TOPOLOGY
PROCEEDINGS

Volume 4, 1979
Pages 515-532

http://topology.auburn.edu/tp/

SHRINKABLE DECOMPOSITIONS

by

MyYRA JEAN REED

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@Qauburn.edu
ISSN: 0146-4124

COPYRIGHT (© by Topology Proceedings. All rights reserved.



TOPOLOGY PROCEEDINGS Volume 4 1979 515

SHRINKABLE DECOMPOSITIONS

Myra Jean Reed

1. Introduction

There are various definitions of shrinkable decomposi-
tions. The talk given by McAuley entitled "Shrinkable
Decompositions, Criteria, and Generalizations" gave a survey
of some of the definitions and results. See [3].

The primary purpose of this paper is to give the first
detailed proof of a theorem of McAuley involving the loecal
shrinkability of individual elements of an upper semicon-
tinuous decomposition G to obtain the shrinkability of the
entire decomposition G.

This paper is essentially Chapter III of my thesis
"Decomposition Spaces and Separation Properties," SUNY-

Binghamton, 1971.

2. Preliminaries

The following definition is due to McAuley [1].

A subset K of a metric space (M,d) is locally shrinkable
iff for each open set U > K and € > 0, there exists a
homeomorphism h: M = M such that h = id off U and diam
hK < €.

As originally stated in [2], the theorem: If G is a
McAuley-upper semicontinuous (Mc--rather than Whyburn) decompo-
sition of a complete metric space (M,d) such that HG (the col-
lection of all nondegenerate elements of G) is countable, H, is

G

a G, collection (H*, the union of the elements of H is a G

§
set), and each element g € H

G’ §

G is a locally shrinkable
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continuum which lies in an open set with compact closure,
then M is homeomorphic to the decomposition space I = M/G,
is false. See Example C, section 2.3 of [4] where I is not
First Axiom. The theorem fails when there exists a point
which is a degenerate limit of elements having diameters
bounded away from zero. This cannot happen if p is closed,
but, as.the example shows, it is not a violation of Mc. The
hypotheses of the theorem and the condition that there be no
such "bad" points guarantee the map p is closed. The theorem
18 true i1f McAuley--usc is replaced by Whyburn--usc (p closed)
and we will obtain this form from @ more general proposition
which restates another of McAuley's theorems.

If G is a decomposition of X, we call a subset U of X
p-open if it is an open inverse set (for p), i.e., U is
open and p-lp(U) = U. Some authors say that U is a saturated

open set in X.

Definition. If G is a decomposition of a metric space
M, H is tightly shrinkable in M (tsh) iff given any p-open
cover U of H*, ¢ > 0, and h: M * M, there exists a p-open
(refinement of U) V covering H* and a homeomorphism f: M ~ M
such that 1) £ = h off V*, 2) for each g ¢ H, diam f(g) < ¢

and 3) for each v € V there exists u € U such that

h(v) U £(v) < h(u).

H is weakly tsh if the above holds for the special case

of h = 1dM.

3. A Convergence Theorem

We will make use of the following theorem of McAuley,
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slightly revised.

Convergence Theorem (McAuley). If M <s a metric space,

) €, <@ (an > 0), for each n, fn: M= M, f0 = id, for each

n>1, v, is a collection of open sets with compact closure

* * = *
and vE 2 VX, for each n > 0, £ £, off VX1
=3 i * L * ot
D eV, = diam £ D< e , and x € VX , = there exists
D € V .4 such that £ D> f x U f .x, then {f} are uni-

formly Cauchy and i1f {fn(x)}:=1 converges for each x € A =
nv; then fn + £ [unif], £f: M > M Zs continuous and onto,
and £ is 1 - 1 off A. Furthermore, if M is locally compact
on Vf, then £ is closed.

Proof. First, we show that {fn} are uniformly Cauchy.

[«

_nE. < €. Let x € M. For each
n=N"n

Let € > 0. For some N, )

; * = *
n, if x § V¥ , then £  ,x =f x. If x ¢ VX then there

+1

exists D € V such that £ D> f£f x U £ but diam £ D
n n n n

n+lx'

x) < €t So for m > N,

+1

< £€.. So, in either case, d(fnx,f

n n+1

m oo
alfx, £ x} < U e, < [ ye; < €-

{f_x} converges for x ¢ A = NV}, for if x ¢ vV . then

J+1

fnx = fJx for n > J, i.e., {fnx} is ultimately constant.

-

So if {fnx} converges for x € A then we have pointwise
convergence everywhere. And since {fn} are uniformly Cauchy,
fn > £ = lim fn [unif], and f is continuous.

To show f is onto, let p € M. Let z = f;lp. It

suffices to show {zn} has a convergent subsequence, since if

z_  + x then continuity gives fz_ -+ fx while d{f_ =z ,fz_ 1}
n. n. n.n, n,
i i i i
< ¢ for large i by uniform convergence. So fzn + p and
i

hence p = fx. Now, if p ¢ Vi then for each n, fnp = p.
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Thus Uf;Ip ={p}. If p € V¥ peD €V, with D compact.

1
Choose § > 0 such that Ns(p) < D. By the uniform convergence

there exists N such that n > N = sz €N fnz for all z € M.

J
So szn € Ndfnzn = Nd(p) < D. Hence {szn}n=N c D and
© -1 . . . -1
c 1 -
{zn}n=N fN D. Since fN is a homeomorphism, fN D is com

pact and so {zn} has a convergent subsequence.

Now we suppose that M is locally compact at each point
of Vf. To show f is closed, let D be a closed subset of M
and Y, Y with Y, € fD. We must show y € fD. There exists
X € D with Y, = fxn. If {xn} has a convergent subsequence,

we are done, since if X *x then x ¢ D and £x =y + fx
i By B4

by continuity. Hence fx = y. Furthermore, if M is locally

compact at y, we can choose € > 0 so that Ney is compact.

By uniform convergence there exists I so that for every

X € M, f1x€ Ne/zfx. In particular, for each n,fIxn € N€/2fxn.

But there exists N such that for n > N,fxn €N So

e/2y'

f x € Ne fxn (= Néy, which has compact closure. So {fIxn}

I"n /2
has a convergent subsequence and thus {xn} does also, as fI
is a homeomorphism.

We may suppose then that y ¢ V{Z Now fj(V{) = Vi for
each j since fj is a homeomorphism which is the identity
off V}. For some ¢ > 0, N y misses Vf and for large n,

y, € NE/Zy. For large i, f;x ¢ Ne/2yn = Ny so fix ¢ v*
and thus X, ¢ VI. So fxn = x,, and since fxn + y, we have

X > Y.

4. A Theorem for Tightly Shrinkable Decompositions

The following theorem is proved.
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Theorem T. If M is a metric space, G a decomposition
of M such that p is closed and point-compact, H is tightly
shrinkable in M, and M is locally compact at H*, then
I=x M.

Proof. For each g € H, let wl(g) be a p-open set con-
taining g such that GITET is compact < Nl/z(g). Let
W, = {wl(g): g € H}. Let Uy be a star refinement of W,
by p-open sets. (I is metrizable, hence paracompact, by

Stone's Theorem [16].) By tsh, there exists fl: M = M and
covering H* such that:

Vl a p-open refinement of Ul

f, = id off VI
. 1
g € H = diam flg <3

v € Vl = there exists u € U1 such that v U flv < u.

For each g € H, choose vl(g) € Vl ¢ontaining g and let w2(g)

be p-open containing g so that wz(g) compact < Nl/ 2(g) n
2

vylg) n £, (N1/22flg)' Let W, = {wz(g): g € H}. Let U, be

2

a star refinement of W, by p-open sets. By tsh there exists

2
f2: M~ M and V2 a p-open refinement of U2 covering H*,
satisfying
= *
f2 fl off V2
. 1
g € H = diam f2g < 27
v € V2 = there exists u € U2 such that flv U f2v
S flu.

Inductively, given fn_l: M=z M, Vn—l a p-open refinement
of Un—l covering H* with

*
£ £ _, OFff VX_

n-1 -~ *n-2 1

: 1
g € H= diam f _,g9 < ;E:T
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v U

v € V _, = there exists u ¢ U,-1 with £ _,

n-

£ vectf

u
n-2""'

for each g € H, choose vn_l(g) € Vn-l containing g and let

n-1

wn(g) be p-open containing g so that wnZgi is compact

-1
N (@) nv__,(g) N £~ (N
l/2n n-1 n~-1 1/2

g € H} and Un a star-refinement of wn by p-open sets. By

nfn_lg). Let Wn = {wn(g):

tsh there exists fn: M=z~ M and Vn a p-open refinement of Un
covering H*, satisfying:

f = £ off v*
n n-1 n

. 1
g € H = diam fng < ;E

v € V_ = there exists u € U_ such that £ v U
n n n-1

fnv < fn—lu’
It is clear that this construction gives for each n,
* * * ]
g €G> fn_lvn(g) U ann(g) c fn_lUn(g) c fn_lwn(g )

b

. . : . .
n-1Vn-1(g") N Nl/znfn—l(g ), this last set having diameter

1 '
< ;E:T’ for some g' € H.

Also, we have for each g € G, for each k > 1 and n > k,
fk(V;(g)) U fn(V;(g)) = fk(Vﬁ(g)). To see this, let k > 1
and induct on n: For n = k the statement is trivial. Sup-

i *
pose it holds for some n > k. Now, fn(Vn+1(g)) U

" * . A

fn+1(Vn+l(g)) = fn(Un+l(g)) by construction and this is
a subset of fn(wn+l(g')), for some g' ¢ H, which in turn

. . . % . .
lies in fn(vn(g )). We assume g ¢ p(Vn+l) since otherwise
the statement is trivial. So g < V;+1(g) c vn(g'). Hence

] *

vn(g') € Vn(g) and vn(g ) © Vn(g). So fn(vn(g')) c
fn(V;(g)) < fk(Vﬁ(g)) by the inductive hypothesis. Also,

since V;+l(g) < V;(g), fk(vﬁ+l(g)) c fk(Vi(g)) also by the
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inductive hypothesis and this establishes the corresponding
statement for the case of n+l.
We may restate the last result: for each g € G, for

o .
each k > 1, Un=kfn(va(g)) c fk(Vi(g)). In particular, for

* * *®
each g ¢ np(Vn) (where g « Vn(g) for each n), Un=kfn(g) c

U (£ VE(Q) < £, VE(g).

The result is sequences f : M * M and {Un} such that
each Un is a collection of p-open sets with compact closure,

= * * *
f fn off Un+ (actually off Vil € U ) . Furthermore,

1 1 n+l
* _ . .
X € Un+l_§ there exists u ¢ Un+l with fnu = fnx Uuf

n+l

n+1¥’

since if x ¢ v* £ 41%¥ = f %, which is in the image under

+1°

. . , *
fn of whichever element of Un+l contains x. And if x € Vn+l’

n+l

X € some v € Vn+ but fnv U fn v C fnu for some u € U

1 +1
For each u € Un+l’ diam fnu <

n+l”

1
And since j——
on-1

1 < ®
n-1° !
we have verified all of the conditions we need of the Con-
vergence Theorem except convergence itself at points of nu;.
But suppose x € I']U;‘l = ﬂv;‘l. p(x) = gcnv;"l so g © V;‘l(g) for
each n, while U:=lfn(va(g)) c fl(VI(g)) c UI(g), which has
compact closure. So {fnx};;l lies in a compact set. Thus
it has a convergent subsequence. But the sequence {fnx} is
Cauchy and hence converges.

So by the Convergence Theoren, fn + £f: M > M [unif], £
is continuous, onto and f is 1-1 off A = ﬂU;.

We now establish that for each g ¢ H, f£(g) is a point.
For each k and n > k, f_(g) = £ (Vf(g)). So for each k,
£(g) = E_(VE(g)). Thus £(g) n;=lf]':(7f(§ﬁ, while the sets

in this intersection have diameters tending to zero as k

increases, so f(g) = n;=lfkvilg$ = a point.
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We claim also, g # g' € G = for some N, V§T§T n

Vﬁ(g’) = ¢. To prove this, note that since g and g' are

compact, there exists €y > 0 such that N2€ (g) n N26 (g'y = ¢.
1 1

Let U and V be p-open with g € U < Ne g and g' cV c Ne g'.
1 1

V&N g' and N_. U N N_ V = ¢. Choose
1 2ey 1 €1
and N.g = U, Neg' c V. Choose N so

So Ns U SN
1

€ > 0 so that € < ¢

2€lg and N

1
1 —_—r ~ T _ . _
;ﬁ < €, Then W&(g) n Wﬁ(g') = ¢. For if w € WN(g), gcw=
W.

N(go), some g, € H, ©N N(go) c Ne(go). So go meets N_g

1/2

and thus 90 < U. Sowc Neg0 SN U <N, U. Thus Wﬁ(g)c
. 1

Ne U. Similarly, if w' € W_(g'), w' «N_ V. So W*(g') c
1 N E:l N

N, V. So W§(g) and Wk(g') are disjoint and as V refines W,
1 N N
Ux Tx (! =
VE(g) n VE(g") $.
We can now show that fx = fy iff px = py. If px = py
= g then since f(g) is a single point, fx = fy. Now suppose
fx = fy and px = g # py = g'. Since f is 1-1 off nv; we may

assume at least one of g and g' is in npva. In case both g

and g' are in ﬂpvﬁ, choose N so that Vﬁ(g) n Vﬁ(g') =¢.
Then f_ Vﬁ(g) L Vg(g') = ¢, while the first of these sets
contains f(g) and the second contains f(g'), contradicting

f(g) = £(g'). Now assume that g § NpV* while g' € npVi.

For some M, g § PV} and f(g) £y(9) = £, (g) for k > M.
There exists N > M such that g § Vﬁ(g') so f(g) '3 £y Vﬁ(g')
= 3 1 323 1
but fN(g) f(g) while f(g') € fN VN(g ).
So fp™! is a homeomorphism of I onto M iff f is quasi-
compact.

We will show f is closed but first we will prove: if
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y € Uf (so fy = ij = y for each j) and if fz -+ y with each

* = =
z, € nVn thep z > Y. Let p(zn) 9,- So f(zn) f(gn).
Since each g € npV¥, f(g ) = nk=lfk(V§(gn)). So for each

o

= —
k,n f(gn) € fk Vk(gn). But f(gn) + y. So yip Un=1 fk Vﬁ(gn)

" .
Vk(gn). i.e.,

©

and since f, is a homeomorphism, f;lylp U

for each k, ytp U _, Vf(gn). Now yip U g . For suppose not.

n=1

Then there exists € > 0 such that Ney misses Ugn. There

exists €y 0 such that if g ¢ G meets N_ y then g ¢ N Y.
£y €/2

Choose K so that —£-<
2K

o] — —
1 * *
point x € U 1 VK(g ) N Nel/zy, say X € VK(gN) n Nel/zy.

€
1 - *© gE i
5 Since y&p Un=l VK(gn) there is a

. ‘—* [ L
But by construction, VK(gN) [ Nl/ZK(gN) c N€1/2(gN)’ some

€
gﬁ € H. So there exists z € gﬁ such that d(x,z) < 7%, while

€

d(x,y) < 2 so d(x,2z) < €

1 L]
> Thus IN meets N€ y and gy <

1
Ne/zy. Meanwhile g < Nl/zx(gﬁ) o N l(g&) c Ne/z(gﬁ) = Ny,

1°
€

which contradicts the choice of Ney.

so {y} %p {gn} in I by continuity of p. Hence z -y
since p is closed and 9, = p(zn) and the argument applies
as well to any subsequence z, -

i

To show f is closed, let D be closed < M and suppose
Y, ¥ with Y, € fD. Let X, € D such that Yo = f(xn). As
in the proof of the last part of the convergence theorem,
it suffices to have M locally compact at y or that {xn} has
a convergent subsequence. So we may assume y ¢ Ui since
U, is a collection of open sets which have compact closure.

1

Then for each j, ij =y = fy. If for some J, {xn} is fre-

quently not in U*, then for a subsequence {xn } = M\U*,
i
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f(xn') = fan_ for each i. So fJ(xn_) + y hence x, 7
1 1 1 1
fgly = y. So we may suppose {xn} is ultimately in each

U%. There is a subsequence {xn } with x € U;. Since it
i i
is only subsequences we are interested in, let us assume

X € U* refines W there exists

n n+l® Now, since Un

+1 n+l’

g, € H such that x € w_,,(g ) < Nl/2n+l(gn) n vn(gn). So

" .
9, € H, d(xn,gn) and X € Vn(gn). Thus for each j,

1

2n+1
*

fjxn € fjvn(gn).

Let € > 0. Choose N so that n > N = fxn € N€/4y,

since fxn + y. By uniform convergence there exists J such

that j > J = fjx €N_ ,fx for x €EM. Son>M, j>J=

€/4

1 *
n €/zy. But for each g € H and each k, diam fkvk(g)

1 . .
< ;Erf' So there exists K such that k > K = diam fkvﬁ(g)

< % and since Vz(g) < Vi(g) for £ > k, for each & > k, diam

€
v* s .
fk l(g) < z Choose I > J,K;then for n > I,N, fIxn € Ne/zy

f.x €N
]

i * E *
and diam fIVng <7 for g € H. But fIxn € fIVn(gn). So

* 1 *
fIVn(gn) C3N3€/4y, and since I > J, f(gn) € f(Vn(gn)) c
N€/4flvg(gn) S N_y. We have shown: given € > 0 there
exists M such that n > M = f(gn) € N.y. So f(gn) + y. But

1 1
d(xn,gn) < ;HIT' Choose z, € 9, such that d(xn,zn) < ;H?T'

Now f(zn) + y and z, € H*, So z * Yy, as we have already
proved. But d(xn,zn) + 0 so X, Ty also. This completes

the proof of Theorem T.

5. A Proof of McAuley’s Theorem for p Closed

We will use Theorem T to establish McAuley's Theorem
in case p is closed. Some further observations will be

useful.
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First, if G is a decomposition of a metric space M,
then HG is tsh iff for each homeomorphism h: M = M, Hh(G)
is weakly tsh. This is an immediate consequence of the
definitions and the fact that under a homeomorphism h: M = M,

h(HG) and if p': M » M/h(G) is the quotient map and

= Hy(g)
u a p-open set then h(u) is p'-open. This enables us to
carry maps and coverings back and forth via the given
homeomorphism. The details are straightforward and omitted
here.

Consequently, if we find a set of purely topological
conditions on a decomposition G (preserved under homeomorph-
G is weakly tsh, then HG is tsh also.
We also note that local shrinkability of continua is

isms on M) which yield H

topological, i.e., if M and M' are metric, h a homeomorphism
of M onto M' and C a locally shrinkable continuum in M, then

h(C) is a locally shrinkable continuum in M'.

Proof. Trivially, hC is a continuum. Since C is locally

shrinkable in M, for each positive integer k there exists
1

fk: M z M such that fk = id off Nl/kc and diam ka <R

Cxp = £xC = Ny

ultimately as C is compact. There exists x € C such that

C. Each open set containing C contains Ck

each neighborhood of x meets Ck for infinitely many k, again

by compactness of C. Since M is metric a subsequence Ck +> X,
i

i.e., each neighborhood of x meets Cki ultimately. And since
diam Cki + 0 each neighborhood of x contains Cki ultimately.
Now, since h is a homeomorphism thi + hx € hC. Also

diam thi + 0 since if V is any neighborhood of h(x), h-lv
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is a neighborhood of x and contains C ultimately. Then V

k.
i

ultimately contains hC Since we may choose neighborhoods

k.’
i

V of h(x) with arbitrarily small diameter, diam th must
i

tend to zero. Now let U open > hC, € > 0. Then hlu is
1

open ® C. Choose I so that diam hC, < ¢ and N C<hu.
Ky 1/k;
Then £, : M ¥ M, f, = id off h™Yy, £, C=C, . Let h' =
k k k k
I I I I
hf h_l: M' =~ M' so h' = id off U and h'(hC) = hf, C = hC
ky kg kg

has diameter < €, which means hC is locally shrinkable.
We need the following theorem of McAuley:

Theorem H (McAuley). If M is a metric space,
{fi}: M = M, {U;} a sequence of open subsets of M such that

U; 20,0, MU; = ¢, £

i i = fi—l off Ui’ f0 = id, and for each

PE M, Uzzlf;lp has compact closure then {f;} > f£: M = M.

Remark. Excluding the last hypothesis of Theorem H
yields f = 1lim fi continuous, 1-1 and open. This last con-

dition provides that f is onto.

Theorem H' (McAuley, revised). If G is a decomposition
of a metric space M satisfying

1) p is closed and point-compact,

2) each element of H is locally shrinkable,

3) H is countable and GG’

4) M is locally compact at H¥,
then H is weakly tsh in M.

Proof. In this proof the notation ¢0,D) is used to

replace the sequence of symbols: Op-open = 0 « Dp-open < D
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o )

compact. By hypothesis, H = {C.} H* = N;21G;¢

j73=1" Gi open
Let A be a p-open cover of H*, ¢ > 0. For each j,

2G4
choose A. ¢ A with C. < A.. Let h. = id.
J J J 0

Let Hl = {C € H: diam C > e¢}. By usc, Hi is closed.

If H, # ¢, let k, be least such that C €H
1 1 k1

misses Cj for j < k

1+ S0 Cy ¢ H

*
1= H =W 1

open such that Ul c Wl n Gl' Let Ckl c (Ol,Dl) =

Ul n Akl and let hl: M * M such that h1 = id off 0l and

diam thk1 < €.

Let H2 = {C € H: diam h

for j <k open such that W 1°
* o
H <0y

s
1C > e}. H2 is closed < Ul' If

H2 # ¢, let k2 be least such that Ck2 € H2. Then k2 > kl'

3 3 *
H 2 , Misses Cj for j < k2. H2 < U2
open such that U, = U1 n W2 n G2. Let Ck2 c (02,D2) cUu

n 5i = ¢, we select D, so that

H*¥* =W, open such that W

5 n

Ak and such that if Ck
2 2
52 n 61 = ¢, while if C n Gi # ¢, then choose D, so that

k2 2

D2 = Dl' Let h2: M 2z M such that h2 = h1 off O2 and h2

shrinks Ck to diameter < e, (hence Cj for j « kz).
5 =

Inductively, given h M =~ M for 0 < & < i such that

2:
for 1 <2 <1ih, = hi—l off 0,, W,

Ckl < (OQ,DQ) = Ul n Ak2 = Ul open < Ul [ Ul—l n

G2 il W2 and Dl n 0j = ¢ or D2 (= Dj (and OQ n Oj # ¢) for

all j < &, and, h

is open missing Cj for

j < Ky

3 shrinks Cj for j < kg.

= M i *
Let H; ; = {C € H: diam h,C > €}. Then H¥ ,

< Ui‘ If Hi+1 # ¢ let ki+l be least such that Cki+l € Hi‘

is closed

3 *
Then k, , > k; and Cj ¢ H, for j < ky ;. H} open

iv1 Wi

< U,

*
H i+l

such that Wi+l i1 open

misses Cj for j < ki+l'
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S P41 S0 M Wiy 0 Giype L0 G, S 4054000549 S Uy
n Ak and such that for each &, 1 < & < i, if Ck n

i+l i+l
0£ # ¢, choose Di+l c Dl and if Cki+l n 02 = ¢, choose Di+l
so that Di+1 n 02 = ¢ also. (So we have Dj n 02 = ¢ or
Bj = D, and 55 n 5& # ¢ for each j < i + 1 and ¢ < j.) Let
hi+1: M z M such that hi+l = hi off 0i+l and hi+1 shrinks
Cki+1 to diameter < € (hence Cj for j < ki+l)'

If Hi = ¢ for some i, let h = hi— This gives a

1
homeomorphism h: M x M, without appeal to Theorem H, which
shrinks each element of G to diameter < €. And we can con-
struct a p-open refinement V of A as required for weakly tsh
in the same way as for the case that {Hi} is infinite
which follows.

If Hi # ¢ for each i, then we have a sequence of homeo-
morphisms hi of M onto M and open sets Ui such that Ui = ﬁi+l’

hi = hi—l off Ui (actually off Oi), ﬂUi = ¢ (since nUi [=

nci = H* = UC., but each j, U

1 *
j j+1 misses Cj, so H* N (ﬂUi)

= ¢). So we have verified conditions of Theorem H which give
hi + h: M+ M, with h 1-1, continuous and open.
We must show h is onto. Prior to this, we list some

properties of the construction:

Lemma 1. For each i, hiA = hi_lA for any set A contain-
ing Oi. In particular, hioi = hi—loi c hi—lDi = hiDi.
Lemma 2.1. For each i < j if x ¢ 02 for i < & < J then

h.x = h.x.
J 1

Lemma 2. For each i there exists L(i) < i such that
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i
Up=ohy (P3) = Dp(y)-
Proof. The statement holds for i = 1 since thl =
hODl = Dl' Let L(1) = 1. Assume for each j < i that there

. . . J
exists L(j) < j such that Uz:othj < DL(j)'

53. for each j < i then h D, = D, for & < i by Lemma 2.1.

If Di misses

But h.D, = h, .D. by Lemma 1 so h,D, = D. also. A2and
i’i i-171 i7i i

i _ Sy = . .

U£=0h£Di = Di' Let L(i) = 1i. If Di meets some 0j for j < i,

let J be the largest such j. Then by construction Di = DJ

and by our inductive assumption, there exists L(J) < J such

J J J .
that U2=0h2DJ = DL(J)' But Ul:OhRDi = Uz:thDJ and since Di

misses 0. for J < j < i, h,D. = h.D. pointwise for J < % <
Jj 271 71 -

. i-1

i-1 by Lemma 2.1. So we also have U2=0h2Di c DL(J)' And by
_ i

Lemma 1, hi-IDi = hiDi’ Hence UQ=0thi c DL(J)' So we let

L(i) = L(J) < J < i.
Now it is easy to show h is onto. Let p be any point of
M. Ifp¢§ UOi then hip = p for each i and hp = p. So sup-

pose p € UOi and let I be least such that p ¢ OI' We will
I

-1 . ; ) .
show that {hi p}iiI (= Ui=1Di' Otherwise, there exists a
-1 I _ =1
least J such that h;'p 3 Uj_qDj- Let z = h 'p. If z ¢ 0

then p = th = h Z SO z = h;ilp contrary to the choice of

J~-1

J. So z € OJ. But z U p = hoz u th = DL(J)

L(J) meets 0I in p. If L(J) > I then by

L(J) c DI’ If‘L(J) < I, we still have
I

R . . . -1
Di which is a contradiction. So {hi p}iil c Ui=lDi’

for some L(J)
by Lemma 2. So D

construction D

I
i=1
which is a finite union of sets having compact closures. So

z €U

we have confirmed the last hypothesis of Theorem H and we

have hi - h: M = M.

Lemma 3.1. For each i and j with i < j if 51 and 5j
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are disjoint then no 5& can meet them both for & > J.
Proof. 1f 5& meets both 5i and 6j with & > j > i then
OZ = DQ

to miss 6i'

is chosen so that D2 = Di n Dj' But Dj was chosen

Lemma 3.2. If A is any set which contains each 6i for
I < i< Jwhich A intersects, then hIA = hJA.
Proof. Suppose not. Let L be least such that hLA #

hIA with I < L < J. Then h A = hIA' But if hLA # h

L-1 -1

then A meets 0; so 0, < A. Hence h A =h A by Lemma 1.

Lemma 3. For each I and J > I, hJUI c hIDI.

Proof. For J = I the statement is trivial. Given
J>1I, let 9=1{0,: T<i<J}. Let A= {0 € Q: there
exists a (finite) sequence of elements of Q, consecutively
intersecting and of increasing index from GI to 0}. Clearly,
51 € A, and A* < DI' for otherwise if there exists an element
Ui € A with 0 ¢ D; then D, ¢ D;. Let K be least such that

€ A and Dy ¢ D,. There is a sequence from ﬁi to OK,

=

K as

described above. An element 6j of this sequence meets 5k

with j < K. So Dj c DIrbut also by construction Dy = Dj'

Hence DK = DI’ Furthermore, A* contains each element of Q

which A* intersects. For if 6i € Q and 5i meets A*, let J be
least such that 5& € A and 6i meets 5&. Now if J < i, aug-
menting the sequence from 5& to 5&

from UI to 61, placing Gi € A. So suppose J > i. Let ﬁk

by 6i gives a sequence

be the element of the sequence from 51 to 0J

Then k < J. So 51 does not meet 5&. But 0; cannot meet both

of the disjoint sets Ui and 5k by Lemma 3.1. Now by Lemma

which meets 5&.

= i ) * 0 *) =
3.2 hI(A*) = hJ(A*). And since 0I < A*, hJ(OI) c hJ(A )
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hI(A*) = hIDI, and Lemma 3 is proved.

Now, {ﬁi} is a locally finite collection since U, = ﬁi+1

and U, = ¢. {ﬁi} is locally finite, as 6i < U;. Since each

0j is compact, it meets at most a finite number of elements

of {Oi}. So for each j there exists N(j) > j such that

0. . ., 0., 0. = ., 0. .D.

0:| (= M\UliN(J) i Then h0J hN(]) j [ent thJ by Lemma 3,
while Dj U thj [s DL(j) for some L(j) < j by Lemma 2. Thus
0. U hD. < = Ly . \Up0., hC =

j i DL(]) AL(]) For each C € H\Up i’ C C and

diam C < e. Suppose C = C; so that C < A;. Then A N h_lAJ

contains a p-open set N(C) containing C and we have N(C) U

hN(C) <= AJ.

Let V = {Oj}§=l U {N(C): C € H\UPO,}. Then V is a
p-open refinement of A, h = id off V*, h shrinks each ele-
ment of H to diameter < ¢, and v € V = there exists A ¢ 4
with A >v U hv. Thus, H is weakly tsh.

Since the hypotheses of Theorem H' are topological, we

have immediately that H is tsh. Hence, by Theorem T,

Corollary H' (McAuley). Under the hypotheses of

Theorem H', I = M.
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