TOPOLOGY PROCEEDINGS

Volume 4, 1979

Pages 515-532

http://topology.auburn.edu/tp/

SHRINKABLE DECOMPOSITIONS

by Myra Jean Reed

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SHRINKABLE DECOMPOSITIONS

Myra Jean Reed

1. Introduction

There are various definitions of shrinkable decompositions. The talk given by McAuley entitled "Shrinkable Decompositions, Criteria, and Generalizations" gave a survey of some of the definitions and results. See [3].

The primary purpose of this paper is to give the first detailed proof of a theorem of McAuley involving the *local* shrinkability of individual elements of an upper semicontinuous decomposition G to obtain the shrinkability of the entire decomposition G.

This paper is essentially Chapter III of my thesis "Decomposition Spaces and Separation Properties," SUNY-Binghamton, 1971.

2. Preliminaries

The following definition is due to McAuley [1].

A subset K of a metric space (M,d) is locally shrinkable iff for each open set $U\supset K$ and $\epsilon>0$, there exists a homeomorphism h: $M\Rightarrow M$ such that h=id off U and diam $hK<\epsilon$.

As originally stated in [2], the theorem: If G is a McAuley-upper semicontinuous (Mc--rather than Whyburn) decomposition of a complete metric space (M,d) such that $\mathbf{H}_{\mathbf{G}}$ (the collection of all nondegenerate elements of G) is countable, $\mathbf{H}_{\mathbf{G}}$ is a \mathbf{G}_{δ} collection ($\mathbf{H}_{\mathbf{G}}^{\star}$, the union of the elements of $\mathbf{H}_{\mathbf{G}}$, is a \mathbf{G}_{δ} set), and each element $\mathbf{g} \in \mathbf{H}_{\mathbf{G}}$ is a locally shrinkable

continuum which lies in an open set with compact closure, then M is homeomorphic to the decomposition space I = M/G, is false. See Example C, section 2.3 of [4] where I is not First Axiom. The theorem fails when there exists a point which is a degenerate limit of elements having diameters bounded away from zero. This cannot happen if p is closed, but, as the example shows, it is not a violation of Mc. The hypotheses of the theorem and the condition that there be no such "bad" points guarantee the map p is closed. The theorem is true if McAuley--usc is replaced by Whyburn--usc (p closed) and we will obtain this form from a more general proposition which restates another of McAuley's theorems.

If G is a decomposition of X, we call a subset U of X p-open if it is an open inverse set (for p), i.e., U is open and $p^{-1}p(U) = U$. Some authors say that U is a saturated open set in X.

Definition. If G is a decomposition of a metric space M, H is tightly shrinkable in M (tsh) iff given any p-open cover U of H*, ε > 0, and h: M $^{\sim}$ M, there exists a p-open (refinement of U) V covering H* and a homeomorphism f: M $^{\sim}$ M such that 1) f = h off V*, 2) for each g \in H, diam f(g) < ε and 3) for each v \in V there exists u \in U such that h(v) U f(v) \subseteq h(u).

H is weakly tsh if the above holds for the special case of $h = id_{M}$.

3. A Convergence Theorem

We will make use of the following theorem of McAuley,

slightly revised.

 $\{f_nx\} \text{ converges for } x \notin \Delta = \text{NV}_n^\star, \text{ for if } x \notin \text{V}_{J+1}^\star \text{ then } f_nx = f_Jx \text{ for } n > J, \text{ i.e., } \{f_nx\} \text{ is ultimately constant.}$ So if $\{f_nx\}$ converges for $x \in \Delta$ then we have pointwise convergence everywhere. And since $\{f_n\}$ are uniformly Cauchy, $f_n \to f = \lim_n f_n \text{ [unif], and } f \text{ is continuous.}$

To show f is onto, let $p \in M$. Let $z_n = f_n^{-1}p$. It suffices to show $\{z_n\}$ has a convergent subsequence, since if $z_{n_i} \to x$ then continuity gives $fz_{n_i} \to fx$ while $d\{f_{n_i}z_{n_i}, fz_{n_i}\}$ $< \epsilon$ for large i by uniform convergence. So $fz_{n_i} \to p$ and hence p = fx. Now, if $p \notin V_1^*$ then for each n, $f_np = p$.

Thus $\bigcup f_n^{-1}p = \{p\}$. If $p \in V_1^\star$, $p \in D \in V_1$ with \overline{D} compact. Choose $\delta > 0$ such that $N_\delta(p) \subseteq D$. By the uniform convergence there exists N such that $n > N \Rightarrow f_N z \in N_\delta f_n z$ for all $z \in M$. So $f_N z_n \in N_\delta f_n z_n = N_\delta(p) \subseteq D$. Hence $\{f_N z_n\}_{n=N}^\infty \subseteq D$ and $\{z_n\}_{n=N}^\infty \subseteq f_N^{-1}D$. Since f_N is a homeomorphism, $f_N^{-1}D$ is compact and so $\{z_n\}$ has a convergent subsequence.

Now we suppose that M is locally compact at each point of $\overline{V_1^*}$. To show f is closed, let D be a closed subset of M and $y_n \to y$ with $y_n \in fD$. We must show $y \in fD$. There exists $x_n \in D$ with $y_n = fx_n$. If $\{x_n\}$ has a convergent subsequence, we are done, since if $x_n \to x$ then $x \in D$ and $fx_n = y_n \to fx$ by continuity. Hence fx = y. Furthermore, if M is locally compact at y, we can choose $\epsilon > 0$ so that $\overline{N_\epsilon y}$ is compact. By uniform convergence there exists I so that for every $x \in M$, $f_1x \in N_{\epsilon/2}fx$. In particular, for each n, $f_1x_n \in N_{\epsilon/2}fx_n$. But there exists N such that for n > N, $fx_n \in N_{\epsilon/2}y$. So $f_1x_n \in N_{\epsilon/2}fx_n \subseteq N_\epsilon y$, which has compact closure. So $\{f_1x_n\}$ has a convergent subsequence and thus $\{x_n\}$ does also, as f_1 is a homeomorphism.

We may suppose then that $y \notin \overline{V_1^*}$. Now $f_j(V_1^*) = V_1^*$ for each j since f_j is a homeomorphism which is the identity off V_1^* . For some $\epsilon > 0$, $N_{\epsilon}y$ misses $\overline{V_1^*}$ and for large n, $y_n \in N_{\epsilon/2}y$. For large i, $f_ix_n \in N_{\epsilon/2}y_n \subseteq N_{\epsilon}y$ so $f_ix_n \notin V_1^*$ and thus $x_n \notin V_1^*$. So $fx_n = x_n$ and since $fx_n \to y$, we have $x_n \to y$.

4. A Theorem for Tightly Shrinkable Decompositions

The following theorem is proved.

Theorem T. If M is a metric space, G a decomposition of M such that p is closed and point-compact, H is tightly shrinkable in M, and M is locally compact at H*, then I \approx M.

Proof. For each $g \in H$, let $w_1(g)$ be a p-open set containing g such that $\overline{w_1(g)}$ is compact $\subset N_{1/2}(g)$. Let $w_1 = \{w_1(g): g \in H\}$. Let u_1 be a star refinement of w_1 by p-open sets. (I is metrizable, hence paracompact, by Stone's Theorem [16].) By tsh, there exists $f_1 \colon M \approx M$ and v_1 a p-open refinement of u_1 covering H^* such that:

$$f_1 = id \text{ off } V_1^*$$

 $g \in H \Rightarrow diam f_1 g < \frac{1}{2}$

 $v \in V_1 \Rightarrow \text{ there exists } u \in U_1 \text{ such that } v \cup f_1 v \subseteq u.$ For each $g \in H$, choose $v_1(g) \in V_1$ containing g and let $w_2(g)$ be p-open containing g so that $\overline{w_2(g)}$ compact $\subseteq N_{1/2}(g) \cap v_1(g) \cap f_1^{-1}(N_{1/2}^2f_1g)$. Let $W_2 = \{w_2(g) \colon g \in H\}$. Let U_2 be a star refinement of W_2 by p-open sets. By tsh there exists $f_2 \colon M \approx M$ and V_2 a p-open refinement of U_2 covering H^* , satisfying

$$\begin{array}{rcl} & & & f_2 = & f_1 \text{ off } v_2^{\star} \\ & & & g \in \mathsf{H} & \Rightarrow & \text{diam } f_2 g < \frac{1}{2^2} \\ & & & v \in \mathsf{V}_2 \Rightarrow & \text{there exists } u \in \mathsf{U}_2 \text{ such that } f_1 v \cup f_2 v \\ & & & & & \subseteq f_1 u. \end{array}$$

Inductively, given $\textbf{f}_{n-1} \colon \mbox{M} \ \ ^{\mbox{M}}, \ \mbox{V}_{n-1}$ a p-open refinement of \mbox{U}_{n-1} covering H* with

$$f_{n-1} = f_{n-2} \text{ off } V_{n-1}^*$$

$$g \in H \Rightarrow \text{ diam } f_{n-1}g < \frac{1}{2^{n-1}}$$

$$v \in V_{n-1} \Rightarrow \text{ there exists } u \in U_{n-1} \text{ with } f_{n-2}v \cup f_{n-1}v \subset f_{n-2}u,$$

for each g \in H, choose $v_{n-1}(g) \in V_{n-1}$ containing g and let $w_n(g)$ be p-open containing g so that $\overline{w_n(g)}$ is compact $\subset N_{n-1}(g) \cap v_{n-1}(g) \cap f_{n-1}(N_{n-1}(g) \cap f_{n-1}(g))$. Let $W_n = \{w_n(g): g \in H\}$ and U_n a star-refinement of W_n by p-open sets. By tsh there exists $f_n \colon M \cong M$ and V_n a p-open refinement of U_n covering H*, satisfying:

$$\begin{array}{rcl} & f_n = & f_{n-1} & \text{off } V_n^{\star} \\ & g \in \mathbb{H} & \Rightarrow & \text{diam } f_n g < \frac{1}{2^n} \\ & v \in V_n \Rightarrow & \text{there exists } u \in \mathbb{U}_n \text{ such that } f_{n-1} v \cup \\ & & f_n v \subseteq f_{n-1} u. \end{array}$$

It is clear that this construction gives for each n, $g \in G \Rightarrow f_{n-1}V_n^{\star}(g) \cup f_nV_n^{\star}(g) \subset f_{n-1}U_n^{\star}(g) \subset f_{n-1}w_n(g') \subset f_{n-1}v_{n-1}(g') \cap N_{n-1}(g'), \text{ this last set having diameter} < \frac{1}{2^{n-2}}, \text{ for some } g' \in H.$

Also, we have for each $g \in G$, for each $k \ge 1$ and $n \ge k$, $f_k(V_n^\star(g)) \cup f_n(V_n^\star(g)) \subset f_k(V_k^\star(g))$. To see this, let $k \ge 1$ and induct on n: For n = k the statement is trivial. Suppose it holds for some $n \ge k$. Now, $f_n(V_{n+1}^\star(g)) \cup f_{n+1}(V_{n+1}^\star(g)) \subseteq f_n(U_{n+1}^\star(g))$ by construction and this is a subset of $f_n(w_{n+1}(g^!))$, for some $g^! \in H$, which in turn lies in $f_n(v_n(g^!))$. We assume $g \in p(V_{n+1}^\star)$ since otherwise the statement is trivial. So $g \subseteq V_{n+1}^\star(g) \subseteq v_n(g^!)$. Hence $v_n(g^!) \in V_n(g)$ and $v_n(g^!) \subseteq V_n^\star(g)$. So $f_n(v_n(g^!)) \subseteq f_n(V_n^\star(g)) \subseteq f_k(V_k^\star(g))$ by the inductive hypothesis. Also, since $V_{n+1}^\star(g) \subseteq V_n^\star(g)$, $f_k(V_{n+1}^\star(g)) \subseteq f_k(V_k^\star(g))$ also by the

inductive hypothesis and this establishes the corresponding statement for the case of n+1.

We may restate the last result: for each $g \in G$, for each $k \geq 1$, $\bigcup_{n=k}^{\infty} f_n(V_n^{\star}(g)) \subset f_k(V_k^{\star}(g))$. In particular, for each $g \in \cap p(V_n^{\star})$ (where $g \subset V_n^{\star}(g)$ for each n), $\bigcup_{n=k}^{\infty} f_n(g) \subset \bigcup_{n=k}^{\infty} f_n V_n^{\star}(g) \subset f_k V_k^{\star}(g)$.

The result is sequences $f_n \colon \mathbb{M} \approx \mathbb{M}$ and $\{\mathbb{U}_n\}$ such that each \mathbb{U}_n is a collection of p-open sets with compact closure, $f_{n+1} = f_n$ off \mathbb{U}_{n+1}^* (actually off $\mathbb{V}_{n+1}^* \subset \mathbb{U}_{n+1}^*$). Furthermore, $\mathbf{x} \in \mathbb{U}_{n+1}^* \Rightarrow$ there exists $\mathbf{u} \in \mathbb{U}_{n+1}$ with $\mathbf{f}_n \mathbf{u} \supset \mathbf{f}_n \mathbf{x} \cup \mathbf{f}_{n+1} \mathbf{x}$, since if $\mathbf{x} \notin \mathbb{V}_{n+1}^*$, $\mathbf{f}_{n+1} \mathbf{x} = \mathbf{f}_n \mathbf{x}$, which is in the image under \mathbf{f}_n of whichever element of \mathbb{U}_{n+1} contains \mathbf{x} . And if $\mathbf{x} \in \mathbb{V}_{n+1}^*$, $\mathbf{x} \in \text{some } \mathbf{v} \in \mathbb{V}_{n+1}$ but $\mathbf{f}_n \mathbf{v} \cup \mathbf{f}_{n+1} \mathbf{v} \subset \mathbf{f}_n \mathbf{u}$ for some $\mathbf{u} \in \mathbb{U}_{n+1}$.

For each $u\in U_{n+1}$, diam $f_nu<\frac{1}{2^{n-1}}$. And since $\lceil\frac{1}{2^{n-1}}<\infty$, we have verified all of the conditions we need of the Convergence Theorem except convergence itself at points of $\cap U_n^*$. But suppose $x\in \cap U_n^*=\cap V_n^*$. $p(x)=g\subset \cap V_n^*$ so $g\subset V_n^*(g)$ for each n, while $\bigcup_{n=1}^\infty f_n(V_n^*(g))\subset f_1(V_1^*(g))\subset U_1^*(g)$, which has compact closure. So $\{f_nx\}_{n=1}^\infty$ lies in a compact set. Thus it has a convergent subsequence. But the sequence $\{f_nx\}$ is Cauchy and hence converges.

So by the Convergence Theorem, $f_n \to f \colon M \to M$ [unif], f is continuous, onto and f is 1-1 off $\Delta = \cap U_n^*$.

We now establish that for each $g \in H$, f(g) is a point. For each k and $n \ge k$, $f_n(g) \subseteq f_k(V_k^*(g))$. So for each k, $f(g) \subseteq \overline{f_k(V_k^*(g))}$. Thus $f(g) \subseteq \bigcap_{k=1}^\infty \overline{f_k(V_k^*(g))}$, while the sets in this intersection have diameters tending to zero as k increases, so $f(g) = \bigcap_{k=1}^\infty \overline{f_kV_k^*(g)} = a$ point.

We claim also, $g \neq g' \in G \Rightarrow$ for some N, $\overline{V_N^*(g)} \cap \overline{V_N^*(g')} = \phi$. To prove this, note that since g and g' are compact, there exists $\varepsilon_1 > 0$ such that $\overline{N_2}_{\varepsilon_1}(g) \cap \overline{N_2}_{\varepsilon_1}(g') = \phi$. Let U and V be p-open with $g \in U \in N_{\varepsilon}$ g and $g' \in V \in N_{\varepsilon}$ g'. So $N_{\varepsilon_1}U \in N_{2\varepsilon_1}g$ and $N_{\varepsilon_1}V \in N_{2\varepsilon_1}g'$ and $\overline{N_{\varepsilon_1}U} \cap \overline{N_{\varepsilon_1}V} = \phi$. Choose $\varepsilon > 0$ so that $\varepsilon < \varepsilon_1$ and $N_{\varepsilon}g \in U$, $N_{\varepsilon}g' \in V$. Choose N so $\frac{1}{2^N} < \varepsilon$. Then $\overline{W_N^*(g)} \cap \overline{W_N^*(g')} = \phi$. For if $w \in W_N(g)$, $g \in w = w_N(g_0)$, some $g_0 \in H$, $g_0 \in N_{\varepsilon}(g_0) \in N_{\varepsilon}(g_0)$. So g_0 meets $N_{\varepsilon}g$ and thus $g_0 \in U$. So $g_0 \in N_{\varepsilon}U \in N_{\varepsilon}U$. Thus $g_0 \in V_{\varepsilon}U$. Similarly, if $g_0 \in V_{\varepsilon}U$, $g_0 \in V_{\varepsilon}U$. So $g_0 \in V_{\varepsilon}U$.

We can now show that fx = fy iff px = py. If px = py = g then since f(g) is a single point, fx = fy. Now suppose fx = fy and px = g \neq py = g'. Since f is 1-1 off $\cap V_n^*$ we may assume at least one of g and g' is in $\cap pV_n^*$. In case both g and g' are in $\cap pV_n^*$, choose N so that $\overline{V_N^*(g)} \cap \overline{V_N^*(g')} = \phi$. Then $f_N \ \overline{V_N^*(g)} \cap f_N \ \overline{V_N^*(g')} = \phi$, while the first of these sets contains f(g) and the second contains f(g'), contradicting f(g) = f(g'). Now assume that $g \notin \cap pV_n^*$ while $g' \in \cap pV_n^*$. For some M, $g \notin pV_M^*$ and $f(g) = f_M(g) = f_k(g)$ for $k \geq M$. There exists N > M such that $g \notin \overline{V_N^*(g')}$ so $f_N(g) \notin f_N \ \overline{V_N^*(g')}$ but $f_N(g) = f(g)$ while $f(g') \in f_N \ \overline{V_N^*(g')}$.

So fp^{-1} is a homeomorphism of I onto M iff f is quasi-compact.

We will show f is closed but first we will prove: if

 $\begin{array}{l} y \notin U_1^{\star} \ (\text{so fy} = f_j y = y \ \text{for each j)} \ \text{and if } fz_n \to y \ \text{with each} \\ z_n \in \cap V_n^{\star} \ \text{then } z_n \to y. \quad \text{Let } p(z_n) = g_n. \quad \text{So } f(z_n) = f(g_n). \\ \text{Since each } g_n \in \cap pV_n^{\star}, \ f(g_n) = \cap_{k=1}^{\infty} f_k (\overline{V_k^{\star}}(g_n)). \quad \text{So for each} \\ k,n \ f(g_n) \in f_k \ \overline{V_k^{\star}}(g_n). \quad \text{But } f(g_n) \to y. \quad \text{So } y \& p \cup_{n=1}^{\infty} f_k \ \overline{V_k^{\star}}(g_n) \\ \text{and since } f_k \ \text{is a homeomorphism, } f_k^{-1} y \& p \cup_{n=1}^{\infty} V_k^{\star}(g_n). \quad \text{i.e.,} \\ \text{for each } k, \ y \& p \cup_{n=1}^{\infty} \overline{V_k^{\star}}(g_n). \quad \text{Now } y \& p \cup g_n. \quad \text{For suppose not.} \\ \text{Then there exists } \epsilon > 0 \ \text{such that } N_{\epsilon} y \ \text{misses } \cup g_n. \quad \text{There} \\ \text{exists } \epsilon_1 > 0 \ \text{such that if } g \in G \ \text{meets } N_{\epsilon_1} y \ \text{then } g \subset N_{\epsilon/2} y. \\ \text{Choose } K \ \text{so that } \frac{1}{2^K} < \frac{\epsilon_1}{2}. \quad \text{Since } y \& p \cup_{n=1}^{\infty} \overline{V_K^{\star}}(g_n) \ \text{there is a} \\ \text{point } x \in \cup_{n=1}^{\infty} \overline{V_K^{\star}}(g_n) \cap N_{\epsilon_1/2} y, \ \text{say } x \in \overline{V_K^{\star}}(g_n) \ \cap N_{\epsilon_1/2} y. \\ \text{But by construction, } \overline{V_K^{\star}}(g_n) \subset N_{\epsilon_1/2} K(g_n^{\star}) \subset N_{\epsilon_1/2}(g_n^{\star}), \ \text{some} \\ g_n^{\star} \in H. \quad \text{So there exists } z \in g_n^{\star} \ \text{such that } d(x,z) < \frac{\epsilon_1}{2}, \ \text{while} \\ d(x,y) < \frac{\epsilon_1}{2}, \ \text{so } d(x,z) < \epsilon_1. \quad \text{Thus } g_n^{\star} \ \text{meets } N_{\epsilon_1} y \ \text{and } g_n^{\star} \subset N_{\epsilon/2} y. \\ \text{which contradicts the choice of } N_{\epsilon} y. \end{array}$

So $\{y\}$ p $\{g_n\}$ in I by continuity of p. Hence $z_n + y$ since p is closed and $g_n = p(z_n)$ and the argument applies as well to any subsequence z_n .

To show f is closed, let D be closed \subseteq M and suppose $y_n \rightarrow y$ with $y_n \in fD$. Let $x_n \in D$ such that $y_n = f(x_n)$. As in the proof of the last part of the convergence theorem, it suffices to have M locally compact at y or that $\{x_n\}$ has a convergent subsequence. So we may assume $y \notin U_1^*$ since U_1 is a collection of open sets which have compact closure. Then for each j, $f_j y = y = fy$. If for some J, $\{x_n\}$ is frequently not in U_J^* , then for a subsequence $\{x_n\} \subseteq M \setminus U_J^*$,

 $\begin{array}{l} {\bf f}\left({\bf x}_{n_{\bf i}}\right) = {\bf f}_{\bf J}{\bf x}_{n_{\bf i}} \ \ {\rm for\ each\ i.} \quad {\rm So\ f}_{\bf J}({\bf x}_{n_{\bf i}}) + {\rm y\ hence\ x}_{n_{\bf i}} + \\ {\bf f}_{\bf J}^{-1}{\bf y} = {\bf y}. \quad {\rm So\ we\ may\ suppose\ } \{{\bf x}_n\} \ \ {\rm is\ ultimately\ in\ each\ } \\ {\bf U}_{\bf J}^{\star}. \quad {\rm There\ is\ a\ subsequence\ } \{{\bf x}_{n_{\bf i}}\} \ \ {\rm with\ x}_{n_{\bf i}} \in {\bf U}_{\bf i}^{\star}. \quad {\rm Since\ it\ } \\ {\rm is\ only\ subsequences\ we\ are\ interested\ in\ ,\ let\ us\ assume\ } \\ {\bf x}_n \in {\bf U}_{n+1}^{\star}. \quad {\rm Now,\ since\ } {\bf U}_{n+1} \ \ {\rm refines\ } {\bf W}_{n+1}, \ \ {\rm there\ exists\ } \\ {\bf g}_n \in {\bf H\ such\ that\ } {\bf x}_n \in {\bf W}_{n+1}({\bf g}_n) \subset {\bf N}_{1/2}{}^{n+1}({\bf g}_n) \cap {\bf v}_n({\bf g}_n). \quad {\rm So\ } \\ {\bf g}_n \in {\bf H\ ,\ d}({\bf x}_n,{\bf g}_n) < \frac{1}{2^{n+1}} \ \ {\rm and\ } {\bf x}_n \in {\bf V}_n^{\star}({\bf g}_n). \quad {\rm Thus\ for\ each\ j\ ,} \\ {\bf f}_{\bf j}{\bf x}_n \in {\bf f}_{\bf j}{\bf V}_n^{\star}({\bf g}_n) \ . \end{array}$

5. A Proof of McAuley's Theorem for p Closed

We will use Theorem T to establish McAuley's Theorem in case p is closed. Some further observations will be useful.

First, if G is a decomposition of a metric space M, then H_G is tsh iff for each homeomorphism $h\colon M \approx M$, $H_{h(G)}$ is weakly tsh. This is an immediate consequence of the definitions and the fact that under a homeomorphism $h\colon M \approx M$, $h(H_G) = H_{h(G)}$ and if $p'\colon M + M/h(G)$ is the quotient map and u a p-open set then h(u) is p'-open. This enables us to carry maps and coverings back and forth via the given homeomorphism. The details are straightforward and omitted here.

Consequently, if we find a set of purely topological conditions on a decomposition G (preserved under homeomorphisms on M) which yield ${\rm H_C}$ is weakly tsh, then ${\rm H_C}$ is tsh also.

We also note that local shrinkability of continua is topological, i.e., if M and M' are metric, h a homeomorphism of M onto M' and C a locally shrinkable continuum in M, then h(C) is a locally shrinkable continuum in M'.

Proof. Trivially, hC is a continuum. Since C is locally shrinkable in M, for each positive integer k there exists $f_k\colon M\approx M$ such that $f_k=\operatorname{id} \operatorname{off} N_{1/k}C$ and $\operatorname{diam} f_kC<\frac{1}{k}.$ $C_k=f_kC\subset N_{1/k}C.$ Each open set containing C contains C_k ultimately as C is compact. There exists $x\in C$ such that each neighborhood of x meets C_k for infinitely many k, again by compactness of C. Since M is metric a subsequence $C_{k_1}\to x$, i.e., each neighborhood of x meets C_k ultimately. And since diam $C_{k_1}\to 0$ each neighborhood of x contains C_k ultimately. Now, since h is a homeomorphism $\operatorname{hC}_{k_1}\to \operatorname{hx}\in \operatorname{hC}$. Also diam $\operatorname{hC}_{k_1}\to 0$ since if V is any neighborhood of $\operatorname{h(x)}, \operatorname{h}^{-1}\operatorname{V}$

is a neighborhood of x and contains C_{k_1} ultimately. Then V ultimately contains hC_{k_1} . Since we may choose neighborhoods V of h(x) with arbitrarily small diameter, diam hC_{k_1} must tend to zero. Now let U open \Rightarrow hC, $\epsilon > 0$. Then h^{-1} U is open \Rightarrow C. Choose I so that diam $hC_{k_1} < \epsilon$ and $hC_{k_1} < \epsilon$ and $hC_{k_1} < \epsilon$. Let $hC_{k_1} < \epsilon$ hf $hC_{k_1} < \epsilon$ h' $hC_{k_1} < \epsilon$ h' $hC_{k_1} < \epsilon$ h' $hC_{k_1} < \epsilon$ h' and $hC_{k_1} < \epsilon$

We need the following theorem of McAuley:

Theorem H (McAuley). If M is a metric space, $\{f_{\underline{i}}\} \colon M \approx M, \ \{U_{\underline{i}}\} \ a \ sequence \ of \ open \ subsets \ of \ M \ such \ that$ $U_{\underline{i}} \supset \overline{U}_{\underline{i}+1}, \ \Omega U_{\underline{i}} = \emptyset, \ f_{\underline{i}} = f_{\underline{i}-1} \ off \ U_{\underline{i}}, \ f_{\underline{0}} = \mathrm{id}, \ and \ for \ each$ $p \in M, \ U_{\underline{i}=1}^{\infty} f_{\underline{i}}^{-1} p \ has \ compact \ closure \ then \ \{f_{\underline{i}}\} \rightarrow f \colon M \approx M.$

Remark. Excluding the last hypothesis of Theorem H yields $f = \lim_{i} f_{i}$ continuous, 1-1 and open. This last condition provides that f is onto.

Theorem H' (McAuley, revised). If G is a decomposition of a metric space M satisfying

- 1) p is closed and point-compact,
- 2) each element of H is locally shrinkable,
- 3) H is countable and G_{δ} ,
- 4) M is locally compact at H*,

then H is weakly tsh in M.

Proof. In this proof the notation (0,D) is used to replace the sequence of symbols: 0p-open $\subseteq \overline{0} \subseteq Dp$ -open $\subseteq \overline{D}$

compact. By hypothesis, $H = \{C_j\}_{j=1}^{\infty}$, $H^* = \bigcap_{i=1}^{\infty} G_i$, G_i open $D = G_{i+1}$. Let A be a p-open cover of H^* , E > 0. For each j, choose $A_i \in A$ with $C_j \subseteq A_j$. Let $h_0 = id$.

Let $H_1 = \{C \in H : \text{diam } C \geq \epsilon\}$. By usc, H_1^* is closed. If $H_1 \neq \emptyset$, let k_1 be least such that $C_{k_1} \in H_1$. So $C_j \notin H_1$ for $j < k_1$. $H_1^* \subseteq W_1$ open such that W_1 misses C_j for $j < k_1$. $H_1^* \subseteq U_1$ open such that $\overline{U}_1 \subseteq W_1 \cap G_1$. Let $C_{k_1} \subseteq \langle 0_1, D_1 \rangle \subseteq U_1 \cap A_{k_1}$ and let $h_1 : M \approx M$ such that $h_1 = \text{id off } 0_1$ and diam $h_1 C_{k_1} < \epsilon$.

Let $H_2 = \{C \in H : diam \ h_1 C \ge \epsilon\}$. H_2^* is closed $\subseteq U_1$. If $H_2 \ne \emptyset$, let k_2 be least such that $C_{k_2} \in H_2$. Then $k_2 > k_1$. $H_2^* \subseteq W_2$ open such that W_2 misses C_j for $j < k_2$. $H_2^* \subseteq U_2$ open such that $\overline{U}_2 \subseteq U_1 \cap W_2 \cap G_2$. Let $C_{k_2} \subseteq \langle 0_2, D_2 \rangle \subseteq U_2 \cap A_{k_2}$ and such that if $C_{k_2} \cap \overline{O}_1 = \emptyset$, we select D_2 so that $\overline{D}_2 \cap \overline{O}_1 = \emptyset$, while if $C_{k_2} \cap \overline{O}_1 \ne \emptyset$, then choose D_2 so that $\overline{D}_2 \subseteq D_1$. Let $C_{k_2} \cap \overline{O}_1 \ne \emptyset$, then choose $C_2 \cap C_2 \cap C_2 \cap C_2 \cap C_3 \cap C_3 \cap C_4 \cap C_4 \cap C_5 \cap C$

Inductively, given $h_{\ell} \colon M \approx M$ for $0 \le \ell \le i$ such that for $1 \le \ell \le i$ $h_{\ell} = h_{\ell-1}$ off 0_{ℓ} , W_{ℓ} is open missing C_j for $j < k_{\ell}$, $C_{k_{\ell}} \subseteq \langle 0_{\ell}, D_{\ell} \rangle \subseteq U_{\ell} \cap A_{k_{\ell}} \subseteq U_{\ell}$ open $\subseteq \overline{U}_{\ell} \subseteq U_{\ell-1} \cap G_{\ell} \cap W_{\ell}$ and $\overline{D}_{\ell} \cap \overline{D}_{j} = \phi$ or $\overline{D}_{\ell} \subseteq D_{j}$ (and $\overline{D}_{\ell} \cap \overline{D}_{j} \ne \phi$) for all $j < \ell$, and, h_{ℓ} shrinks C_{j} for $j \le k_{\ell}$.

Let $H_{i+1} = \{C \in H : \text{diam } h_i C \geq \epsilon\}$. Then H_{i+1}^* is closed $\subset U_i$. If $H_{i+1} \neq \emptyset$ let k_{i+1} be least such that $C_{k_{i+1}} \in H_i$. Then $k_{i+1} > k_i$ and $C_j \notin H_i$ for $j < k_{i+1}$. $H_{i+1}^* \subset W_{i+1}$ open such that W_{i+1} misses C_j for $j < k_{i+1}$. $H_{i+1}^* \subset U_{i+1}$ open

 $\begin{array}{l} \subset \overline{\mathbb{U}}_{i+1} \subset \mathbb{U}_i \ \cap \ \mathbb{W}_{i+1} \cap \ \mathbb{G}_{i+1}. \quad \text{Let } \mathbb{C}_{k_{i+1}} \subset \ \mathbb{C}_{i+1}, \mathbb{D}_{i+1} > \subset \mathbb{U}_{i+1} \\ \cap \ \mathbb{A}_{k_{i+1}} \quad \text{and such that for each } \ell, \ 1 \leq \ell \leq i, \ \text{if } \mathbb{C}_{k_{i+1}} \cap \\ \overline{\mathbb{O}}_{\ell} \neq \emptyset, \ \text{choose } \overline{\mathbb{D}}_{i+1} \subset \mathbb{D}_{\ell} \ \text{and if } \mathbb{C}_{k_{i+1}} \cap \overline{\mathbb{O}}_{\ell} = \emptyset, \ \text{choose } \mathbb{D}_{i+1} \\ \text{so that } \overline{\mathbb{D}}_{i+1} \cap \overline{\mathbb{O}}_{\ell} = \emptyset \ \text{also.} \quad \text{(So we have } \overline{\mathbb{D}}_{j} \cap \overline{\mathbb{O}}_{\ell} = \emptyset \ \text{or } \\ \overline{\mathbb{D}}_{j} \subset \mathbb{D}_{\ell} \ \text{and } \overline{\mathbb{O}}_{j} \cap \overline{\mathbb{O}}_{\ell} \neq \emptyset \ \text{for each } j \leq i+1 \ \text{and } \ell < j. \text{)} \ \text{Let} \\ \mathbb{h}_{i+1} \colon \mathbb{M} \approx \mathbb{M} \ \text{such that } \mathbb{h}_{i+1} = \mathbb{h}_{i} \ \text{off } \mathbb{O}_{i+1} \ \text{and } \mathbb{h}_{i+1} \ \text{shrinks} \\ \mathbb{C}_{k_{i+1}} \ \text{to diameter} < \varepsilon \ \text{(hence } \mathbb{C}_{j} \ \text{for } j \leq k_{i+1} \text{)} \ . \end{array}$

If $H_i = \phi$ for some i, let $h = h_{i-1}$. This gives a homeomorphism $h \colon M \approx M$, without appeal to Theorem H, which shrinks each element of G to diameter < ϵ . And we can construct a p-open refinement V of $\mathcal A$ as required for weakly tsh in the same way as for the case that $\{H_i\}$ is infinite which follows.

If $H_i \neq \emptyset$ for each i, then we have a sequence of homeomorphisms h_i of M onto M and open sets U_i such that $U_i = \overline{U}_{i+1}$, $h_i = h_{i-1}$ off U_i (actually off 0_i), $\cap U_i = \emptyset$ (since $\cap U_i \subset \bigcap_i = H^* = UC_j$, but each j, U_{j+1} misses C_j , so $H^* \cap (\cap U_i) = \emptyset$). So we have verified conditions of Theorem H which give $h_i \to h_i M \to M$, with h l-1, continuous and open.

We must show h is onto. Prior to this, we list some properties of the construction:

Lemma 1. For each i, $h_i A = h_{i-1} A$ for any set A containing 0_i . In particular, $h_i \overline{0}_i = h_{i-1} \overline{0}_i \subset h_{i-1} D_i = h_i D_i$.

Lemma 2.1. For each i < j if $x \notin 0$ for i < $\ell \leq j$ then $h_{j}x = h_{i}x.$

Lemma 2. For each i there exists $L(i) \leq i$ such that

 $U_{\ell=0}^{i}h_{\ell}(D_{i}) \subset D_{L(i)}$.

 $Proof. \quad \text{The statement holds for } i=1 \text{ since } h_1D_1=h_0D_1=h_0D_1=D_1. \quad \text{Let } L(1)=1. \quad \text{Assume for each } j< i \text{ that there exists } L(j) \leq j \text{ such that } U_{\ell=0}^j h_\ell D_j \subset D_{L(j)}. \quad \text{If } D_i \text{ misses}$ $\overline{O}_j \text{ for each } j< i \text{ then } h_\ell D_i = D_i \text{ for } \ell < i \text{ by Lemma 2.1.}$ But $h_iD_i = h_{i-1}D_i$ by Lemma 1 so $h_iD_i = D_i$ also. And $U_{\ell=0}^i h_\ell D_i = D_i. \quad \text{Let } L(i) = i. \quad \text{If } D_i \text{ meets some } \overline{O}_j \text{ for } j < i,$ let J be the largest such j. Then by construction $D_i \subset D_J$ and by our inductive assumption, there exists $L(J) \leq J$ such that $U_{\ell=0}^J h_\ell D_J \subset D_{L(J)}. \quad \text{But } U_{\ell=0}^J h_\ell D_i \subset U_{\ell=0}^J h_\ell D_J \text{ and since } D_i$ misses \overline{O}_j for J < j < i, $h_\ell D_i = h_j D_i$ pointwise for $J < \ell \leq i-1$ by Lemma 2.1. So we also have $U_{\ell=0}^{i-1} h_\ell D_i \subset D_{L(J)}. \quad \text{And by Lemma 1.} \quad h_{i-1}D_i = h_i D_i. \quad \text{Hence } U_{\ell=0}^i h_\ell D_i \subset D_{L(J)}. \quad \text{So we let } L(i) = L(J) < J < i.$

Now it is easy to show h is onto. Let p be any point of M. If p \notin UO $_i$ then h_ip = p for each i and hp = p. So suppose p \in UO $_i$ and let I be least such that p \in O $_I$. We will show that $\{h_i^{-1}p\}_{i\geq I}\subset \cup_{i=1}^ID_i$. Otherwise, there exists a least J such that $h_J^{-1}p\notin \cup_{i=1}^ID_i$. Let $z=h_J^{-1}p$. If $z\notin O_J$ then p = $h_Jz=h_{J-1}z$ so $z=h_{J-1}^{-1}p$ contrary to the choice of J. So $z\in O_J$. But $z\cup p=h_0z\cup h_Jz\subset D_{L(J)}$ for some L(J) by Lemma 2. So $D_{L(J)}$ meets \overline{O}_I in p. If L(J) > I then by construction $D_{L(J)}\subset D_I$. If L(J) \leq I, we still have $z\in \cup_{i=1}^ID_i$ which is a contradiction. So $\{h_i^{-1}p\}_{i\geq I}\subset \cup_{i=1}^ID_i$, which is a finite union of sets having compact closures. So we have confirmed the last hypothesis of Theorem H and we have $h_i\to h$: M \approx M.

Lemma 3.1. For each i and j with i < j if $\overline{0}_i$ and $\overline{0}_j$

are disjoint then no $\overline{0}_{\varrho}$ can meet them both for $\ell \geq j$.

Lemma 3.2. If A is any set which contains each $\overline{0}_{\bf i}$ for $1 \le {\bf i} \le J$ which A intersects, then $h_T A = h_T A$.

Proof. Suppose not. Let L be least such that $h_L A \neq h_L A$ with I < L < J. Then $h_{L-1} A = h_L A$. But if $h_L A \neq h_{L-1} A$ then A meets $\overline{0}_L$ so $\overline{0}_L \subseteq A$. Hence $h_L A = h_{L-1} A$ by Lemma 1.

Lemma 3. For each I and $J \geq I$, $h_J \overline{0}_I \subset h_I D_I$.

Proof. For J = I the statement is trivial. Given J > I, let $Q = {\overline{0}_i : I \le i \le J}$. Let $A = {0 \in Q : there}$ exists a (finite) sequence of elements of Q, consecutively intersecting and of increasing index from $\overline{\mathbf{0}}_{\mathsf{T}}$ to 0}. Clearly, $\overline{\textbf{D}}_{\text{T}}$ \in A, and A* \subseteq D_T, for otherwise if there exists an element $\overline{0}_i \in A \text{ with } \overline{0}_i \notin D_T \text{ then } D_i \notin D_T.$ Let K be least such that $\overline{0}_{K} \in A$ and $D_{K} \not= D_{T}$. There is a sequence from $\overline{0}_{T}$ to $\overline{0}_{K}$, as described above. An element $\overline{0}_{\dot{1}}$ of this sequence meets $\overline{0}_{\dot{K}}$ with j < K. So $D_{i} \subset D_{I}$ but also by construction $D_{K} \subset D_{i}$. Hence $D_K \subseteq D_T$. Furthermore, A^* contains each element of Qwhich A* intersects. For if $\overline{0}_i \in Q$ and $\overline{0}_i$ meets A*, let J be least such that $\overline{0}_J \in A$ and $\overline{0}_i$ meets $\overline{0}_J$. Now if J < i, augmenting the sequence from $\overline{0}_{\mathtt{T}}$ to $\overline{0}_{\mathtt{J}}$ by $\overline{0}_{\mathtt{i}}$ gives a sequence from $\overline{0}_{\mathtt{T}}$ to $\overline{0}_{\mathtt{i}}$, placing $\overline{0}_{\mathtt{i}} \in \mathtt{A}$. So suppose J > i. Let $\overline{0}_{\mathtt{K}}$ be the element of the sequence from $\overline{0}_{_{\rm T}}$ to $\overline{0}_{_{\rm T}}$ which meets $\overline{0}_{_{\rm T}}$. Then k < J. So $\overline{0}_i$ does not meet $\overline{0}_k$. But $\overline{0}_J$ cannot meet both of the disjoint sets $\overline{0}_i$ and $\overline{0}_k$ by Lemma 3.1. Now by Lemma 3.2 $h_T(A^*) = h_T(A^*)$. And since $\overline{0}_T \subset A^*$, $h_T(\overline{0}_T) \subset h_T(A^*) =$

 $h_{T}(A^{*}) \subseteq h_{T}D_{T}$, and Lemma 3 is proved.

Now, $\{\overline{U}_i\}$ is a locally finite collection since $U_i \supset \overline{U}_{i+1}$ and $\cap U_i = \emptyset$. $\{\overline{0}_i\}$ is locally finite, as $\overline{0}_i \subseteq U_i$. Since each $\overline{0}_j$ is compact, it meets at most a finite number of elements of $\{0_i\}$. So for each j there exists $N(j) \geq j$ such that $\overline{0}_j \subseteq M \setminus U_{i \geq N(j)} \overline{0}_i$. Then $h\overline{0}_j = h_{N(j)} \overline{0}_j \subseteq h_j D_j$ by Lemma 3, while $D_j \cup h_j D_j \subseteq D_{L(j)}$ for some $L(j) \leq j$ by Lemma 2. Thus $\overline{0}_j \cup h\overline{0}_j \subseteq D_{L(j)} \subseteq A_{L(j)}$. For each $C \in H \setminus Up0_i$, hC = C and diam $C < \varepsilon$. Suppose $C = C_j$ so that $C \subseteq A_j$. Then $A_j \cap h^{-1}A_j$ contains a p-open set N(C) containing C and we have $N(C) \cup hN(C) \subseteq A_j$.

Let $V = \{0_j\}_{j=1}^{\infty} \cup \{N(C) : C \in H \setminus Up0_i\}$. Then V is a p-open refinement of A, h = id off V^* , h shrinks each element of H to diameter $< \varepsilon$, and $v \in V \Rightarrow$ there exists $A \in A$ with $A \supset v \cup hv$. Thus, H is weakly tsh.

Since the hypotheses of Theorem H' are topological, we have immediately that H is tsh. Hence, by Theorem T,

Corollary H' (McAuley). Under the hypotheses of Theorem H', I \approx M.

References

- 1. L. F. McAuley, Some upper semicontinuous decompositions of E^3 into E^3 , Annals of Math. 73 (1961), 437-457.
- 2. _____, Upper semicontinuous decompositions of E³ into E³ and generalizations to metric spaces, Topology of 3-manifolds and related topics, Prentice-Hall, Englewood Cliffs, N.J., 1962, 21-26.
- 3. _____, Shrinkable decompositions, criteria, and generalizations, these proceedings.
- 4. M. J. Reed, Decomposition spaces and separation

properties, Ph.D. Dissertation, SUNY-Binghamton, June, 1971.

- 5. _____, Hausdorff-like separation properties and generalizations of the first countability axiom, Tamkang J. Math. 5 (1974), 197-201.
- 6. G. T. Whyburn, *Analytic topology*, AMS Colloq. Publ. 28 (1942), Providence, R.I.
- St. Bonaventure University
- St. Bonaventure, New York 14778