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SHRINKABLE DECOMPOSITIONS 

Myra Jean Reed 

1.	 Introduction 

There are various definitions of shrinkable decomposi

tions. The talk given by McAuley entitled "Shrinkable 

Decompositions, Criteria, and Generalizations" gave a survey 

of some of the definitions and results. See [3]. 

The primary purpose of this paper is to give the first 

detailed proof of a theorem of McAuley involving the local 

shrinkability of individual elements of an upper semicon

tinuous decomposition G to obtain the shrinkability of the 

entire decomposition G. 

This	 paper is essentially Chapter III of my thesis 

"Decomposition Spaces and Separation Properties," SUNY

Binghamton, 1971. 

2.	 Preliminaries 

The following definition is due to McAuley [1]. 

A subset K of a metric space (M,d) is locally shrinkable 

iff for each open set U ~ K and s > 0, there exists a 

homeomorphism h: M 9 M such that h = id off U and diam 

hK <	 s. 

As originally stated in [2], the theorem: If G is a 

McAuley-upper semicontinuous (Mc--rather than Whyburn) decompo

sition of a complete metric space (M,d) such that H (the col
G 

lection of all nondegenerate elements of G) is countable, H isG 

a Go collection (HG, the union of the elements of HG, is a Go 

set), and each element g E H is a locally shrinkable
G 
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continuum which lies in an open set with compact closure, 

then M is homeomorphic to the decomposition space I = MIG, 

is false. See Example C, section 2.3 of [4] where I is not 

First Axiom. The theorem fails when there exists a point 

which is a degenerate limit of elements having diameters 

bounded away from zero. This cannot happen if p is closed, 

but, as the example shows, it is not a violation of Mc. The 

hypotheses of the theorem and the condition that there be no 

such "bad" points guarantee the map p is closed. The theorem 

is true if McAuley--usc is replaced by Whyburn--usc (p closed) 

and we will obtain this form from~ more general proposition 

which restates another of McAuley's theorems. 

If G is a decomposition of X, we call a subset U of X 

p-open if it is an open inverse set (for p), i.e., U is 

open and P-lp(U) U Sorne thors tha t U . a t ura t d. au say 1S sa e 

open set in X. 

Definition. If G is a decomposition of a metric space 

M, H is tightly shrinkable in M (tsh) iff given any p-open 

cover U of H*, € > 0, and h: M ~ M, there exists a p-open 

(refinement of U) V covering H* and a homeomorphism f: M ~ M 

such that 1) f = hoff V*, 2) for each g E H, diam f(g) < E 

and 3) for each v E V there exists u E U such that 

h(v) U f(v) C:h(u). 

H is weakly tsh if the above holds for the special case 

of h 

3.	 A Convergence Theorem 

We will make use of the following theorem of McAuley, 
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slightly revised. 

Convergence Theorem (McAuley). If M is a metric space 3 

id 3 for each 

n > 1 3 V is a collection of open sets with compact closure n 

and V~ ~ v~+13 for each n > 0 3 f n+l = f n off v~+13 

D E V ~ diam fnD < and x E V~+l ~ there existsn +l En3 

D E V +l such that fnD ~ fnx U f +l x 3 then {fn} are unin n

formly Cauchy and if {fn(X)}:=l converges for each x E ~ 

nv~ then f + f [unif]3 f: M + M is continuous and ont0 3n 

and f is 1 - 1 off~. Furthermore 3 if M is locally compact 

on Vi 3 then f is closed. 

Proof. First, we show that {fn} are uniformly Cauchy. 

Let E > O. For some N, ,00 NE < E. Let x E M. For each
Ln= n 

n, if x f V~+l then fn+lx = fnx. If x E V~+l then there 

exists D E V +l such that fnD ~ fnx U fn+lx, but diam fnD n 

< En. So, in either case, d(fnx,fn+lx) < En. So for m > N, 

d{fNx,fmx} < L~=NEi < L:=NEi < E. 

{fnx} converges for x t ~ = nv~, for if x t Vj+l then 

fnx fJx for n > J, i.e., {fnx} is ultimately constant. 

So if {fnx} converges for x E ~ then we have pointwise 

convergence everywhere. And since {fn} are uniformly Cauchy, 

f + f = lim f [unif], and f is continuous. n n 
-1To show f is onto, let P "E M. Let Z f p. It n n 

suffices to show {zn} has a convergent subsequence, since if 

Z + x then continuity gives fz + fx while d{f z ,fz }n. n. n. n. n. 
1 1. 1 1. 1 

< E for large i by uniform convergence. So fz + p and 
n i 

hence p = fx. Now, if p ~ Vi then for each n, fnP p. 
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Thus Uf-lp {p}. If P E Vi, p E D E VI with D compact.
n 

Choose 0 > 0 such that No (p) c D. By the uniform convergence 

there exists N such that n > N ~ fNz E Nofnz for all Z E M. 

So fNz n E Nofnzn = No (p) c D. Hence {fNZn}:=N c D and 

{Zn} oon=N c fN-lD. S· f· h h· f-lD·1nce N 1S a omeomorp 1sm, N 1S com

pact and so {zn} has a convergent subsequence. 

Now we suppose that M is locally compact at each point 

To show f is closed, let D be a closed subset of Mof Vi·
 

and Y -+ Y with Y E fD. We must show Y E fD. There exists
 
n n 

x E D with Y = fx • If {x } has a convergent subsequence,
n n n n

we are done, since if x -+ x then xED and fx = Y -+ fx 
n i n i n i 

by continuity. Hence fx = y. Furthermore, if M is locally 

compact at y, we can choose £ > 0 so that N y is compact.
£ 

By uniform convergence there exists I so that for every 

x E M, fIxE N£/2 fx. In particular, for each n, fIx E N£/2fxn.n 

But there exists N such that for n > N,fx E N£/2 Y• So n 

fIx E N£/2 fxn c NiY' which has compact closure. So {fIx }n n 

has a convergent subsequence and thus {x } does also, as f n I 

is a homeomorphism. 

We may suppose then that y $ vr. Now fj(Vi) = Vi for 

each j since f. is a homeomorphism which is the identity
J 

off Vi. For some £ > 0, N£Y misses VI and for large n, 

Yn E N£/2Y. For large i, fix E N£/2Yn C N£Y so fix $ Vin n 

and thus x t Vi. So fX = x and since fX -+ y, we have n n n n 

4. A Theorem for Tightly Shrinkable Decompositions 

The following theorem is proved~ 
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Theorem T. If M is a metric space~ G a decomposition 

of M such that p is closed and point-compact~ H is tightly 

shrinkable in M~ and M is locally compact at H*~ then 

I ~ M. 

Proof. For each 9 E H, let wl(g) be a p-open set con

taining 9 such that wl(g) is compact c N (g). Let
l/2 

WI = {wI (g) : 9 E H}. Let Ul be a star refinement of WI 

by p-open sets. (I is metrizable, hence paracompact, by 

Stone's Theorem [16].) By tsh, there exists f : M ~ M and
l 

VI a p-open refinement of U covering H* such that:l
 

f l id off Vi
 

1 
9 E H ~ diam fIg < 2" 
v E VI =9 there exists u E U such that v U flv c u.l 

For eaeh 9 E H, choose vl(g) E VI containing 9 and let w2 (g) 

be p-open containing 9 so that w (g) compact C NIl 2(g) n2 
2 

vl(g) n f l 
-1 

(NIl 2 f l g )· Let W2 = {w2 (g): 9 E H}. Let U2 be 
2 

a star refinement of W by p-open sets. By tsh there exists2 

f 2 : M ~ M and V a p-open refinement of U covering H*,2 2 

satisfying 

f off Vi2 f l 
1

9 E H 9 diam £2 9 < 2
2

v E V2 
=9 there exists u E U2 such that flv U f 2v 

c flu. 

Inductively, given f - l : M ~ M, V - l a p-open refinement n n 

of U covering H* with- ln
 

f off V~_l
n - 2 

9 E H 9> diam f 9 < _I_
n-I 2n - l 
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v E V - l ~ there exists u E U - l with f _2v U n n n

fn_lv c: f _2u,n

for each 9 E H, choose vn-l(g) E V containing 9 and let_ln

wn(g) be p-open containing 9 so that wn{g) is compact 

-1 
c: N (g) n v leg) n f leN fIg). Let W = {wn(g):n 

9 E H} and Un a star-refinement of W by p-open sets. By 

1/2n n- n- 1/2n n-

n 

tsh there exists fn: M ~ M and V a p-open refinement of Un n 

covering H*, satisfying: 

f f off V* n n-l n
 

9 E H ~ diam fng < 1
 

2n 

v E V 9> there exists u E U such that f IV Un n n
f v c: f lU.n n-

It is clear that this construction gives for each n, 

9 E G ~ fn_lV~(g) U fnV~(g) c: fn_lU~(g) c: fn_lwn(g') c: 

f IV l(gl) n N f l(gl), this last set having diameter 
n- n- 1/2n n

< ~, for some gl E H. 
2n-~ 

Also, we have for each 9 E G, for each k ~ 1 and n ~ k, 

fk(V~(g» U fn(V~(g» c: fk(V~(g». To see this, let k > 1 

and induct on n: For n = k the statement is trivial. Sup

pose it holds for some n > k. Now, fn{V~+l(g» U 

fn+l(V~+l(g» c fn(U~+l(g» by construction and this is 

a subset of fn(wn+l(g'», for some gl E H, which in turn 

lies in fn(vn(gl». We assume 9 E P(V~+l) since otherwise 

the statement is trivial. So 9 c: V~+l(g) c: Vn{gl). Hence 

Vn(g') E Vn{g) and Vn{gl) c: V~(g). So fn{vn{g'» c: 

fn{V~(g» c: fk(Vk(g» by the inductive hypothesis. Also, 

since V~+l(g) c: V~(g), fk(V~+l(g» c: fk(Vk(g» also by the 
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inductive hypothesis and this establishes the corresponding 

statement for the case of n+l. 

We may restate the last result: for each 9 E G, for 

each k > 1, U:=kfn(V~(g» c fk(Vk(g». In particular, for 

each 9 E np(v*) (where 9 c V*(g) for each n), U
OO 

kf (g) c n n n= n 

U:=kfnV~(g) c fkVk(g). 

The result is sequences f : M ~ M and {U } such that n n 

each Un is a collection of p-open sets with compact closure, 

f +l = f off U~+l (actually off V~+l c U~+l). Furthermore,n n 

x E U~+l 9 there exists u E U +l with fnu ~ fnx U fn+lx,n

fnx, which is in the image under 

f of whichever element of U +l contains x. And if x E V~+l' n n 

x E some v E V +l but fnv U fn+lv c fnu for some u E U +l •n n 

For each u E U +l , diam f u <~. And since I.~ < 00,n n 2n - '2n

we have verified all of the conditions we need of the Con

vergence Theorem except convergence itself at points of nu~. 

But suppose x E nu~ = nv~. p (x) = 9 c nv~ so 9 c V~ (g) for 

each n, while U:=lfn(V~(g» c fl(Vi(g» c Ui(g), which has 

compact closure. So {f x}oo 1 lies in a compact set. Thus 
n n= 

it has a convergent subsequence. But the sequence {fnx} is 

Cauchy and hence converges. 

So by the Convergence Theorem, f + f: M + M [unif], f 
n 

is continuous, onto and f is 1-1 off ~ nu* • 
n 

We now establish that for each 9 E H, f(g) is a point. 

For each k and n > k, fn(g) c fk(Vk(g». So for each k, 

f(g) c fk(V~(g». Thus f(g) c n~=lfk(V~(g», while the sets 

in this intersect-ion have diameters tending to zero as k 

increases, so f(g) = n~=lfkv~(g) = a point. 
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We claim also, 9 ~ g' E G 9 for some N, VN(g) n 

VN(g') =~. To prove this, note that since 9 and g' are 

compact, there exists El > 0 such that ~(g) n ~(g') ~. 
El El 

Let U and V be p-open with 9 cUe N 9 and g' eVe N g'.
E E

l l 

So NE U c 9 and NE V c g' and ~ n ~ =~. Choose 
1 

N2E 1 1 
N2 El El El 

E > 0 so that E < E and NEg c U, NEg' c V. Choose N sol 

2~ < £. Then WN(g) n WN(g ') = <P. For if w E W (g), g c w
N 

wN(gO)' some go E H, eN N(gO) c NE(gO)· So go meets NEg 
1/2 

and thus go c U. So w c NEgO c NEU c NE U. Thus WN(g) c 
1 

NE U. Similarly, if w' E WN(g'), w' c NE V. So WN(g') c 
1 1 

NE V. So ~(g) and ~(g') are disjoint and as V refines W
N

,
N1 

VN(g) n ~(g') = ~. 

We can now show that fx = fy iff px = py. If px = py 

= 9 then since f(g) is a single point, fx = fy. Now suppose 

fx = fy and px = 9 ~ py = g'. Since f is 1-1 off nv~ we may 

assume at least one of 9 and g' is in npv~. In case both 9 

and g' are in n pv~, choose N so that VN (g) n VN(g') = ~. 

Then f N ~(g) n f N VN(g') = ~, while the first of these sets 

contains f(g) and the second contains f(g'), contradicting 

f(g) = f(g'). Now assume that 9 f npv~ while g' E npV~. 

For some M, 9 f PVMand, f(g) fM(g) = fk(g) for k > M. 

There exists N > M such that 9 f VN(g') so fN(g) f f N VN(g') 

but fN(g) = f(g) while f(g') E f N ~(g'). 

So fp-l is a homeomorphism of I onto Miff f is quasi-

compact. 

We will show f is closed but first we will prove: if 
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y f ui (so fy = fjy = Y for each j) and if fZ ~ y with each n 

zn E nv~ then zn ~ y. Let p(Zn) = gn· So f(zn) f(gn)· 

Since each gn E npv~, f(gn) = n~=lfk(Vk(gn». So for each 

k,n f(gn) E f k Vk(gn)· But f(gn) ~ y. So y~p U:=l f k Vk(gn) 
-1 00

and since f is a homeomorphism, f y~p Un=l Vk(gn). i.e.,k k 

for each k, y~p U~=l Vk(gn). Now y~p U gn. For suppose not. 

Then there exists £ > 0 such that N£Y misses Ugn • 
There 

exists £ 1 0 such that if 9 G meets N y then 9> E c N£/2Y•£1 
£1 

Choose K so that K1 
< 2· Since y~p U:=l ~(gn) there is a 

2 

point x E U:=l V~(gn) n N / 2Y, say x E V~(gN) n N / 2yo
E1 E1

But by construction, VK(gN) C N K(gN) C N /2(gN)' some 
1/2 £1 

£1 
gN E H. So there exists Z E gN such that d(x,z) < ~, while 

£1 
d(x,y) < 2' so d(x,z) < £1. Thus gN meets N y and gN C 

N 

£1 

c / 2Y. Meanwhile 9 C N (g') C N (g') C N£/2 (gN') C N£Y, 
~ N 1/2K N £1 N 

which contradicts the choice of N£y. 

So {y} 1p {gn} in I by continuity of p. Hence Zn ~ y 

since p is closed and gn = p(zn) and the argument applies 

as well to any subsequence Z 
n i 

To show f is closed, let D be closed c M and suppose 

Yn ~ y with Yn E fD. Let x E D such that Yn = f(x ). As n n 

in the proof of the last part of the convergence theorem, 

it suffices to have M locally compact at y or that {x } has 
n 

a convergent subsequence. So we may assume y f Ui since 

U is a collection of open sets which have compact closure.
l 

Then for each j, f.y = Y = fy. If for some J, {x } is fre-
J n 

quently not in u*, then for a subsequence {x } C M\Uj,
J n i 
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f(x .) = fJx . for each i. So fJ(x .) ~ y hence x . ~ n n n n 
1 1 1 1 

-1f Y y. So we may suppose {x } is ultimately in eachJ n

Uj. There is a subsequence {x } with x E U~. Since it n. n. 1 
1 1 

is only subsequences we are interested in, let us assume 

x E U~+l· Now, since Un+l refines W +l , there exists n n 

gn E H such that x E w +1 (gn) c N / +1 (gn) n vn(gn). Son n 2n1 

gn E H, d(xn,gn) < 2;+1 and x E V~(gn). Thus for each j,n 

f.x E f.V*(g ).
J n J n n
 

Let £ > O. Choose N so that n > N ~ fx
 n 

since fX ~ y. By uniform convergence there exists J such n 

that j > J ~ fjX E N£/4fx for x E M. So n > M, j > J ~ 

fjxn E N£/2Y. But for each 9 E H and each k, diam fkVk(g) 

1< ~ So there exists K such that k > K ~ diam fkVk*(g)2K -2·
 

£
 
< 4 and since V£(g) C Vk(g) for i ~ k, for each i > k, diam 

£
fkV£(g) < 4. Choose I > J,K;then for n > I,N, flx E N£/2Yn 

and diam flv~g < ~ for 9 E H. But flx E fIV~(gn). Son 

fIV~(gn) CN3£/4Y' and since I > J, f(gn) E f(V~(gn» C 

N£/4fIV~{gn) C N£Y. We have shown: given £ > 0 there 

exists M such that n > M ~ f{gn) E N£y. So f(gn) ~ y. But 

1 1
d(xn,gn) < 2n +l · Choose zn E gn such that d(xn,zn) < 2n+l · 

Now f(zn) ~ yand zn E H*. So zn ~ y, as we have already 

proved. But d(xn,zn) ~ 0 so x ~ y also. This completesn 

the proof of Theorem T. 

lie A Proofof McAuley's Theorem for p Closed 

We will use Theorem T to establish McAuley's Theorem 

in case p is closed. Some further observations will be 

useful. 
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First, if G is a decomposition of a metric space M, 

then HG is tsh iff for each homeomorphism h: M : M, Hh(G) 

is weakly tsh. This is an immediate consequence of the 

definitions and the fact that under a homeomorphism h: M : M, 

h(HG) = Hh(G) and if pi: M ~ M/h(G) is the quotient map and 

u a p-open set then h(u) is pi-open. This enables us to 

carry maps and coverings back and forth via the given 

homeomorphism. The details are straightforward and omitted 

here. 

Consequently, if we find a set of purely topological 

conditions on a decomposition G (preserved under homeomorph

isms on M) which yield H is weakly tsh, then H is tsh also.G G 

We also note that local shrinkability of continua is 

topological, i.e., if M and MI are metric, h a homeomorphism 

of M onto MI and C a locally shrinkable continuum in M, then 

h(C) is a locally shrinkable continuum in MI. 

Proof. Trivially, hC is a continuum. Since C is locally 

shrinkable in M, for each positive integer k there exists 

1
f k : M ~ M such that f k = id off Nl/kC and diam fkC < k. 

C = fkC C Nl/kC. Each open set containing C contains Ckk 
ultimately as C is compact. There exists x E C such that 

each neighborhood of x meets C for infinitely many k, againk 

by compactness of C. Since M is metric a subsequence C ~ x,k . 
]. 

i.e., each neighborhood of x meets C ultimately. And since 
k i 

diam Ck . 
~ 0 each neighborhood of x contains Ck . 

ultimately. 
]. ]. 

Now, since h is a homeomorphism hCk . 
~ hx E hC. Also 

]. 

diam hCk . 
~ 0 since if V is any neighborhood of h (x) , h-lV 

]. 
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is a	 neighborhood of x and contains C ultimately. Then Vk . 
J. 

ultimately contains hC .• Since we may choose neighborhoodsk 
J. 

V of	 h(x) with arbitrarily small diameter, diam hC must
k

. 
J. 

tend	 to zero. Now let U open ~ hC, E > O. Then h-1U is 

open	 ~ C. Choose I so that diam hC < E and Nl / k C C h-1U. 
k I	 I 

-1Then	 f : M ~ M, f id off h U, C = Ck · Let hi = k k	 f kI I	 I I 
-1hf h : MI 

~ MI so hi = id off U and hi (hC) = hf C = hCk	 k k II I 

has diameter < E, which means hC is locally shrinkable. 

We need the following theorem of McAuley: 

Theorem H (McAuley). If M is a metric space, 

{f.}: M ~ M, {U.} a sequence of open subsets of M such that 
J. J. 

Ui ~	 Ui +l , nUi = ~, f i = f i - l off ui' f O = id, and for each 
00

P E M, Ui=lf
-1

P has compact closure then {fi} ~ f: M ~ M.i 

Remark. Excluding the last hypothesis of Theorem H 

yields f = lim f continuous, 1-1 and open. This last coni 

dition provides that f is onto. 

Theorem HI (McAuley, revised). If G is a decomposition 

of a	 metric space M satisfying 

1) p is closed and point-compact, 

2) each element of H is locally shrinkable, 

3) H is' countable and Go' 

4) M is locally compact at H* , 

then H is weakly tsh in M. 

Proof. In this proof the notation <0,0) is used to 

replace the sequence of symbols: Op-open C 0 c Dp-open c 0 
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compact_ By hypothesis, H = {C.}~ l' H* = n~ lG., G. open
J J= 1= 1 1 

~ Gi +l . Let A be a p-open cover of H*, E > O. For each j, 

choose A. E A wi th C. CA. _ Let h = id_ 
J J J O 

Let HI = {C E H: diam C > E}- By usc, Hi is closed_ 

If H ~ ¢, let k be least such that C E H • So C f Hl l l j lkl 

for j < k l - Hi C wI open such that WI misses C. for j < k l -
J . 

Hi C u open such that U C WI n G - Let C C (0 ,0 ) cl l l k 1 11 

Ul n A and let hI: M ~ M such that hI = id off 0 andk 11 

diam hICk < E_ 
1 

Let H2 = {C E H: diam hlC ~ E}- Hi is closed cUI- If 

H ~ ¢, let k be least such that C E H2 - Then k 2 > k 2 2 k l2
Hi cW open such that W misses C for j < k 2 . Hi C U2 2 j 2 

A and such that if C n 01 = ¢, we select D so that
k k 22 2 

O2 n 01 ¢, while if Ck n 01 ~ ¢, then choose O2 so that 
2 

D cOl - Let h M ~ M such that h = hI off O and h2 2 : 2 2 2 

shrinks C to diameter < E, (hence C. 
J 

for j ~~ k 2 ) k 2 

Inductively, given hi: M ~ M for 0 < i < i such that 

for 1 < t < i = off is open missing C. forh t h t - l ot' Wt J 

j < k
i

, C C <Oi,D ) C U n A c U open cIT c nk
i i i k

i i i Ui - l 

G n Wi and D n O. ¢ or D c D. (and n O. ~ ¢) fori i i °iJ J J 

all j < i, and, shrinks C. for jhi J ~ k i 

Let Hi +l .. = {C E H: diam h.C > E} _ Then Hi+l is closed
1 

c U._ If Hi +l ¢ let k i +1 be least such that C E H. _~ 1 k i +l 1 

Then > k. and C. f H. for j < c openk i + l 1 J 1 k i +l - Hi+l Wi +l 

such that Wi +1 misses C. for j < <= Ui +l openk i +l - Hi+lJ 
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c Ui +1 c Ui n Wi +1 n Gi +1 " Let C
ki

+ c <Oi+l,Di +1) c Ui +11 

n A and such that for each ~, 1 < ~ < i, if C n 
k i +l k i +l 

0t ~ ~, choose Di +1 c Dt and if C + n 0t = ~, choose Di +1ki 1 

so that Di +l n o~ = ep also. (So we have D. n O~ ep or 
J 

D. c D~ and o. n o~ ~ ep for each j < i + 1 and ~ < j. ) Let 
J J 

M ~ M such that h i +l = h. off shrinks
h i +l : 
1 °i+l and h i +l 

C to diameter < £ (hence C. for j ~ k .+ ) . 
1 lk i +l J 

If Hi = ep for some i, let h = hi-I. This gives a 

homeomorphism h: M ~ M, without appeal to Theorem H, which 

shrinks each element of G to diameter < £. And we can con

struct a p-open refinement V of A as required for weakly tsh 

in the same way as for the case that {H.} is infinite 
1 

which follows. 

If Hi ~ ep for each i, then we have a sequence of homeo

morphisms hi of M onto M and open sets U such that U ~ Ui i i +l , 

ep (since nUi C 

nG = H* = UC j , but each j, Uj +l misses Cj ' so H* n (nui )i 

= ep). So we have verified conditions of Theorem H which give 

hi ~ h: M ~ M, with h l~l, continuous and open. 

We must show h is onto. Prior to this, we list some 

properties of the construction: 

Lemma 1. Fop each i, hiA = hi_lA fop any set A contain-

In papticuZap, h.O. h. 10' c: h. 10 . h.D .• 
1 1 1- 1 1- 1 1 1 

Lemma 2.1. Fop each i < j if x f o~ fop i < ~ < j then 

hjX hix. 

Lemma 2. Fop each i thepe exists L(i) < i such that 
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i 
U,Q,=Oh,Q, (Di ) c DL (i) · 

Proof. The statement holds for i = 1 since hlD
l 

hOD D . Let L(l) = 1. Assume for each j < i that therel l 

exists L(j) < j such that U~=Ohl0j c 0L{j). If 0i misses 

OJ for each j < i then h,Q,D i = Di for ,Q, < i by Lemma 2.1. 

But hiDi hi_lDi by Lemma 1 so hiDi Di also. And 

D . Let L(i) = i. If D. meets some 0. for j < i,i ]. ] 

let J be the largest such j. Then by construction D C D
i J 

and by our inductive assumption, there exists L(J) < J such 

that U~=Ohl0J c 0L{J)' But U~=Ohl0i c U~=Ohl0J and since 0i 

misses OJ for J < j < i, h,Q,Di = hjD i pointwise for J < ,Q, < 

i-I
i-I by Lemma 2.1. So we also have U,Q,=Oh,Q,D i c DL(J). And by 

i
Lemma 1, hi_lDi hiDi . Hence U,Q,=Oh,Q,D i C DL(~r). So we let 

L(i) = L(J) < J < i. 

Now it is easy to show h is onto. Let p be any point of 

M. If P f UO then hiP = p for each i and hp = p. So supi 

pose p E UO and let I be least such that PEa We will
l

.
i 
-1 I

show that {hi P}i>I C Ui=lDi - Otherwise, there exists a 
- -1 I -1 

least J such that hJ p f Ui=lDi - Let z = h J p. If z f OJ 

-1
then p hJz hJ_lz so z = hJ-lP contrary to the choice of 

J. So Z E OJ- But z U p hoz U hJz for some L(J)c: DL(J) 

by Lemma 2. So meets °1 in p. If L (J) > I then by°L(J) 

construction cOl - If L(J) < I, we still have°L(J) 

z E U~=l Di which is a contradiction. 

which is a finite union of sets having compact closures. So 

we have confirmed the last hypothesis of Theorem H and we 

have h. ~ h: M ~ M. 
]. 

Lemma 3.1. For eaah i and j with i < j if 0i and OJ 
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are disjoint then no O~ can meet them both for ~ ~ j. 

Proof. If O~ meets both 0i and OJ with ~ ~ j > i then 

0i c O~ is chosen so that 0i c 0i n OJ. But OJ was chosen 

to miss 0i. 

Lemma 3.2. If A is any set which contains each 0. for 
1. 

I < i < J which A intersects, then hIA = hJA. 

Proof· Suppose not. Let L be least such that hLA ~ 

hIA with I < L < J. Then hL_lA = hIA. But if hLA ~ hL_lA 

°
 then A meets 0L so A. Hence hLA = hL_lA by Lemma 1.L c 

Lemma 3. For each I and J ~ I, hJOI c hIOI . 

Proof. For J = I the statement is trivial. Given 

J > I, let Q = {O.: I < i < J}. Let A = {O E Q: there 
1. - 

exists a (finite) sequence of elements of Q, consecutively 

intersecting and of increasing index from 01 to O}. Clearly, 

01 E A, and A* C 01' for otherwise if there exists an element 

0i E A with 0i ~ 01 then Di ~ Dr. Let K be least such that 

~ E A and OK ~ Or. There is a sequence from 01 to OK' as 

described above. An element OJ of this sequence meets OK 

with j < K. So OJ C 01 ,but also by construction OK C OJ. 

Hence OK cOl. Furthermore, A* contains each element of Q 

which A* intersects. For if 0. E Q and 0i meets A*, let J be 
1. 

least such that OJ E A and 0. meets OJ. Now if J < i, aug
1 

menting the sequence from Or to OJ by o. gives a sequence
1 

from Or to 0i' placing 0i E A. So suppose J > i. Let OK 

be the element of the sequence from 01 to OJ which meets OJ-

Then k < J. So O.
1. 

does not meet Ok· But OJ cannot meet both 

of the disjoint sets 0. and Ok by Lemma 3.1. Now by Lemma 
1. 
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Now, {Ui } is a locally finite collection since U ~ U +
i i l 

and nUi =~. {Oi} is locally finite, as 0i cUi. Since each 

O. is compact, it meets at most a finite number of elements 
J 

of {Oi}. So for each j there exists N(j) ~ j such that 

OJ C M\Ui~N(j)Oi. Then hOj hN(j)Oj C hjD j by Lemma 3, 

while D. U h.D. C DL (.) for some L(j) < j by Lemma 2. Thus 
J J J J 

OJ U hOj C DL(j) C AL(j). For each C E H\UpOi' hC C and 

diam C < E. Suppose C = C so that C C A • Then A n h-lA
J	 J J J 

contains a p-open set N(C) containing C and we have N(C) U 

hN (C) C A
J 

. 

Let V = {O.}~ 1 U {N(C): C E H\UpOl'}. Then V is a 
J J= 

p-open refinement of A, h = id off V*, h shrinks each ele

ment of H to diameter < E, and v E V 9 there exists A E A 

with A ~ v U hv. Thus, H is weakly tsh. 

Since the hypotheses of Theorem HI are topological, we 

have immediately that H is tsh. Hence, by Theorem T, 

Corollary HI (McAuley). Under the hypotheses of 

Theorem HI, I ~ M. 
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