) and r({Yn}) are equivalentn

iff d({x }) and d({y }) are equivalent.
n n 

4.2 Theorem. The box metrics r({x }) and r({y }) are 
n n 

equivaZent iff whenever {n.} is any subsequence of the 
00 1 00 

naturaZ numbers, then I x and I yare either both 
i=l n i i=l n i 

finite or both infinite. 

Proof. Assume that r({x }) and r({y }) are equivalent.n n 

Then d({x }) and d({Yn}) are equivalent. Let {nil = A be a n 

subsequence of the natural numbers and assume that L{X : m 

mEA} is finite while L{Ym: mEA} = For m = 0,1,2,---,00 

let b(m) = {b (m)} E rr{x } be defined inductively as follows: 
n n 

bn(O) 0 for all n. For m = 1, bn(l) = 0 if n $ A and 

bn(l) 1 if n E A. For m = 2, b (2) = 0 if n ~ A or n 

n = n1 E A, and bn (2) 1 otherwise. Generally, for j > 2, 

define bn(j) 0 if n t A or n E {nl ,n2 ,---,n j _l }, and 

bn{j) = 1 if n E {nj,n j +l ,---}. Let d = d({x }) and x n 
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d = d({Yn}). Observe that since E{x : mEA} is finite,
Y rn 

we have dx(b(O), b(m) + 0 as m + 00, and since E{y : mEA}
m 

= 00, we have d (b(O), b(m» = for all m. This contradicts y 

the equivalence of the extended metrics for d and d so x y 

that L{X : mEA} and E{y : mEA} must both be finite or m m 

both be infinite. 

To prove the converse, assume that r({x }) and r({y })n n 

are not equivalent. Then d({x }) = d and d({y }) = dare n x n y 

not equivalent, so there exists a sequence {c } and a pointn 

c such that dx(cn,c) + 0 and dy(Cn,c) ++ 0 or a sequence 

ibn} and a point b such that dy(bn,b) + 0 and dx(bn,b) ~ O. 

Without loss of generality we may suppose that dx(cn,c) + 0 

and d (c ,c) ~ O. There exists an E > 0 and a subsequencey n 

{a } of {c } such that the following hold, where c = aO: 
n n
 

d (a ,aO) > 2E for all n > 0, and
 y n 

dx(an,aO) < 2-n for all n > O. 

For n = 0,1,2,···, let an = (a(n,l) ,a(n,2) , ••• ). For n > 1, 

define Sen) = {i: q(n,i) t- a(O,i)}. Set S = U{S(n): n = 

1,2,···}. Then S is a subset of the natural numbers and 

clearly L{X : n E S} < 1. We shall complete the proof byn 

showing that L{Y : n E 5}n 

Assume that there exists a subsequence {nil of the 

natural numbers such that a(ni,l) t- a(O,l) for i = 1,2,···. 

Then d (a ,aO) _> xl for i = 1,2,···, a contradiction. So 
x ni 

there must exist a natural number n such that a(m,l) = l 

a(O,l) for all m > n . Similarly, there exists n > nl 2 l 

such that. a(ro,l) a,(O,l) and a(m,2) = a(O,2) for all 

m ~ n There exists n > n such that a(m,l) = a(O,l),2 . 3 2 

a(m,2) = a(0,2) and a(m,3) = a(0,3) for all m ~ n etc.3 , 
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Pick	 i(l) so large that
 

E{ yi: i E 5 (1) and 1 ~ i ~ i (1)} > E.
 

Now n i (l) has the property that if m > n i (l)' then 

a(m,l) = a(O,l), a(m,2) = a(0,2),.·· ,a(m,i(l» = a(O,i(l». 

Choose i(2) > n i (l) such that 

E{ yi: i E 5 (ni (1» and 1 < i < i (2)} > E. 

Note that E{Yi: i E 5(ni (1» and 1 < i < i(2)} E{Yi: 

i E 5 (ni (1» and i (1) < i < i (2)} > E. The integer ni (2 ) 

has the property that if m > ni (2)' then a(m,l) = a(O,l), 

a(m,2) = a(O,2),·.· ,a(m,i(2» = a(O,i(2». Choose i(3) > 

n i (2) such that 

E{Yi: i E 5 (ni (2» and 1 ~ ~ ~ i (3)} > E. 

Note that E{yi : i E 5(ni (2» and 1 ~ i ~ i(3)} = E{yi : 

i E 5 (ni (2» and i (2) < i < i (3)} > E. Continuing the 

process inductively, we get a sequence {i(j)}, j = 1,2,···, 

such that for each j, 

E{y.: i E 5 (n. ( . » and i (j) < i < i (j +1)} > E. 
1. 1. J -

It follows that E{Yi: i E 5} = 00, completing the proof. 

Using Theorem 4.2 together with an argument similar to 

that used in proving that theorem, one may also establish 

the following general result. 

4.3	 Theorem. For eaah natural number n, let X be a n 

metrizable spaae and let sn and t be equivalent compatiblen 

metrics for X . Let d be the box metria for IT{(Xn,sn)} and n s 

d be the box metria for IT{(Xn,t )}. Then, d and d aret n s t 

equivalent metrias iff given any two points a = {an} and 

b =	 {b } in IT{X }, and any subset M of the natural numbers,n n 

the	 sums 
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Is. (a. ,b.) and It. (a. ,b. )

iEM 1 1 1 iEM 1 1 1
 

are either both finite or both infinite. 

In the remainder of this section we shall give several 

examples and establish two interesting theorems on box-metric 

products of separable metric spaces. First we look at the 

box-metric product of countably many copies of the reals with 

the usual metric; this space turns out to be locally homeo­

morphic to the sequence space ~l. 

4.4 ExampZe. For each natural n, let X denote the n
 

reals with the usual metric. Let X = IT{X } and let d denote
 n
 

the extended box-metric given by
 

d(x,y) = Elx - Yn l •n 

For arbitrary points x = {x } and y = {Yn} of X, define x - yn 

iff d(x,y) < It is easy to show that - is an equivalence 

relation and that each equivalence class is an open and closed 

subspace which is homeomorphic to ~l. 

It follows from Theorem 4.7 below that the space of 

. Example 4.4 is not separable. Note also that this space is 

not locally compact. In fact, the box-metric product of a 

countable family of compact metric spaces may fail to be 

locally compact. 

4.5 ExampZe. Let X denote the box-metric product of
 

countably many copies of the closed unit interval with the
 

usual metric. Let w = {w } be given by w 0 for all n.
 n n 

Given any E > 0, choose a real number b with 0 < b < E • Then 

define for each natural number n a point x(n) = {x(n,i) } by 

x(n,n) = b and x(n,i) = 0 if i ~ n. The set {x (n) : 
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n = l,2,---} is discrete and is contained in the E-sphere 

about w so that X is not locally compact. In fact, the space 

X is nowhere locally compact. 

The following theorem shows that box-metric products 

of countable families of separable metric spaces are reasona­

bly well-behaved. 

4.6	 Theorem. The box-metria produat of aountably many 

separable	 metria spaaes is loaally separable. 

Proof· Let {(X ,d )} be a countable family of separablen n 

metric spaces and let (X,d) denote the box-metric product, 

where d is the extended box-metric. As in Example 4.4, for 

arbitrary points a = {a } and b = {b } of X, define a - b n n 

iff ~ d (a ,b ) < It is easy to establish that - is an00. n n n 

equivalence relation on X and that the equivalence classes 

are sets which are both open and closed in (X,d). The proof 

shall be completed by showing that each equivalence class 

is a separable subspace. 

Let a = {an} be an arbitrary point of X and A = {x E X: 

x - a}. For each positive integer n, let {x(n,i): i 

1,2,---} be a countable dense subset of (Xn,d ); now define n 

An = {y = {Yj}: Yj E {x(j,i)} for 1 2 j 2 nand Yj = a j for 

j > n}. The set D U{A : n = 1,2,---} is dense in A. For n 

let b = {b } be an arbitrary point of A. Then d(a,b) = n 

~ d. (a.,b.) < and, given 2-E > 0, we may pick m so large
]. ]. ]. 

that 

~ d. (a. , b.) < E. 
i=m]. ]. 1 

For each j satisfying 1 _< j < m, pick y. E {x(j,i)} so that 
- 1 

-1
dj(yj,b j ) < E-m • Define P = {Pj} by Pj = ~j for 1 < j < m 
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and p. a. for m < j. The point p belongs to D and 
J J 

d(p,b) < E. It follows that D is dense in A, completing 

the proof. 

Using Theorem 4.3, it can be shown that the only separa­

ble box-metric products are Tychonoff products. 

4.7 Theorem. Let {(X ,d )} be a aountabZe famiZy of 
n n 

separable metria spaaes. Then the box-metria produat X is 

separable iff X is homeomorphia to the Tyahonoff produat of 

the family {X }.
n 

Proof. Let (X,d) denote the box-metric product where 

d is the extended box-metric. Assume that (X,d) is not 

homeomorphic to the Tychonoff product. We shall show that 

(X,d) is not separable. By Theorem 4.3, there exist two 

points a = {a } and b Let 
n 

M be the infinite set of positive integers such that an ~ b n 

if n E M. Let x = dn(an,b ) for each n in M. Then (X,d)n n 

contains a copy of the box-metric product T = TI{(T ,x ): 
. n n 

n E M} where T = {O,l} and x is the distance between 0 and 
n n 

1 in Tn. The proof will be completed by showing that T is 

not separable. 

Let E = {el ,e2 ,---} be any countable subset of T. Set 

e = {el(i)}, e 2 = {e2 (i)}, We shall show that E is1 

not dense in T. Choose n so thatl 
n l
I x. > 1. 

i=l 1 

For 1 < i < n define y(i) = 0 if el(i) 1 and y(i) 1 if
l , 

o. Now choose n > n such that2 l 
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n 2

I x. > 1.
 

.	 1 1l=nl + 

Define y(i) = 0 if e (i) = 1 and y(i) = 1 if e (i) = 0 for2 2 

all i satisfying n < i ~ n 2 . Continuing this process, we
l 

get an element y {y(i)} in T such that the box-metric 

distance in T from y to any member of E is greater than one, 

completing the proof. 

We have seen that the box metric product of a countable 

family of separable metric spaces must be locally separable. 

The following example shows that the box-metric product of 

a countable family of locally separable spaces need not be 

locally separable, even if the spaces are all discrete. 

4.8	 ExampZe. The box-metric product of a countable 

family	 of discrete spaces which is not locally separable. 

Consider the set Y {(x,n): x E Rand n E N} where R 

denotes the reals and N the natural numbers. Define a metric 

t on Y by 

I -1 -11n - m if x y and n ~ m 

t( (x,n), (y,m)) and 

l ln- + m- if x ~ y. 

The space (Y,t) is discrete. Let (Xn,d ) (Y,t) for each 
n 

n in N and let (X,d) denote the box-metric product of the 

family {(Xn,d )} where d is the extended box-metric. Let n 

a = {an} where an = (n,n) for n = 1,2,···. Let E > 0 be 

given arbitrarily. Choose m so large that 2 < m·E. For each 

irrational real number x, define p = {b } by b = a = (n,n)x n n n 

if n ~ m and b = (x,m). Then d(px,a) < E for each irrational m 
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x, and if x and yare distinct irrationals, then 

-1
d(p	 ,p ) = 2·m . The E-sphere about the point a contains x y 

an uncountable discrete set and, since E was arbitrary, it 

follows that the point a has no separable neighborhood. 
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