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MONOTONE MAPS AND E-MAPS 

J. W. Rogers, Jr. 

In this paper, a compactum is a compact metric space; 

a continuum is a connected compactum, and a map is a con­

tinuous function. A map f: X + Y is an £-map, for £ > 0, if 

and only if diam(f-l(y» < £ for each y E Y. If X is a 

continuum, and ~ is a class of continua, then X is ~-like 

if and only if there is an £-map from X onto some element 

of ~ for every £ > O. If ~ = {y} is degenerate, then X is 

also said to be Y- like. A graph is a sp~~,.e homeomorphic to 

the space of a one-dimensional finite complex.. It will 

usually be assumed that the graph is triangulated, and the 

I-simplexes will also be called edges and the O-simplexes, 

vertices. 

In [2], Carlisle proved a theorem that related the 

problem of determining which graphs are "like!" which other 

graphs to the intuitively simpler problem of determining 

which graphs are monotone images of which other graphs. 

Theopem A (Carlisle). If G and G' are graphs, then G 

is G'-like if and only if G is a monotone image of G'. 

The proof in [2] involves the use of piecewise linear 

maps and is somewhat long, but other interesting results 

follow from the theorems used. The purpose of this note is 

to give a complete and fairly short argument for a generali­

zation of Theorem A. The theorems used here are of indepen­

dent interest. It follows from Theorem 1, for example, that 
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no continuum that admits a monotone map onto an arc is 

circle-like. Theorem 3 implies each of the following 

results: every monotone image of an arc-like (or circle-

like) continuum is arc-like (or circle-like) (see [1], 

Theorem 3, p. 47), and if M is a locally connected contin­

uum which admits a monotone map onto an arc then the arc 

" is M-like (in particular, the arc is disk-like, torus-like, 

etc.). 

Theorem 1. Supp~se k is a positive integer. If there 

exists a monotone map m from the continuum M onto the graph 

G, then there exists a positive number £ such that if there 

is an £-map from M onto a graph G with no more than k 

vertices, then there is a monotone map from G' onto G. 

Proof. Suppose not. Then there exists, for each 

positive integer i, a (l/i)-map f from M onto a graph G
i i 

with no more than k vertices such that G. admits no monotone 
1 

i i map onto G. For each i, let vl,···,v denote a sequence ofk 

distinct points of G which includes all the vertices of G •i i 

By choosing a subsequence and relabeling, we may arrange 

-1 1 -1 2that the sequence f (v ),f (v ), ••• converges to a point
l j 2 j 

p. of M for all 1 ~ j ~ k. 
] 

FOr each edge E of G, let Q(E) denote a subinterval of 

E which misses both end points of E and also m(p.) for 
] 

1 ~ j < k. Then, because of the uniform continuity of m, 

. ,there is a positive integer i' such that if i > 1 , then 

Q(E) misses m(f~l(v~» for each j. The closure of E-Q(E) is 
1 ] 

the union of two nonintersecting intervals, E and E , con­
s t 

taining the end points sand t of E, respectively. 



1 

TOPOLOGY PROCEEDINGS Volume 4 1979 535 

pick i > i' sufficiently large that (letting z(H) = 

f. (m-l(H» for each H ~ G) if E and F are distinct edges of 

G', then z(Q(E» n z(Q(F» ~, and, if E is an edge of G 

with endpoints sand t, then Z(E ) misses Z(E ). Since m s t 

is monotone, z(Q(E» is a continuum, and it intersects no 

vertex of Gi ; hence it lies in a single edge of G • Using
i 

the fact that Z(E ) and Z(E ) are nonintersecting continua s t 

which intersect z(Q(E» but also co~tain points outside of 

z(Q(E» (namely, the points of z(s) and z(t), respectively), 

it is not hard to see that P(E) = z(E) - Z(E ) U Z(E ), a s t 

subset of z(Q(E», is connected, and that P(E) is therefore 

an arc lying in a single edge of G •i 

We are now prepared to define a monotone map from G
i 

onto G, which gives a contradiction. If x E Z(E ) for some s 

vertex s of some edge E of G, define g'(x) s. Each of the 

remaining points of G. lies in P(E) for some ,edge E of G, and 
1 

these sets are all nonintersecting arcs. Hence g' extends 

to a map g from G. onto G such that glp(E) is a homeomorphism
1 

onto E for each edge E of G. The map g is cl,early monotone. 

To see that the bound on the number of vertices of the 

graphs G' in this lemma is necessary, consider the following 

example. Let M G = [0,1], and m denote the identity on M. 

Then, if £ > 0, there is a positive integer n so that there 

is an £-map from M onto the set An: 

{(x,y) 10 < x < nand y 0 or y = I} U 

u~=o{(x,y) Ix i and 0 < y < I}. 

However, there is no monotone map from An onto G. 
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Lemma 2. Suppose m is a monotone map fpom the continuum 

M onto the aontinuum X, and G is a finite open covep of X of 

opdep <1. Then thepe is a numbep £ > 0 so that if f is an 

E-map fpom M onto a locally connected continuum L, then 

thepe exist a finite open pefinement G' of G of opdep ~l, a 

finite open covep H of L of opdep ~l with connected sets, and 

a 1-1 function u fpom G' onto H so that if g and g' belong 

to G', then g n·g' 1 ~ implies u(g) n u(g') 1 ~ and u(g) n 

u(g') 1 ~ implies diam(g U g') < 2-mesh(G). 

Ppoof. Let {v(g) Ig E G} be an open cover of X so that 

VTgf ~ g for each g E G and v(g) n v(g') = ~ if and only if 

g n g' ~. Pick E > 0 so small that, if f is an E-map from 

M onto a space L, then, for each g E G, 

f(m-l~(a) (v(g/) misses f(m-l(X-g». 

Suppose f is an £-map from M onto the locally connected con­

tinuum L, and denote f(m-l(H» by z(H) for each H ~ X. 

Pick 0 > 0 so that 

(b) o < d(zv(g) ,z(X-g» for each g E G, 

and let H' denote a finite cover of L with connected open 

sets of diameter <0. Let H" denote the collection of all 

sets h such that, for some element w(h) of G, h is the union 

of the elements of a subcollection of H' maximal with respect 

to the property that each element of it intersects zvw(h) and 

the union of all the elements of it is connected. For each 

h in H", let o(h) denote the open set X-mf-l(L-h), and let 

G' = {o(h) Ih E H"}. It is easily verified that 

-1(c) o(h) ~ mf (h) ~ w(h) for each h in H" 

(the second inclusion follows from the fact that, using (b), 

h misses fm-l(X-w(h»). Also, 
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(d) o(h) = {x E xl z(x) ~ h} for each h in H".
 

Clearly, HI covers L. Since m is monotone, it follows that,
 

for each x in X, z(x) is a continuum lying in zv(g), for
 

some 9 in G. Some h in H" is constructed from 9 (although 

9 may not be chosen as w(h», and z(x) ~ h. It follows 

from (d) that x E o(h), and so G I covers X. Since, for all 

h and hi in H", w(h) = w(h l ) implies h n hi == ~, it follows 

from (c) that H" is of order 2.1, and that G I is of order <1. 

Now, for each 9 E G I
, pick u(g) = h E H" so that 

9 o(h) and let H {u(g) Ig E G I 
}. Since GO covers X, 

9 o(u(g» for each 9 in G I
, and, by (d), z(g) ~ u(g), it 

follows that H covers L. So H is an open cover of L of 

order 2.1 with connected open sets, and u is 1-1 from G I onto 

H. The conclusion of the Lemma now follows from the fact that, 

if 9 and gl are in G I
, then (1) z(g n gl) ~ u(g) n u(g'), 

-1from (d), and (2) mf (u(g) n U(gl» 2. w(u(g» n W(U(gl» 

and 9 U gl 2. w(u(g» U W(U(gl», by (c). 

Theorem 3. Suppose that P is a class of locally con­

nected continua, M is a P-like continuum, and m is a monotone 

map from r1 onto the i-dimensional continuum X. Then X is 

7'-l,ike. 

Proof. We will show that, for every 0 > 0, there is 

a o-map from X onto some element of P. Suppose 0 .> 0, and 

let G denote a finite open cover of X of mesh < 0/2 and order 

1. Let E be as given in Lemma 2. There is an E-map from M 

onto some element L of P. Let G I
, H, and u be as given in 

Lemma 2. Let N denote the nerve of G I
, N I denote the first 

barycentric subdivision of N, and, for each simplex s of N, 
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let b denote the barycenter of s. For each 9 E G I
, let s 

u l (g) denote a non-empty open subset of L so that u l (g) ~ 

u(g), u l (g) intersects Ul(gl) whenever u(g) intersects 

U(gl), and HI = {u l (g) Ig E Gil covers L. Let h denote a 

canonical map from X onto INI (see [5], Lemma 6, p. 79). If 

the elements 9 and gl of G I are vertices of a I-simplex s 

of N, let b~ denote some point of u l (g) n Ul(gl). If s is 

a a-simplex, {gl, of N, let b ' E ul(g).
S 

Now, using the fact that the Cantor set maps onto every 

compactum, and that u'(g) is a non-empty compact subset of 

the connected and locally connected set u(g) for each 9 E G I
, 

it follows from Theorem 5, p. 253 of [4] that there is a map 

j from INI into L so that, for each 9 E G I
, u l (g) ~ j(stN, (g» 

~ u(g) and, for each simplex s of N, j(b ) = b~. The map j 

G

s 

is onto because HI covers L. So jh is onto. To see that jh 

is a a-map, suppose that x E L. Since H is of order I, 

there are elements 9 and gl of G' (not necessarily distinct) 

so that x E u(g) n U(gl), but if gil is any other element of 

I
, then x t U(g") 2 j(stN, (g"». Consequently, j-l(x) ~ 

stN, (g) U stN, (gl) ~ stN(g) U stN(g'). So, since h is 

canonical, h-lj-l(x) ~ h-l(stN(g) U stN(g'» = h-l(stN(g) U 

-1h (stN(g'» ~ 9 U gl. Since diam(g U gl) < 2(0/2) = 0 by 

Lemma 2, jh is the desired o-map from X onto L. 

The requirement that X be I-dimensional in Theorem 3 is 

necessary, since there is a monotone map from the universal 

planar curve C (obtained by removing the interiors of a 

dense null-sequence of nonintersecting square disks from 

the unit disk in the plane) onto the unit disk. Now if ~ is 



TOPOLOGY PROCEEDINGS Volume 4 1979 539 

the class of all compact I-dimensional polyhedra, then C is 

~-like, but the disk, being 2-dimensional, cannot be. 

Theorem 4. If there is an £-map g from the continuum 

M onto the graph G, and the graph G' admits a monotone map 

m onto G, then there is an £-map from M onto G'. 

Proof. It is well known that if g is an £-map from M 

onto the continuum G, then there exists a positive number 

a such that if h is a a-map from G onto any continuum, then 

hg is an £-map. By Theorem 3, there exists such a map h 

from G onto G'. So hg satisfies the requirements of the 

theorem. 

A map f: X + Y is refinabLe [3] if and only if, for 

each £ > 0, there is an £-map h from X onto Y so that 

d(f,h) < £, i.e., f is a uniform limit of £-maps' for each 

£ > O. All near homeomorphisms are refinable, but there are 

many refinable maps onto graphs from continua with very bad 

local properties; indeed, it is shown in [3] that every 

hereditarily decomposable arc-like continuum admits a re­

finable map onto an arc. Still, a continuum ~~hich admits a 

refinable map onto a graph shares a number of properties 

with that graph, one of which is given by the following 

theorem. This theorem generalizes Carlisle's theorem if M 

is taken to be G, and the refinable map is taken to be the 

identity on M. 

Theorem 5. If the continuum M admits a refinabLe map 

onto a graph G, and G' is a graph, then M is G'-Like if and 

onLy if G is a monotone image of G'. 
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Proof. If G is a monotone image of G', then M is 

G'-like by Theorem 4. If M is G'-like, then there is a 

monotone map from G' onto G by Theorem 1. 
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