TOPOLOGY PROCEEDINGS

Volume 4, 1979
Pages 541-551
http://topology.auburn.edu/tp/

PARTITIONING SPACES WHICH ARE BOTH RIGHT AND LEFT SEPARATED

by
Judith Roitman

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

PARTITIONING SPACES WHICH ARE BOTH RIGHT AND LEFT SEPARATED

Judith Roitman ${ }^{1}$

0. Introduction

A space X is right separated iff X can be well-ordered in some type δ so that all initial segments are open; we say there is a right separation of X of type δ and define $r s(X)=\inf \{\delta:$ there is a right separation of X of type $\delta\}$.

Similarly, X is left separated iff X can be wellordered in some type δ so that all initial segments are closed; we say there is a left separation of X of type δ and define

$$
\begin{aligned}
\operatorname{ls}(X)= & \inf \{\delta: \text { there is a left separation of } X \\
& \text { of type } \delta\} .
\end{aligned}
$$

We say X is doubly separated iff it is both right separated and left separated. Note that there is no requirement that $r(X)=1 s(X)$.

A theorem of Gulik and Juhasz states that compact leftseparated spaces are, in fact, doubly separated. In the same paper, searching for a criterion to tell which compact spaces are doubly separated, they define the concept of a vanishing sequence $:\left\{D_{n}: n<w\right\}$ is a vanishing sequence for X iff it partitions X and each D_{n} is closed discrete in $\underset{j>n}{U} D_{j}$. A compact space with a vanishing sequence is left separated. Must a compact left-separated (hence doubly

[^0]separated) space have a vanishing sequence? Must it even have a countable partition into discrete subspaces? In fact, must a regular doubly separated space have a countable partition into discrete subspaces?
I. Nagy has shown that there is a compact left separated space which has no vanishing sequence. It is, however, a union of countably many discrete subspaces. We show that
(a) If ls(X) and rs(X) are small enough, where X is T_{1} and doubly separated, then X is the union of countably many closed discrete subspaces.
(b) Under CH there are regular 0-dimensional doubly separated spaces which cannot be partitioned into countably many discrete subspaces.

A few more preliminaries:

Definition 1. The upper left topology on the ordinal product $\alpha \times \beta$ is the T_{0} topology whose neighborhoods are all interval products $[0, \gamma] \times[\delta, \beta]$ where $\gamma<\alpha$ and $\delta<\beta$.

Characterization 2. X is doubly separated iff there is a refinement J of the upper left topology on rs(X) \times ls (X) and a l-l onto function $f: r s(X) \rightarrow l s(X)$ so that X is homeomorphic to the graph of f under the relative topology induced by J.

Proof. If $X=\left\{x_{\gamma}: \gamma<\alpha\right\}$ is the right separation, and $x=\left\{x^{\delta}: \sigma<\beta\right\}$ is the left separation, define $f(\gamma)=\delta$ iff $x_{\gamma}=x^{\delta}$.

Proposition 3. Suppose $\lambda^{<\lambda}=\lambda, A \subset P\left(\lambda^{+}\right),|A|=\lambda^{+}$, and each $a \in A$ has cardinality $<\lambda$. Then there is $a \operatorname{B} \subset A$
with $|\mathrm{B}|=\lambda^{+}$and there is some $\mathrm{b} \subset \lambda^{+}$so that if $a, a^{\prime} \in B$ then $a \cap a^{\prime}=b$.
B is called a Δ-system, with b its root. Use of proposition 3 is called a Δ-system argument.

Definition 4. A family of sets is a filterbase iff every finite intersection of sets in the family is nonempty.

Definition 5. Suppose $|E|=\kappa$ and A is a family of subsets of E. If $A \in A$, denote $A^{0}=A$ and $A^{1}=E-A$. Then A is independent iff, for any function f with domain a subset of A of size $<k$ and with range a subset of 2 , $\left|\cap A^{f(A)}\right|=K$. We say that $\cap \quad A^{f(A)}$ is a small
$A \in \operatorname{dom} f \quad A \in \operatorname{dom} f$ Boolean combination from A.

1. Positive Results

Throughout this section, if a space X is doubly separated we will, by characterization 2 , assume it is the graph of a l-l function from $r s(X)$ onto $l s(X)$, and that the topology on X refines the upper left topology. We assume only that X is T_{0}.

Lemma 6. Let X be doubly separated with $1 \mathrm{~s}(\mathrm{X})=$ $\mathrm{rs}(\mathrm{X})=\mathrm{k}$ a cardinal of uncountable cofinality. Then X can be partitioned into κ many clopen sets, each of cardinaltiy $<K$.

Proof. Let $x=\langle\gamma, f(\gamma)\rangle\rangle \in X$. Define by induction:

$$
u_{x, 0}=\{\langle\beta, f(\beta) \gg \in: \beta \leq \gamma \text { and } f(\beta) \geq f(\gamma)\}
$$

$$
\begin{aligned}
u_{x, 2 n+1}= & u_{x, 2 n} \cup\{\delta, f(\delta)\rangle: f(\gamma) \leq f(\delta) \leq f(\beta) \\
& \text { for some } \left.\langle\beta, f(\beta)\rangle \in u_{x, 2 n}\right\} \\
u_{x, 2 n+2}= & u_{x, 2 n+1} \cup\{\langle\delta, f(\delta)\rangle: f(\delta) \geq f(\gamma) \text { and } \\
& \left.\delta \leq \beta \text { for some }\langle\beta, f(\beta)\rangle \in u_{x, 2 n+1}\right\}
\end{aligned}
$$

Let $u_{x}=\bigcup_{n<\omega} u_{x, n}$. Since k is a cardinal, each $\left|u_{x, n}\right|<k$. Hence by uncountable cofinality $\left|u_{x}\right|<\kappa$. By the even stages of the construction each u_{x} is open; by the odd stages if $x=\langle\gamma, f(\gamma)\rangle$ then the boundary of u_{x} is contained in $\{\langle\delta, f(\delta)\rangle: \delta<\gamma$ and $f(\delta)<f(\gamma)\}$. We partition X into a disjoint collection of u_{x} 's by induction:

Suppose $\left\{u_{x_{\gamma}}: \gamma<\beta\right\}$ is a disjoint collection with $\left\{f(\alpha):\langle\alpha, f(\alpha)\rangle \in \underset{\gamma<\beta}{U} u_{x_{\beta}}\right\}$ an initial segment of ls(X). Let $x_{\beta}=\langle\alpha, f(\alpha)\rangle$ be such that $f(\alpha)$ is minimal in $\{f(\delta)$: $\left.\delta, f(\delta) \in x-\underset{\gamma<\beta}{\cup} u_{x_{\gamma}}\right\}$. Then $\left\{u_{x_{\gamma}}: \gamma \leq \beta\right\}$ is still a disjoint collection satisfying the induction hypothesis, and the induction can continue until x is exhausted.

Theorem 7. Let X be doubly separated, with $\mathrm{rs}(\mathrm{X})=$ $1 \mathrm{~s}(\mathrm{X})=\mathrm{K}^{+}$. Then X can be partitioned into $\leq \mathrm{K}$ many discrete subspaces. If X is T_{1} the partition may consist of closed sets.

Proof. Let $\left\{u_{x_{\alpha}}: \alpha<\kappa^{+}\right\}$be a clopen partition as in lemma 6, each $\left|u_{x_{\alpha}}\right| \leq \kappa$. We write $u_{x_{\alpha}}=\left\{z_{\alpha, \gamma}: \gamma<\left|u_{x_{\alpha}}\right|\right\}$ where the $z_{\alpha, \gamma}$'s are distinct. Let $D_{\gamma}=\left\{z_{\alpha, \gamma}: \alpha<\kappa^{+}\right\}^{\alpha}$. Then there are at most k many D_{γ} 's, and the D_{γ} 's partition X. Since the $\mathrm{u}_{\mathrm{x}_{\alpha}}$'s are open, each D_{γ} is discrete. If X is T_{1}, each D_{γ} is closed.

Corollary 8. Let X be doubly separated, $\mathrm{rs}(\mathrm{X})=\alpha \cdot \kappa^{+}$ and $1 \mathrm{~s}(\mathrm{X})=\beta \cdot \mathrm{K}^{+}$where $\alpha, \beta<\kappa^{+}$. Then X can be partitioned
into $\leq k$ many discrete subspaces.
Proof. For $\gamma<\alpha$ let $X_{\gamma}=\left\{x_{\rho}: \rho \in\left\{\gamma \cdot \kappa^{+},(\gamma+1) \cdot \kappa^{+}\right)\right\}$, where $\left\{x_{\rho}: \rho<\alpha \cdot \kappa^{+}\right\}$is the right separation of X. For $\delta<\beta$ and $\gamma<\alpha$ let $X_{\gamma \delta}=\left\{x^{\xi}: \xi \in\left[\delta \cdot K^{+},(\delta+1) \cdot \kappa^{+}\right)\right.$and $\left.x^{\xi} \in x_{\gamma}\right\}$, where $\left\{x^{\xi}: \xi<\beta \cdot \kappa^{+}\right\}$is the left separation of x. Then $\left\{X_{\gamma \delta}: \gamma<\alpha, \delta<\beta\right\}$ partitions X into at most k many pieces, each with rs and ls of κ^{+}. Apply theorem 7.

2. Counterexamples

All spaces are assumed Hausdorff.
Suppose $k=\lambda^{+}=2^{\lambda}$ and $\lambda^{<\lambda}=\lambda$. We will construct a 0 -dimensional, doubly separated space X with $l s(X)=k, r s(X)$ $=\kappa^{2}$, and no partition into fewer than κ discrete sets. X will be constructed, as in characterization 2 , as the graph of a function from a right separated space Y onto a leftseparated space Z. Both Z and Y will have fairly strong properties.

Under a weaker hypothesis, the argument can be adapted to get a counterexample which is not regular, only Hausdorff. We will sketch the adaptation.

Some preliminaires: If σ is a partial function from α into 2 we write $N_{\sigma}=\left\{f \in 2^{\alpha}: f=\sigma\right\}$. As an abuse of notation we write dom $N_{\sigma}=\operatorname{dom} \sigma$. The space $F(\alpha, \beta)$ for $\beta \leq \alpha$ is the set of functions 2^{α} under the topology whose basis consists of all N_{σ}, where $|\sigma|<\beta$. Note that $F(\alpha, \beta)$ is 0 -dimensional.

Definition 9. (a) A space is hereditarily k-separable if every subspace contains a dense subset of cardinality < K.
(b) A space Y is K -Luzin in Y^{*} if every nowhere dense subset of Y^{*} intersects Y in a set of cardinality < K .
(c) A space has property $K(K)$ if every collection of at least k many open sets contains a subcollection which is a filterbase of size κ.

Proposition 10. Suppose $\kappa=\lambda^{+}=2^{\lambda}$ and $\lambda^{<\lambda}=\lambda$. Then there is a space Y with the following properties:
(1) $1 s(Y)=K$.
(2) $Y \subset F(k, \lambda)$.
(3) Y is κ-Luzin in $F(\kappa, \lambda)$.
(4) Y has property $K(k)$.

A theorem of Tall says that a k-Luzin space with no pairwise disjoint family of open sets of size κ^{+}is hereditarily k-Lindelof. Thus (3) and (4) imply that Y has no discrete subspace of cardinality K. So if $Y^{\prime} \subset Y$ and $\left|Y^{\prime}\right|=\kappa$ we may conclude that at most λ many elements of Y^{\prime} have relative neighborhoods of cardinality $\leq \lambda$.

Proposition 11. Suppose $\kappa=\lambda^{+}=2^{\lambda}$ and $\lambda^{<\lambda}=\lambda$. Then there is a space Z with the following properties:
(i) $r s(z)=\kappa^{2}$; we identify z as a set with κ^{2}.
(ii) Z is 0 -dimensional.
(iii) Z is hereditarily k-separable.
(iv) Define $Z_{\alpha}=\{\alpha\} \times k$. Then for every basic open set $u \subset z$ and if $Y \subset \kappa,|Y|=k$, then $\left\{\alpha \in Y: Z_{\sigma} \subset u\right\}$ has size κ and $\left\{\alpha \in Y: z_{\alpha} \subset u\right.$ and $\left.z_{\alpha} \cap u \neq \varnothing\right\}$ is finite.

Proofs of propositions 10 and 11 are delayed until after the proof of the next two theorems.

Theorem 12. Suppose $k=\lambda^{+}=2^{\lambda}$ and $\lambda^{<\lambda}=\lambda$. Then there is a 0-dimensional doubly separated space X with $\mathrm{ls}(\mathrm{X})=\mathrm{K}, \mathrm{rs}(\mathrm{X})=\kappa^{2}$, and if D is a partition of X with $|D| \leq \lambda$, then some $D \in D$ is not discrete.

Proof. Let Y satisfy (1) through (4) and let Z satisfy (i) through (iv). Let $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Y}$ be l-l onto and let X be the graph of f, under the product topology. The only nontrivial property to check is that a small partition of x contains a non-discrete set.

For $\gamma<\kappa^{2}$ we denote by x_{γ} the point $\langle\gamma, f(\gamma)\rangle \in X$. If D is a partition of $x,|D| \leq \lambda$, then by a counting argument there are $D \in D$ and $A \subset \bar{K}$ with $|A|=K$ and if $\alpha \in A$ then $D_{\alpha}=\left\{x_{\gamma} \in D: \gamma \in Z_{\alpha}\right\}$ has cardinality K. Wlog we assume $D=\underset{\alpha \in A}{U} D_{\alpha}$ and show it is not discrete.

For $\alpha \in A$, let $Z_{\alpha}^{*}=\left\{\gamma: X_{\gamma} \in D_{\alpha}\right\}$ and let $Y_{\alpha}^{*}=f^{\prime \prime}\left(Z_{\alpha}^{*}\right)$. We may assume that every relative neighborhood in Y_{α}^{*} has cardinality k. By property (3) there is u_{α} so Y_{α}^{*} is dense in u_{α}. If us is an open cover of D, it has a subcollection which can be refined to the following form:

For $\alpha<k$ pick $x(\alpha) \in D_{\alpha}$ so $x(\alpha) \in Z_{\alpha}^{*} \times u_{\alpha}$. Each $\mathbf{x}(\alpha)$ is covered by $w_{\alpha} \times v_{\alpha}$ where $v_{\alpha} \subset u_{\alpha}$, and both w_{α}, v_{α} are basic in their respective topologies.

We show that $\left\{w_{\alpha} \times v_{\alpha}: \alpha \in A\right\}$ cannot be extended to a discrete cover of D.

By (4), there is $A^{\prime} \subset A_{,}\left|A^{\prime}\right|=k$, where $\left\{v_{\alpha}: \alpha \in A^{\prime}\right\}$ is a filterbase in Y and hence in $F(\kappa, \lambda)$. By (iii) there is $B \subset A^{\prime},|B| \leq \lambda$ where $\bigcup_{\alpha \in B} Z^{*}$ is dense in $Z^{*}=\bigcup_{\alpha \in A^{\prime}} Z_{\alpha}^{*}$. Hence by (iv) we conclude that if $\alpha \in A^{\prime}$ and $\alpha>$ sup B then, for some $\gamma \in B, Z_{\gamma}^{*} \subset w_{\alpha}$. But by (3), Y_{γ}^{*} is dense in v_{γ} and so
there is some $\langle\beta, f(\beta)\rangle \in D_{\gamma}$ with $\beta \in w_{\alpha}$ and $f(\beta) \in v_{\alpha} \cap v_{\gamma}$; thus theorem 15 is proved.

Theorem 13. Suppose, for some $k>\lambda$, there is a K-Luzin subspace of 2^{λ} with cardinality k. Then there is a Hausdorff doubly separated space X with no partition into fewer than cf (k) discrete subspaces; $1 s(X)=k, r s(X)=k^{2}$.

Proof. Let Y be the k-Luzin subspace of 2^{λ} with cardinality k. Well order Y in type $k, Y=\left\{y_{\alpha}: \gamma<\kappa\right\}$. Let $z \subset Y^{2}$ so that if $\langle x, y\rangle,\left\langle x^{\prime}, y^{\prime}\right\rangle \in z$ then $x \neq y$ and $x=x^{\prime}$ iff $y=y^{\prime}$. Well order Z in type κ^{2} by $<*$. Let $f: Z \rightarrow Y$ be 1-l so that either $f(\langle x, y\rangle)=x$ or $f(\langle x, y\rangle)=y$. Let z_{α} be those elements of Z which correspond to $\{\alpha\} \times k$ under $<*$; let $Y_{\alpha}=f^{\prime \prime}\left(Z_{\alpha}\right)$. Let X be the graph of f under the following topology:

For $(x, \dot{y}) \in Z$, let u, v be disjoint open sets with $x \in u$ and $y \in v$. Let

$$
\begin{aligned}
\mathrm{B}_{\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v}}= & \left\{\left\langle\left\langle\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right\rangle, y_{\gamma}\right\rangle \in \mathrm{x}:\left\langle\mathrm{x}^{\prime}, y^{\prime}\right\rangle \leq \star\langle\mathrm{x}, \mathrm{y}\rangle,\right. \\
& Y \geq \delta \text { where } f(\mathrm{x}, \mathrm{y})=y_{\delta}, \text { and } \\
& \left.y_{\gamma} \in u \cup \mathrm{v}\right\} .
\end{aligned}
$$

Let the topology on X be generated by all $B_{x, y, u, v}$.
By the choice of z this topology is Hausdorff. Again, the only non-trivial thing to check is that if D is a partition and $|D|<c f(k)$, then some $D \in D$ is not discrete. Again we have A, D_{α} as in the previous theorem; again assume $D=U_{\alpha \in A} D_{\alpha}$. Again, invoke Tall's theorem. Given an open cover U of D, by another counting argument there are fixed u, v and $A^{\prime} \subset A,\left|A^{\prime}\right|=K$ so that for each $\alpha \in A^{\prime}$ there is some $B \in U$ and

$$
\mathbb{*} x, y), f(\langle x, y\rangle)\rangle \in D_{\alpha} \cap B_{x, y, u, v} B_{x, y, u, v} \subset B .
$$

But then U is not a discrete open cover of D.
Note that the X of theorem 13 is easily seen to be not regular.

We now turn to the proofs that the Y and Z of theorem 12 exist.

Note that any collection of discrete open sets in $F(\kappa, \lambda)$ has cardinality $\leq \lambda$. Thus if U is a collection of open sets and $U U$ is dense open there is $a U^{\prime} \subset U,\left|U^{\prime}\right| \leq \lambda$, and $U U^{\prime}$ is dense open. Thus to show Y is k-Luzin in $F(K, \lambda)$ it suffices to check that if $|U| \leq \lambda$, and $U U$ is dense open and each $u \in U$ is open, then $|Y-U U|<K$.

Let $\left\{N_{\sigma_{\alpha}}: \alpha<\kappa\right\}$ list all basic open sets of $F(\kappa, \lambda)$ where $\operatorname{dom} \sigma_{\alpha} \subset \alpha$. Let $\left\{U_{\alpha} \alpha<\kappa\right\}$ list all collections U of basic open sets where $|U| \leq \lambda$ and $U U$ is dense open. We say such a U is good for β if $N_{\sigma} \in U$ implies dom $\sigma \subset \beta$. We construct $Y=\left\{y_{\alpha}: \alpha<k\right\}$ by induction so that
(1*) $y_{\alpha}{ }^{1} k-\alpha$ is identically 0 .
(2*) $y_{\alpha} \in N_{\sigma_{\alpha}}$.
(3*) If $\beta<\alpha$ and U_{β} is good for α, then $y_{\alpha} \in U U_{\beta}$.
Note that if we have a neighborhood N_{σ} so $N_{\sigma} \in N_{\sigma} \cap_{\gamma} \cap_{\gamma<\beta} U_{\gamma}$, for $\beta<\alpha$, then σ has an extension σ^{*} so $N_{\sigma *} \subset U_{\beta}$. By this fact the induction is completely straightforward, with the details left to the reader.
(1) is implied by (1*); (2) is trivial; (3*) implies
(3); and since by a Δ-system argument $F(\kappa, \lambda)$ has property $\mathrm{K}(\mathrm{K}),(2 *)$ implies (4). Proposition 10 is proved.

Proof of Proposition ll. Some notation: If $x \in F(\lambda, \lambda)$ we say $\left\{x_{\alpha}: \alpha<\gamma\right\}$ converges to x iff x is in its closure and $\alpha<\beta$ implies that, for some $\gamma_{1} x_{\beta}{ }_{\beta} \gamma=x_{\gamma} \gamma_{\gamma}=x_{\alpha} \upharpoonright \gamma$.

Suppose $\kappa=\lambda^{+}=2^{\lambda}$ and $\lambda^{<\lambda}=\lambda$. We construct a space Z as in proposition ll. The proof combines close imitations of other known constructions, so it is only sketched.

The first space imitated is the Kunen line on ω_{1} [JKR] to get a space Z^{*} which is 0 -dimensional right separated hereditarily κ-separable, $r\left(Z^{*}\right)=\kappa$, and each point $x \in Z^{*}$ has a neighborhood basis $\left\{\{\mathbf{x}\} \cup \underset{\beta<\alpha<\lambda}{U} u_{\alpha}^{\mathbf{x}}: \beta<\lambda\right\}$ where $\left\{u_{\alpha}^{x}: \alpha<\gamma\right\}$ is a disjoint family of sets clopen in $F(\lambda, \lambda)$ and there is $x_{\alpha} \in u_{\alpha}^{x}$ so $\left\{x_{\alpha}: \alpha<\lambda\right\}$ converges to x in $F(\lambda, \lambda)$. The proof is an exact imitation of the Juhasz-Kunen-Rudin construction, with k playing the role of ω_{1}, λ the role of ω, and $F(\lambda, \lambda)$ the role of 2^{ω}.

Now switch to imitating the construction of [R]. Identify Z^{*} with k, preserving right separation, and construct $A=\underset{\lambda<\alpha<k}{U} A_{\alpha}$ where each A_{α} is an independent family on λ of cardinality k so that if $B \subset \alpha,|B|=\lambda, \alpha \in$ closure B and A is a Boolean combination from A_{α}, then $|B \cap A|=\lambda$. A is constructed by a straightforward induction: at stage γ the first γ elements of each $A_{\alpha}, \alpha \leq \gamma$, have been constructed.

Let B be a collection of clopen subsets of Z^{*} so that $B\left\{\mathrm{z}^{*}-\mathrm{u}: \mathbf{u} \in B\right\}$ is a basis for z^{*} and if $\mathrm{u} \in B$ then $\mathrm{Z}^{*}-\mathrm{u} \notin \mathrm{B}$. Index each A_{α} by $A_{\alpha}=\left\{\mathrm{A}_{\mathrm{u}}^{\sigma}: \mathrm{u} \in B\right\}$. Denote $\alpha-A_{u}^{\alpha}$ as $A_{Z^{*}-u}^{\alpha}$.

Now let z be the following space: z as a set is κ^{2}. Denote $Z_{\alpha}=\{\alpha\} \times \kappa$, for $\alpha<k$. If $x=\langle\alpha, \beta\rangle$ then a subbasic set containing x is

$$
\begin{aligned}
& \left\{\left\langle\alpha, \beta^{\prime}\right\rangle: \beta^{\prime} \in u\right\} \cup \cup\left\{z_{\gamma}: \gamma \in u_{\rho}^{\alpha}\right. \text { for some } \\
& \left.\rho \in A_{u}^{\alpha}-\xi\right\}
\end{aligned}
$$

where either $u \in B$ or $z^{*}-u \in B, \beta \in u, \xi<\alpha . \quad z$ is clearly right separated in order type κ^{2}. The proofs that Z is Hausdorff and that (i) through (iv) hold are close imitations of proofs of similar statements in [R]. Thus proposition 11 is proved.

Bibliography

[vDTW] E. van Douwen, F. Tall and W. Weiss, CH entails the existence of non-metrizable hereditarily Lindelof spaces with point-countable bases, Proc. of AMS, 64 (1977).
[GH] J. Gerlits and I. Juhasz, On left-separated compact spaces (preprint).
[HJ] A. Hajnal and I. Juhasz, On hereditarily α-Lindelof and α-separable spaces II; Fund. Math. 91 (1973-4).
[JKR] I. Juhasz, K. Kunen and M. E. Rudin, Two more hereditarily separable non-Lindelof spaces (preprint).
[R] J. Roitman, The spread of regular spaces, Gen. Top. and Its Applications 8 (1978).
[T] F. Tall, The density topology, Pac. J. of Math. 62 (1976).

University of Kansas
Lawrence, Kansas 66044

[^0]: ${ }^{1}$ Work on this paper partially supported by NSF Grant \#MCS 78-01851 AMS-MOS: Primary: 54A25, Secondary: 04A20.

