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SHRINKABLE DECOMPOSITIONS 

Myra Jean Reed 

1.	 Introduction 

There are various definitions of shrinkable decomposi­

tions. The talk given by McAuley entitled "Shrinkable 

Decompositions, Criteria, and Generalizations" gave a survey 

of some of the definitions and results. See [3]. 

The primary purpose of this paper is to give the first 

detailed proof of a theorem of McAuley involving the local 

shrinkability of individual elements of an upper semicon­

tinuous decomposition G to obtain the shrinkability of the 

entire decomposition G. 

This	 paper is essentially Chapter III of my thesis 

"Decomposition Spaces and Separation Properties," SUNY­

Binghamton, 1971. 

2.	 Preliminaries 

The following definition is due to McAuley [1]. 

A subset K of a metric space (M,d) is locally shrinkable 

iff for each open set U ~ K and s > 0, there exists a 

homeomorphism h: M 9 M such that h = id off U and diam 

hK <	 s. 

As originally stated in [2], the theorem: If G is a 

McAuley-upper semicontinuous (Mc--rather than Whyburn) decompo­

sition of a complete metric space (M,d) such that H (the col­
G 

lection of all nondegenerate elements of G) is countable, H isG 

a Go collection (HG, the union of the elements of HG, is a Go 

set), and each element g E H is a locally shrinkable
G 
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continuum which lies in an open set with compact closure, 

then M is homeomorphic to the decomposition space I = MIG, 

is false. See Example C, section 2.3 of [4] where I is not 

First Axiom. The theorem fails when there exists a point 

which is a degenerate limit of elements having diameters 

bounded away from zero. This cannot happen if p is closed, 

but, as the example shows, it is not a violation of Mc. The 

hypotheses of the theorem and the condition that there be no 

such "bad" points guarantee the map p is closed. The theorem 

is true if McAuley--usc is replaced by Whyburn--usc (p closed) 

and we will obtain this form from~ more general proposition 

which restates another of McAuley's theorems. 

If G is a decomposition of X, we call a subset U of X 

p-open if it is an open inverse set (for p), i.e., U is 

open and P-lp(U) U Sorne thors tha t U . a t ura t d. au say 1S sa e 

open set in X. 

Definition. If G is a decomposition of a metric space 

M, H is tightly shrinkable in M (tsh) iff given any p-open 

cover U of H*, € > 0, and h: M ~ M, there exists a p-open 

(refinement of U) V covering H* and a homeomorphism f: M ~ M 

such that 1) f = hoff V*, 2) for each g E H, diam f(g) < E 

and 3) for each v E V there exists u E U such that 

h(v) U f(v) C:h(u). 

H is weakly tsh if the above holds for the special case 

of h 

3.	 A Convergence Theorem 

We will make use of the following theorem of McAuley, 
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slightly revised. 

Convergence Theorem (McAuley). If M is a metric space 3 

id 3 for each 

n > 1 3 V is a collection of open sets with compact closure n 

and V~ ~ v~+13 for each n > 0 3 f n+l = f n off v~+13 

D E V ~ diam fnD < and x E V~+l ~ there existsn +l En3 

D E V +l such that fnD ~ fnx U f +l x 3 then {fn} are uni­n n

formly Cauchy and if {fn(X)}:=l converges for each x E ~ 

nv~ then f + f [unif]3 f: M + M is continuous and ont0 3n 

and f is 1 - 1 off~. Furthermore 3 if M is locally compact 

on Vi 3 then f is closed. 

Proof. First, we show that {fn} are uniformly Cauchy. 

Let E > O. For some N, ,00 NE < E. Let x E M. For each
Ln= n 

n, if x f V~+l then fn+lx = fnx. If x E V~+l then there 

exists D E V +l such that fnD ~ fnx U fn+lx, but diam fnD n 

< En. So, in either case, d(fnx,fn+lx) < En. So for m > N, 

d{fNx,fmx} < L~=NEi < L:=NEi < E. 

{fnx} converges for x t ~ = nv~, for if x t Vj+l then 

fnx fJx for n > J, i.e., {fnx} is ultimately constant. 

So if {fnx} converges for x E ~ then we have pointwise 

convergence everywhere. And since {fn} are uniformly Cauchy, 

f + f = lim f [unif], and f is continuous. n n 
-1To show f is onto, let P "E M. Let Z f p. It n n 

suffices to show {zn} has a convergent subsequence, since if 

Z + x then continuity gives fz + fx while d{f z ,fz }n. n. n. n. n. 
1 1. 1 1. 1 

< E for large i by uniform convergence. So fz + p and 
n i 

hence p = fx. Now, if p ~ Vi then for each n, fnP p. 
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Thus Uf-lp {p}. If P E Vi, p E D E VI with D compact.
n 

Choose 0 > 0 such that No (p) c D. By the uniform convergence 

there exists N such that n > N ~ fNz E Nofnz for all Z E M. 

So fNz n E Nofnzn = No (p) c D. Hence {fNZn}:=N c D and 

{Zn} oon=N c fN-lD. S· f· h h· f-lD·1nce N 1S a omeomorp 1sm, N 1S com­

pact and so {zn} has a convergent subsequence. 

Now we suppose that M is locally compact at each point 

To show f is closed, let D be a closed subset of Mof Vi·
 

and Y -+ Y with Y E fD. We must show Y E fD. There exists
 
n n 

x E D with Y = fx • If {x } has a convergent subsequence,
n n n n

we are done, since if x -+ x then xED and fx = Y -+ fx 
n i n i n i 

by continuity. Hence fx = y. Furthermore, if M is locally 

compact at y, we can choose £ > 0 so that N y is compact.
£ 

By uniform convergence there exists I so that for every 

x E M, fIxE N£/2 fx. In particular, for each n, fIx E N£/2fxn.n 

But there exists N such that for n > N,fx E N£/2 Y• So n 

fIx E N£/2 fxn c NiY' which has compact closure. So {fIx }n n 

has a convergent subsequence and thus {x } does also, as f n I 

is a homeomorphism. 

We may suppose then that y $ vr. Now fj(Vi) = Vi for 

each j since f. is a homeomorphism which is the identity
J 

off Vi. For some £ > 0, N£Y misses VI and for large n, 

Yn E N£/2Y. For large i, fix E N£/2Yn C N£Y so fix $ Vin n 

and thus x t Vi. So fX = x and since fX -+ y, we have n n n n 

4. A Theorem for Tightly Shrinkable Decompositions 

The following theorem is proved~ 
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Theorem T. If M is a metric space~ G a decomposition 

of M such that p is closed and point-compact~ H is tightly 

shrinkable in M~ and M is locally compact at H*~ then 

I ~ M. 

Proof. For each 9 E H, let wl(g) be a p-open set con­

taining 9 such that wl(g) is compact c N (g). Let
l/2 

WI = {wI (g) : 9 E H}. Let Ul be a star refinement of WI 

by p-open sets. (I is metrizable, hence paracompact, by 

Stone's Theorem [16].) By tsh, there exists f : M ~ M and
l 

VI a p-open refinement of U covering H* such that:l
 

f l id off Vi
 

1 
9 E H ~ diam fIg < 2" 
v E VI =9 there exists u E U such that v U flv c u.l 

For eaeh 9 E H, choose vl(g) E VI containing 9 and let w2 (g) 

be p-open containing 9 so that w (g) compact C NIl 2(g) n2 
2 

vl(g) n f l 
-1 

(NIl 2 f l g )· Let W2 = {w2 (g): 9 E H}. Let U2 be 
2 

a star refinement of W by p-open sets. By tsh there exists2 

f 2 : M ~ M and V a p-open refinement of U covering H*,2 2 

satisfying 

f off Vi2 f l 
1

9 E H 9 diam £2 9 < 2
2

v E V2 
=9 there exists u E U2 such that flv U f 2v 

c flu. 

Inductively, given f - l : M ~ M, V - l a p-open refinement n n 

of U covering H* with- ln
 

f off V~_l
n - 2 

9 E H 9> diam f 9 < _I_
n-I 2n - l 
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v E V - l ~ there exists u E U - l with f _2v U n n n

fn_lv c: f _2u,n

for each 9 E H, choose vn-l(g) E V containing 9 and let_ln

wn(g) be p-open containing 9 so that wn{g) is compact 

-1 
c: N (g) n v leg) n f leN fIg). Let W = {wn(g):n 

9 E H} and Un a star-refinement of W by p-open sets. By 

1/2n n- n- 1/2n n-

n 

tsh there exists fn: M ~ M and V a p-open refinement of Un n 

covering H*, satisfying: 

f f off V* n n-l n
 

9 E H ~ diam fng < 1
 

2n 

v E V 9> there exists u E U such that f IV Un n n­
f v c: f lU.n n-

It is clear that this construction gives for each n, 

9 E G ~ fn_lV~(g) U fnV~(g) c: fn_lU~(g) c: fn_lwn(g') c: 

f IV l(gl) n N f l(gl), this last set having diameter 
n- n- 1/2n n­

< ~, for some gl E H. 
2n-~ 

Also, we have for each 9 E G, for each k ~ 1 and n ~ k, 

fk(V~(g» U fn(V~(g» c: fk(V~(g». To see this, let k > 1 

and induct on n: For n = k the statement is trivial. Sup­

pose it holds for some n > k. Now, fn{V~+l(g» U 

fn+l(V~+l(g» c fn(U~+l(g» by construction and this is 

a subset of fn(wn+l(g'», for some gl E H, which in turn 

lies in fn(vn(gl». We assume 9 E P(V~+l) since otherwise 

the statement is trivial. So 9 c: V~+l(g) c: Vn{gl). Hence 

Vn(g') E Vn{g) and Vn{gl) c: V~(g). So fn{vn{g'» c: 

fn{V~(g» c: fk(Vk(g» by the inductive hypothesis. Also, 

since V~+l(g) c: V~(g), fk(V~+l(g» c: fk(Vk(g» also by the 
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inductive hypothesis and this establishes the corresponding 

statement for the case of n+l. 

We may restate the last result: for each 9 E G, for 

each k > 1, U:=kfn(V~(g» c fk(Vk(g». In particular, for 

each 9 E np(v*) (where 9 c V*(g) for each n), U
OO 

kf (g) c n n n= n 

U:=kfnV~(g) c fkVk(g). 

The result is sequences f : M ~ M and {U } such that n n 

each Un is a collection of p-open sets with compact closure, 

f +l = f off U~+l (actually off V~+l c U~+l). Furthermore,n n 

x E U~+l 9 there exists u E U +l with fnu ~ fnx U fn+lx,n

fnx, which is in the image under 

f of whichever element of U +l contains x. And if x E V~+l' n n 

x E some v E V +l but fnv U fn+lv c fnu for some u E U +l •n n 

For each u E U +l , diam f u <~. And since I.~ < 00,n n 2n - '2n­

we have verified all of the conditions we need of the Con­

vergence Theorem except convergence itself at points of nu~. 

But suppose x E nu~ = nv~. p (x) = 9 c nv~ so 9 c V~ (g) for 

each n, while U:=lfn(V~(g» c fl(Vi(g» c Ui(g), which has 

compact closure. So {f x}oo 1 lies in a compact set. Thus 
n n= 

it has a convergent subsequence. But the sequence {fnx} is 

Cauchy and hence converges. 

So by the Convergence Theorem, f + f: M + M [unif], f 
n 

is continuous, onto and f is 1-1 off ~ nu* • 
n 

We now establish that for each 9 E H, f(g) is a point. 

For each k and n > k, fn(g) c fk(Vk(g». So for each k, 

f(g) c fk(V~(g». Thus f(g) c n~=lfk(V~(g», while the sets 

in this intersect-ion have diameters tending to zero as k 

increases, so f(g) = n~=lfkv~(g) = a point. 
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We claim also, 9 ~ g' E G 9 for some N, VN(g) n 

VN(g') =~. To prove this, note that since 9 and g' are 

compact, there exists El > 0 such that ~(g) n ~(g') ~. 
El El 

Let U and V be p-open with 9 cUe N 9 and g' eVe N g'.
E E

l l 

So NE U c 9 and NE V c g' and ~ n ~ =~. Choose 
1 

N2E 1 1 
N2 El El El 

E > 0 so that E < E and NEg c U, NEg' c V. Choose N sol 

2~ < £. Then WN(g) n WN(g ') = <P. For if w E W (g), g c w
N 

wN(gO)' some go E H, eN N(gO) c NE(gO)· So go meets NEg 
1/2 

and thus go c U. So w c NEgO c NEU c NE U. Thus WN(g) c 
1 

NE U. Similarly, if w' E WN(g'), w' c NE V. So WN(g') c 
1 1 

NE V. So ~(g) and ~(g') are disjoint and as V refines W
N

,
N1 

VN(g) n ~(g') = ~. 

We can now show that fx = fy iff px = py. If px = py 

= 9 then since f(g) is a single point, fx = fy. Now suppose 

fx = fy and px = 9 ~ py = g'. Since f is 1-1 off nv~ we may 

assume at least one of 9 and g' is in npv~. In case both 9 

and g' are in n pv~, choose N so that VN (g) n VN(g') = ~. 

Then f N ~(g) n f N VN(g') = ~, while the first of these sets 

contains f(g) and the second contains f(g'), contradicting 

f(g) = f(g'). Now assume that 9 f npv~ while g' E npV~. 

For some M, 9 f PVMand, f(g) fM(g) = fk(g) for k > M. 

There exists N > M such that 9 f VN(g') so fN(g) f f N VN(g') 

but fN(g) = f(g) while f(g') E f N ~(g'). 

So fp-l is a homeomorphism of I onto Miff f is quasi-

compact. 

We will show f is closed but first we will prove: if 



TOPOLOGY PROCEEDINGS Volume 4 1979 523 

y f ui (so fy = fjy = Y for each j) and if fZ ~ y with each n 

zn E nv~ then zn ~ y. Let p(Zn) = gn· So f(zn) f(gn)· 

Since each gn E npv~, f(gn) = n~=lfk(Vk(gn». So for each 

k,n f(gn) E f k Vk(gn)· But f(gn) ~ y. So y~p U:=l f k Vk(gn) 
-1 00

and since f is a homeomorphism, f y~p Un=l Vk(gn). i.e.,k k 

for each k, y~p U~=l Vk(gn). Now y~p U gn. For suppose not. 

Then there exists £ > 0 such that N£Y misses Ugn • 
There 

exists £ 1 0 such that if 9 G meets N y then 9> E c N£/2Y•£1 
£1 

Choose K so that K1 
< 2· Since y~p U:=l ~(gn) there is a 

2 

point x E U:=l V~(gn) n N / 2Y, say x E V~(gN) n N / 2yo
E1 E1

But by construction, VK(gN) C N K(gN) C N /2(gN)' some 
1/2 £1 

£1 
gN E H. So there exists Z E gN such that d(x,z) < ~, while 

£1 
d(x,y) < 2' so d(x,z) < £1. Thus gN meets N y and gN C 

N 

£1 

c / 2Y. Meanwhile 9 C N (g') C N (g') C N£/2 (gN') C N£Y, 
~ N 1/2K N £1 N 

which contradicts the choice of N£y. 

So {y} 1p {gn} in I by continuity of p. Hence Zn ~ y 

since p is closed and gn = p(zn) and the argument applies 

as well to any subsequence Z 
n i 

To show f is closed, let D be closed c M and suppose 

Yn ~ y with Yn E fD. Let x E D such that Yn = f(x ). As n n 

in the proof of the last part of the convergence theorem, 

it suffices to have M locally compact at y or that {x } has 
n 

a convergent subsequence. So we may assume y f Ui since 

U is a collection of open sets which have compact closure.
l 

Then for each j, f.y = Y = fy. If for some J, {x } is fre-
J n 

quently not in u*, then for a subsequence {x } C M\Uj,
J n i 
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f(x .) = fJx . for each i. So fJ(x .) ~ y hence x . ~ n n n n 
1 1 1 1 

-1f Y y. So we may suppose {x } is ultimately in eachJ n

Uj. There is a subsequence {x } with x E U~. Since it n. n. 1 
1 1 

is only subsequences we are interested in, let us assume 

x E U~+l· Now, since Un+l refines W +l , there exists n n 

gn E H such that x E w +1 (gn) c N / +1 (gn) n vn(gn). Son n 2n1 

gn E H, d(xn,gn) < 2;+1 and x E V~(gn). Thus for each j,n 

f.x E f.V*(g ).
J n J n n
 

Let £ > O. Choose N so that n > N ~ fx
 n 

since fX ~ y. By uniform convergence there exists J such n 

that j > J ~ fjX E N£/4fx for x E M. So n > M, j > J ~ 

fjxn E N£/2Y. But for each 9 E H and each k, diam fkVk(g) 

1< ~ So there exists K such that k > K ~ diam fkVk*(g)2K -2·
 

£
 
< 4 and since V£(g) C Vk(g) for i ~ k, for each i > k, diam 

£
fkV£(g) < 4. Choose I > J,K;then for n > I,N, flx E N£/2Yn 

and diam flv~g < ~ for 9 E H. But flx E fIV~(gn). Son 

fIV~(gn) CN3£/4Y' and since I > J, f(gn) E f(V~(gn» C 

N£/4fIV~{gn) C N£Y. We have shown: given £ > 0 there 

exists M such that n > M ~ f{gn) E N£y. So f(gn) ~ y. But 

1 1
d(xn,gn) < 2n +l · Choose zn E gn such that d(xn,zn) < 2n+l · 

Now f(zn) ~ yand zn E H*. So zn ~ y, as we have already 

proved. But d(xn,zn) ~ 0 so x ~ y also. This completesn 

the proof of Theorem T. 

lie A Proofof McAuley's Theorem for p Closed 

We will use Theorem T to establish McAuley's Theorem 

in case p is closed. Some further observations will be 

useful. 
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First, if G is a decomposition of a metric space M, 

then HG is tsh iff for each homeomorphism h: M : M, Hh(G) 

is weakly tsh. This is an immediate consequence of the 

definitions and the fact that under a homeomorphism h: M : M, 

h(HG) = Hh(G) and if pi: M ~ M/h(G) is the quotient map and 

u a p-open set then h(u) is pi-open. This enables us to 

carry maps and coverings back and forth via the given 

homeomorphism. The details are straightforward and omitted 

here. 

Consequently, if we find a set of purely topological 

conditions on a decomposition G (preserved under homeomorph­

isms on M) which yield H is weakly tsh, then H is tsh also.G G 

We also note that local shrinkability of continua is 

topological, i.e., if M and MI are metric, h a homeomorphism 

of M onto MI and C a locally shrinkable continuum in M, then 

h(C) is a locally shrinkable continuum in MI. 

Proof. Trivially, hC is a continuum. Since C is locally 

shrinkable in M, for each positive integer k there exists 

1
f k : M ~ M such that f k = id off Nl/kC and diam fkC < k. 

C = fkC C Nl/kC. Each open set containing C contains Ckk 
ultimately as C is compact. There exists x E C such that 

each neighborhood of x meets C for infinitely many k, againk 

by compactness of C. Since M is metric a subsequence C ~ x,k . 
]. 

i.e., each neighborhood of x meets C ultimately. And since 
k i 

diam Ck . 
~ 0 each neighborhood of x contains Ck . 

ultimately. 
]. ]. 

Now, since h is a homeomorphism hCk . 
~ hx E hC. Also 

]. 

diam hCk . 
~ 0 since if V is any neighborhood of h (x) , h-lV 

]. 
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is a	 neighborhood of x and contains C ultimately. Then Vk . 
J. 

ultimately contains hC .• Since we may choose neighborhoodsk 
J. 

V of	 h(x) with arbitrarily small diameter, diam hC must
k

. 
J. 

tend	 to zero. Now let U open ~ hC, E > O. Then h-1U is 

open	 ~ C. Choose I so that diam hC < E and Nl / k C C h-1U. 
k I	 I 

-1Then	 f : M ~ M, f id off h U, C = Ck · Let hi = k k	 f kI I	 I I 
-1hf h : MI 

~ MI so hi = id off U and hi (hC) = hf C = hCk	 k k II I 

has diameter < E, which means hC is locally shrinkable. 

We need the following theorem of McAuley: 

Theorem H (McAuley). If M is a metric space, 

{f.}: M ~ M, {U.} a sequence of open subsets of M such that 
J. J. 

Ui ~	 Ui +l , nUi = ~, f i = f i - l off ui' f O = id, and for each 
00

P E M, Ui=lf
-1

P has compact closure then {fi} ~ f: M ~ M.i 

Remark. Excluding the last hypothesis of Theorem H 

yields f = lim f continuous, 1-1 and open. This last con­i 

dition provides that f is onto. 

Theorem HI (McAuley, revised). If G is a decomposition 

of a	 metric space M satisfying 

1) p is closed and point-compact, 

2) each element of H is locally shrinkable, 

3) H is' countable and Go' 

4) M is locally compact at H* , 

then H is weakly tsh in M. 

Proof. In this proof the notation <0,0) is used to 

replace the sequence of symbols: Op-open C 0 c Dp-open c 0 
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compact_ By hypothesis, H = {C.}~ l' H* = n~ lG., G. open
J J= 1= 1 1 

~ Gi +l . Let A be a p-open cover of H*, E > O. For each j, 

choose A. E A wi th C. CA. _ Let h = id_ 
J J J O 

Let HI = {C E H: diam C > E}- By usc, Hi is closed_ 

If H ~ ¢, let k be least such that C E H • So C f Hl l l j lkl 

for j < k l - Hi C wI open such that WI misses C. for j < k l -
J . 

Hi C u open such that U C WI n G - Let C C (0 ,0 ) cl l l k 1 11 

Ul n A and let hI: M ~ M such that hI = id off 0 andk 11 

diam hICk < E_ 
1 

Let H2 = {C E H: diam hlC ~ E}- Hi is closed cUI- If 

H ~ ¢, let k be least such that C E H2 - Then k 2 > k ­2 2 k l2
Hi cW open such that W misses C for j < k 2 . Hi C U2 2 j 2 

A and such that if C n 01 = ¢, we select D so that
k k 22 2 

O2 n 01 ¢, while if Ck n 01 ~ ¢, then choose O2 so that 
2 

D cOl - Let h M ~ M such that h = hI off O and h2 2 : 2 2 2 

shrinks C to diameter < E, (hence C. 
J 

for j ~~ k 2 ) ­k 2 

Inductively, given hi: M ~ M for 0 < i < i such that 

for 1 < t < i = off is open missing C. forh t h t - l ot' Wt J 

j < k
i

, C C <Oi,D ) C U n A c U open cIT c nk
i i i k

i i i Ui - l 

G n Wi and D n O. ¢ or D c D. (and n O. ~ ¢) fori i i °iJ J J 

all j < i, and, shrinks C. for jhi J ~ k i ­

Let Hi +l .. = {C E H: diam h.C > E} _ Then Hi+l is closed
1 ­

c U._ If Hi +l ¢ let k i +1 be least such that C E H. _~ 1 k i +l 1 

Then > k. and C. f H. for j < c openk i + l 1 J 1 k i +l - Hi+l Wi +l 

such that Wi +1 misses C. for j < <= Ui +l openk i +l - Hi+lJ 



528 Reed 

c Ui +1 c Ui n Wi +1 n Gi +1 " Let C
ki

+ c <Oi+l,Di +1) c Ui +11 

n A and such that for each ~, 1 < ~ < i, if C n 
k i +l k i +l 

0t ~ ~, choose Di +1 c Dt and if C + n 0t = ~, choose Di +1ki 1 

so that Di +l n o~ = ep also. (So we have D. n O~ ep or 
J 

D. c D~ and o. n o~ ~ ep for each j < i + 1 and ~ < j. ) Let 
J J ­

M ~ M such that h i +l = h. off shrinks
h i +l : 
1 °i+l and h i +l 

C to diameter < £ (hence C. for j ~ k .+ ) . 
1 lk i +l J 

If Hi = ep for some i, let h = hi-I. This gives a 

homeomorphism h: M ~ M, without appeal to Theorem H, which 

shrinks each element of G to diameter < £. And we can con­

struct a p-open refinement V of A as required for weakly tsh 

in the same way as for the case that {H.} is infinite 
1 

which follows. 

If Hi ~ ep for each i, then we have a sequence of homeo­

morphisms hi of M onto M and open sets U such that U ~ Ui i i +l , 

ep (since nUi C 

nG = H* = UC j , but each j, Uj +l misses Cj ' so H* n (nui )i 

= ep). So we have verified conditions of Theorem H which give 

hi ~ h: M ~ M, with h l~l, continuous and open. 

We must show h is onto. Prior to this, we list some 

properties of the construction: 

Lemma 1. Fop each i, hiA = hi_lA fop any set A contain-

In papticuZap, h.O. h. 10' c: h. 10 . h.D .• 
1 1 1- 1 1- 1 1 1 

Lemma 2.1. Fop each i < j if x f o~ fop i < ~ < j then 

hjX hix. 

Lemma 2. Fop each i thepe exists L(i) < i such that 
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i 
U,Q,=Oh,Q, (Di ) c DL (i) · 

Proof. The statement holds for i = 1 since hlD
l 

hOD D . Let L(l) = 1. Assume for each j < i that therel l 

exists L(j) < j such that U~=Ohl0j c 0L{j). If 0i misses 

OJ for each j < i then h,Q,D i = Di for ,Q, < i by Lemma 2.1. 

But hiDi hi_lDi by Lemma 1 so hiDi Di also. And 

D . Let L(i) = i. If D. meets some 0. for j < i,i ]. ] 

let J be the largest such j. Then by construction D C D
i J 

and by our inductive assumption, there exists L(J) < J such 

that U~=Ohl0J c 0L{J)' But U~=Ohl0i c U~=Ohl0J and since 0i 

misses OJ for J < j < i, h,Q,Di = hjD i pointwise for J < ,Q, < 

i-I
i-I by Lemma 2.1. So we also have U,Q,=Oh,Q,D i c DL(J). And by 

i
Lemma 1, hi_lDi hiDi . Hence U,Q,=Oh,Q,D i C DL(~r). So we let 

L(i) = L(J) < J < i. 

Now it is easy to show h is onto. Let p be any point of 

M. If P f UO then hiP = p for each i and hp = p. So sup­i 

pose p E UO and let I be least such that PEa We will
l

.
i 
-1 I

show that {hi P}i>I C Ui=lDi - Otherwise, there exists a 
- -1 I -1 

least J such that hJ p f Ui=lDi - Let z = h J p. If z f OJ 

-1
then p hJz hJ_lz so z = hJ-lP contrary to the choice of 

J. So Z E OJ- But z U p hoz U hJz for some L(J)c: DL(J) 

by Lemma 2. So meets °1 in p. If L (J) > I then by°L(J) 

construction cOl - If L(J) < I, we still have°L(J) 

z E U~=l Di which is a contradiction. 

which is a finite union of sets having compact closures. So 

we have confirmed the last hypothesis of Theorem H and we 

have h. ~ h: M ~ M. 
]. 

Lemma 3.1. For eaah i and j with i < j if 0i and OJ 
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are disjoint then no O~ can meet them both for ~ ~ j. 

Proof. If O~ meets both 0i and OJ with ~ ~ j > i then 

0i c O~ is chosen so that 0i c 0i n OJ. But OJ was chosen 

to miss 0i. 

Lemma 3.2. If A is any set which contains each 0. for 
1. 

I < i < J which A intersects, then hIA = hJA. 

Proof· Suppose not. Let L be least such that hLA ~ 

hIA with I < L < J. Then hL_lA = hIA. But if hLA ~ hL_lA 

°
 then A meets 0L so A. Hence hLA = hL_lA by Lemma 1.L c 

Lemma 3. For each I and J ~ I, hJOI c hIOI . 

Proof. For J = I the statement is trivial. Given 

J > I, let Q = {O.: I < i < J}. Let A = {O E Q: there 
1. - ­

exists a (finite) sequence of elements of Q, consecutively 

intersecting and of increasing index from 01 to O}. Clearly, 

01 E A, and A* C 01' for otherwise if there exists an element 

0i E A with 0i ~ 01 then Di ~ Dr. Let K be least such that 

~ E A and OK ~ Or. There is a sequence from 01 to OK' as 

described above. An element OJ of this sequence meets OK 

with j < K. So OJ C 01 ,but also by construction OK C OJ. 

Hence OK cOl. Furthermore, A* contains each element of Q 

which A* intersects. For if 0. E Q and 0i meets A*, let J be 
1. 

least such that OJ E A and 0. meets OJ. Now if J < i, aug­
1 

menting the sequence from Or to OJ by o. gives a sequence
1 

from Or to 0i' placing 0i E A. So suppose J > i. Let OK 

be the element of the sequence from 01 to OJ which meets OJ-

Then k < J. So O.
1. 

does not meet Ok· But OJ cannot meet both 

of the disjoint sets 0. and Ok by Lemma 3.1. Now by Lemma 
1. 
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Now, {Ui } is a locally finite collection since U ~ U +
i i l 

and nUi =~. {Oi} is locally finite, as 0i cUi. Since each 

O. is compact, it meets at most a finite number of elements 
J 

of {Oi}. So for each j there exists N(j) ~ j such that 

OJ C M\Ui~N(j)Oi. Then hOj hN(j)Oj C hjD j by Lemma 3, 

while D. U h.D. C DL (.) for some L(j) < j by Lemma 2. Thus 
J J J J 

OJ U hOj C DL(j) C AL(j). For each C E H\UpOi' hC C and 

diam C < E. Suppose C = C so that C C A • Then A n h-lA
J	 J J J 

contains a p-open set N(C) containing C and we have N(C) U 

hN (C) C A
J 

. 

Let V = {O.}~ 1 U {N(C): C E H\UpOl'}. Then V is a 
J J= 

p-open refinement of A, h = id off V*, h shrinks each ele­

ment of H to diameter < E, and v E V 9 there exists A E A 

with A ~ v U hv. Thus, H is weakly tsh. 

Since the hypotheses of Theorem HI are topological, we 

have immediately that H is tsh. Hence, by Theorem T, 

Corollary HI (McAuley). Under the hypotheses of 

Theorem HI, I ~ M. 
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