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PSEUDOCOMPACT,METACOMPACT 

SPACES ARE COMPACT 

Brian M. Scott 

Introduction 

It is well known that every countably compact, meta­

compact (T -) space is compact, and it is easy to see thatl 

every pseudocompact, paracompact space is compact. The 

obvious question, then, is whether every pseudocompact, meta­

compact space is compact. (Here pseudocompactness is under­

stood to include complete regularity.) Certainly metacom­

pactness cannot be much further weakened: the Mrowka-Isbell 

space ~ [GJ, Example 51] is a locally compact, pseudocompact, 

(even e-countably compact), orthocompact, and subparacompact-­

1hence 8-refinable--O-dimensional Moore space which is not 

compact. 

An affirmative answer to this question is apparently 

cited in the otherwise very useful and complete survey paper 

[Ma]. However, extensive search has failed to turn up the 

desired result in any of the references therein cited, and 

the question seems therefore to be still open. The purpose 

of this note is to show that the result is in fact true. 

(I am grateful to C. E. Aull and Jerry Vaughan for bring­

ing this question to my attention.) 

Preliminaries 

A space X is: 

II have recently learned that ~ is literally a Moore 
space: it is Example 9 of Chapter I of Moore's book [Mo] I 
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weakly compact (=feebly compact) iff every infinite, dis­

joint family of non-empty open subsets of X clus­

ters at some point of X; [equivalently, iff every 

locally finite family of non-empty open subsets 

of X is finite]; 

almost (countably) compact iff every (countable) open cover 

of X has a finite sUbfamily whose union is dense 

in X; 

almost Lindelof iff every open cover of X has a countable 

subfamily whose union is dense in X; 

e-countably compact (e-~l-compact) iff X has a dense subset, 

D, every infinite (uncountable) subset of which 

has a limit point in X; and 

n-regular	 iff every non-empty open subset of X contains a 

regularly closed subset of X, i.e., iff {cl V: 

V(~~) is open in X} is a n-network for X. 

(Almost compact Hausdorff spaces are in some contexts bet­

ter known as H-closed spaces [AU], and n-regularity has also 

been called quasi-regularity [Ox]. 

The following facts are well-known, or easy to prove, 

or both. 

Fact 1. A Tikhonov space is pseudocompact iff it is 

weakly compact, and an e-countably compact space is weakly 

compact. 

Fact 2. A regular, almost compact space is compact. 

Fact 3.	 [FL] A space, X, is a Baire space iff for 
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every point-finite, open cover, V, of X, {x E X: V is 

locally finite at x} is dense (and oDviously open) in X. 

Fact 4. (Slightly generalizing a result of [McC].) 

If X is weakly compact and n-regular, then X is a Baire 

space. [Sketch of proof: Let (G : nEw) ~~ a descendingn 

sequence of dense, open subsets of X, and let Va be a non­

empty open subset of X. Recursively choose non-empty open 

sets V (n E w) in X such that cl V +1 ~ V n G. By the n n n n 

weak compactness of X, nnVn nn cl V ~ ~.] n 

Results 

Most of the work is done in the following theorem. 

Theorem 1. Let X be a weakly compact, metacompact, 

Baire space; then X is almost compact. 

Proof. Let V be a point-finite open cover of X, and 

let G = {x E X: V is lo~ally finite at x}; G is dense (and 

open) in X. For any A ~ X, let ST(A, V) = {V E V: V n A ~ ,9}, 

and, as usual, let st(A,V) = UST(A,V). Let H be a family 

of non-empty open subsets of X such that: 

(1)	 for each H E H, ST(H,V) is finite; 

(2)	 if HO' HI E H, and HO ~ HI' then HO n st(Hl,V) ~; 

and 

(3) H is maximal with respect to (1) and (2). 

By (2), H is disjoint. If H were infinite, it would cluster 

at some x E X. But then if x EVE V, {H E H: V n H ~ ~} 

would be infinite, which contradicts (2). Thus, H is finite, 

and so, of course, if Vo = ST(UH,V). Moreover, UVo (= st(UH,V» 

is dense in X. (For if not, pick x E G n int (X'uVO)' and 
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let W ~ int (X\UV ) be an open nbhd of x meeting onlyO

finitely many members of Vi clearly H U {W} satisfies (1) 

and (2), so H is not maximal.) Thus, X is almost compact. 

Corollary 1. Let X be 1T-regular~ weakly compact~ and 

metacompact; then X is almost compact. 

Corollary 2. Let X be regular and weakly compact; 

then X is compact iff X is metacompact. 

Corollary 3. Let X be a pseudocompact Tikhonov space; 

then X i-s compact iff X is metacompact. 

Corollary 4. Let X be n-regular~ weakly compact~ and 

countably metacompact; then X is almost countably compact. 

Remarks 

As was noted in the Introduction, metacompactness can­

not be weakened to e-refinability + orthocompactness in any 

of these results. I do not know whether n-regularity is 

required in Corollary 1. 

Question. Can the requirement that X be n-regular be 

deleted from Corollary I? Can it be replaced by a require­

ment that X be, say, semiregular (i.e., have a base of regu­

larly open sets)? 

The following example shows, however, that in Corollary 

2 'regular' cannot be replaced by 'Hausdorff, semiregular, 

and n-regular'. 

2ExampZe 1. Let Y = w + 1, and let F = {wen: nEw}. 

(All arithmetic is ordinal arithmetic.) Let A be the order 
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topology on Y, and let T be the topology on Y generated by 

A U {Y\F}. Let X be that quotient of the discrete union of 

two copies of (Y,T) obtained by identifying the two copies 

of F in the obvious way. It is easy to verify that X is 

Hausdorff, n-regular, semiregular, non-regular, weakly 

compact, metacompact, almost compact (of course), and not 

compact. (In fact, X is a non-compact, minimal Hausdorff 

space; see [SS, Example 100].) 

In another direction, it is well-known that a pseudo-

compact T
4
-space is countably compact. One might therefore 

wonder whether replacement of In-regular' in Corollary 4 by 

'Tikhonov l would permit the conclusion to be strengthened to 

'X is countably compact'. However, this is not the case: 

let X = [(wI + 1) x (w + l)]\{(wl,w)}, the Tikhonov Plank. 

Then X is Tikhonov, weakly compact, and countably metacom­

pact, but not countably, compact. 

Finally, both Example 1 and the Tikhonov Plank refute 

the conjecture that if X is n-regular and weakly compact, 

then any point-finite family, V, of non-empty subsets of X 

has a finite subfamily whose union is dense in uV. In 

Example 1, take lj to be the set of isolated singletons and1 

in the Tikhonov Plank take V to be {(wI + 1) x {n}: nEw}. 

In each case V is even disjoint, and uV is dense in the 

space. Note, however, that the proof of Corollary 1 does 

imply the special case of the conjecture in which V covers 

X, which is the result claimed in [Mal. 

Another possible extension of Theorem 1 and its corol­

laries is suggested by the fact that every countably compact, 
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metaLindelof Tl-space is compact. (This result has been 

folklore for many years.) Thus, we may ask whether meta­

compactness can be replaced by metaLindelofness in any (or 

all) of the foregoing results (excluding Corollary 4, of 

course). Under the Continuum Hypothesis (CH) the answer is 

'no,' even for Corollary 3. 

ExampZe 2. [CH] Let Z be the product of w copies of 

the lexicographically ordered Cantor square (i.e., the 

product of the middle-thirds Cantor set with itself). Then 

Z is first countable, compact, O-dimensional, and Hausdorff, 

w w
w(Z) = Izi = 2 , and, if A ~ Z with IAI < 2 , then A is 

nowhere dense in Z. Let Y Z x w with the usual product 

topology. Let C be the family of non-empty, clopen subsets 

of Z, and, for each nEw, let C = {C x {n}: C E C}. Let 
n 

K = U{[ : nEw}. Finally, let E be the set of all countablyn 

infinite subsets,S, of K such that for each nEw, 

15 n Cn} < 1. 1f(50 ' 5 1)E E. say that 50 and 51 are aZmost 

disjoint iff {SO,Sl E 50 x 51: So n Sl 1 ~} is finite. Of 

course, a family ~ ~ E is almost disjoint iff 50 and 51 are 

almost disjoint for any distinct 50' 51 E ~. 

wlEI = 2 , so let E = {S : a < 2
w} be a 1-1 enumeration. a 

w w
Also, Izi = 2 , so let Z = {z : a < 2 } be a 1-1 enumera­a 

wtion, and, for a < 2 , let Z {zS: S < a}i note that 
a 

wIZ I < 2 , so that Z is nowhere dense in z. By recursion 
a a
 

2w
 on a < construct 0 E E U {~} and ~ ~ E U {~} so that 
a a 

the following hold for each a < 2
w: 

(i) ~ {OS: S < a}ia ­
(ii) ~ is almost disjoint;a 
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(iii) there is a lJ E b. such that lJ is not almost dis-a
 

joint from 5 ·
 a' 

(iv) (Z x in}) n ulJ (Z x {n} ) n uS for each n E Wi~ a a
 

and
 

(v) (Za x W) n ulJ = 13. 
a 

Suppose that a ~ 2
w, and that lJS and b. have been defined

S 
for all S < a to satisfy (i)-(v). Let b.~ = U{b. : S < a}i

S
clearly b.~ is almost disjoint. If b.~ U {Sa} is not almost 

disjoint, let lJ = 13. Otherwise, let M {n E Wi 50. n en ~ f3},a 

and, for each n E M, let C = (Z x in}) n uS. For each n E M n a 

there is a C' E C such that C' c C '(Z x fn})i let n n n - n a 

lJ = {C': n EM}. In either case set b. b.' U {lJ }:a n a a a 

(i)-(v) are clearly satisfied ,at a. 

Now let b. = U{b. : a < 2
w}'{f3}i clearly b. is a maximal a 

almost disjoint subfamily of L. Moreover, for any y E Y, 

{lJ E b.: y E ulJ} is evidently countable. (It is here that 

CH is used.) 

Let X = Y U b., and topologize X ~ letting Y be an open 

subspace of X and taking as basic open nbhds of a point 

o E b. all sets of the form {OJ U U(O~), where J is a finite 

subset of O. Clearly X is Tikhonov, O-dimensional, first 

countable, and locally compact, and Y is a dense, Lindelof 

(even a-compact) subspace of X. Moreover, X is metaLindelof, 

since Y is Lindelof, and the family of basic open nbhds of 

points of b. is--by the last observation of the preceding 

paragraph--point-countable. Clearly X is not compact, so it 

only remains to show that X is weakly compact. Let V = 

{V : nEw} be a disjoint family of non-empty, open subsets 
n 

of X. Y is dense in X, so we may assume that uV ~ Y. If 
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there is an mEw such that V n (z x {m}) ~ ~ for infinitelyn 

many nEw, then clearly the compactness of Z ensures that 

some point of Z x {m} is a cluster point of V. Otherwise, 

there is an 5 {S: nEw} E E such that S c V for each n n - n 

nEw, and the maximality of ~ then ensures that some D E ~ 

is not almost disjoint from 5, i.e., that D is a cluster 

point of V. 

(The basic idea of Example 2--to 'fatten-up' the space 

~--is due to A. Berner, who has shown that by exercising 

grea~er care in the construction of ~ one can ensure (a) 

that X is not e-countably compact and in fact (b) that the 

one-point compactification of X is a Frechet-Uryson space 

[Be] .) 

A positive result is still possible, though, if we 

strengthen weak compactness to e-countable compactness. 

Theorem 2. Let X be e-countably compact and metacom­

pact. Then X is almost compact. 

Proof. Let D be a dense subset of X, every infinite 

subset of which has a cluster point in C, and let V be a 

point-finite open cover of X. Let A ~ D be maximal with 

respect to the following property: if x, yEA, and x ~ y, 

then y t st(x,V). A is easily seen to be a closed, discrete 

subset of X, so A must be finite. But then U{ST(x,V): x E A} 

is finite, and its union, st(A,V), is dense in X. 

Theo~em 3. Let X be e-~l-compact and metaLindelof. 

Then X is almost Lindelof. 

Proof. The proof is mutatis mutandis the same as that 

of Theorem 2. 
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Corollary 5. Let X be e-~l-aompaat, regular, meta­

Lindelof, and w1-open (i.e., aountable interseations of open 

sets are open). Then X is Lindelof. 

Proof. The proof is similar to the proof of the first 

part of Fact 1. 

Example 2 shows that Corollary 5 fails for spaces that 

are not w1-open, at least under CH. 

Addendum. Since writing the first draft of this paper 

have learned that Corollary 3 has also been recently 

proved by W. S. Watson and O. Forster (independently). Wat­

son's proof suggested the following lemma, which may be of 

interest in its own right. 

Lemma 1. For any spaae X the following are equivalent: 

(a)	 X is Baire, 

(b)	 for any point-finite open aover, V, of x, {x E x: 

V is loaally finite at x} is dense (and open) in X; 

(a)	 for any point-finite open aover, V, of X, there is 

a Tf-base, B, for X suah that if V E V, B E B, and 

V n B ~ ~, then B ~ v. 

Proof. The equivalence of (a) and (b) is due to Fletcher 

and Lindren and is Fact 3 above, and that (a) implies (c) is 

shown by Watson in [Wa]. To see that (c) implies (a), sup­

pose that X is not Baire. Then there are dense, open sets 

G ~ X (n E w) and a non-empty, open set V =: X such that 
n 

V n	 n{G : nEw} ~~. For nEw let W = V n G , and let n n n 

W= {X} u {W : n E wi. Clearly Wis a point-finite open
n 

cover of Xi but if B ~V is open and non-empty, then clearly 
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B i: n{W E W: B n W ~ ~} nW'= ~, so (c) must fail for the 

cover	 W. 

In fact it is not difficult to show directly that (b) 

and (c) are equivalent, and that moreover if V is a point­

finite	 open cover of any space X (Baire or not), {x E X: 

V is locally finite at x} is dense in X iff X has such a 

u-base	 as is described in (c). 
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