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A NOTE ON THE CLOSED CHARACTER 

OF A TOPOLOGICAL SPACE 

Mary Anne Sward80n 

1.	 Introduction 

We assume that all spaces are T • Let X be a topologi­l 

cal space and let A be a subset of X. The aharaater X(A,X) 

of A in X is w·a where a = min {K: there is a base U for the 

neighborhoods of A in X with lUI K}. The pseudoaharaater 

W(A,X) of A in X is w·a, where a = min {K: there exists a 

collection U of open sets in X with IU\ = K and nU = A}. 

Let Xc(X) = sup{X(F,X): F is a closed subset of X} and 

Wc(X) = sup{~(F,X): F is a closed subset of X}. We call 

Xc (X) (resp. ~c (X» the aZosed aharaater (resp. aZosed 

pseudoaharaater) of X (cf. [1] and [7]). 

In §2 we prove several results concerning Xc and ~c' 

and in §3 we prove the independence in ZFC of the following: 

"If X is a normal space such that every closed discrete sub­

set of X has Ulam-nonmeasurable power, and if Xc(X) = w, then 

X is realcompact." (3.2 provides a partial answer to the 

following question of Blair [2, 4.9 (c)]: Under MA +'CH, 

is every perfectly normal space of Ulam-nonmeasurable power 

realcompact?) 

The author is indebted to the referee for correcting an 

error in the original version of this paper (see 2.9(b» and 

for several other helpful suggestions. The author is also 

grateful to R. L. Blair for many instructive conversations 

concerning this paper. 
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2.	 Closed Character and Closed Pseudocharacter 

Let seX) and ~(X) denote the spread of X and the pseudo-

character of X. (For definitions, see [8].) The extent 

e(X) of X is w-a, where a is the smallest cardinal such that 

every closed discrete subset of X has cardinality ~a (see 

[3, 1.7.12] and [7]). Clearly e(X) < seX) and ~(X) ~ ~c(X) 

< Xc(X). 

Theorem 2.4 below is essentially due to Aull [1, Theorem 

10]. We give a more direct proof, based on the following 

two lemmas: 

2.1. Lemma. If A is a set of nonisolated points of 

X, and if the points of A aan be separated by disjoint open 

sets, then X (A,X) > IAI. 

Proof. The proof uses a well-known technique (cf. [3, 

1.4.17]): Let A = {x~: ~ < K} be a set of nonisolated points 

of X and let {U~: ~ < K} be a disjoint open collection which 

separates the points of A. Let {v~: ~ < K} be any collection 

of K open sets such that A c v~ for all ~ < K. For each 

~ < K, pick Y~ E u~ n v~ with Y~ ~ x~ and let G U (U~ n 
~<K 

v~ - {y~}). Then A C G, but for all ~ < K, y~ E v~ - G. 

Thus {V~: ~ < K} is not a base for the neighborhoods of A in 

X. 

2.2. Lemma. If X is regular and if A is a aountably 

infinite disarete set of nonisolated points of X, then 

X(A,X) ~ wI. 

Proof. It is easy to see that the points of A can be 

separated by disjoint open sets (cf. [4, 2.1]). Thus the 

result follows from 2.1. 
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2.3. Example. Let Z be the unit interval [0,1] 

topologized by adding to the usual topology sets of the 

form [ 0 , £) - {lin: nEN} (0< £2.1). The set A = {O} U {lin: 

nEN} is a countably infinite (closed) discrete subset of the 

Hausdorff space Z consisting of nonisolated points of Z. 

It is easy to see that there is a countable neighborhood 

base lj for A in the usual topology on [0,1], and lj is also 

a neighborhood base for A in Z; thus "regular" cannot be 

replaced by "Hausdorff" in 2.2. 

2.4. Theorem (Aull). If X is a regular space and 

Xc(X) = w, then the set of nonisolated points of X is 

countably compact. 

Proof. Let I be the set of all isolated points of X 

and let A be a closed discrete subset of X-I. A is a closed 

discrete subset of X consisting of nonisolated points of X 

and hence is finite by 2.2. 

2.5. Remark. The referee notes that if X is strongly 

Hausdorff [8] and A is as in 2.2, then there is an infinite 

B c A such that X(B,X) > w. It follows that 2.4 holds with 

"regular" replaced by "strongly Hausdorff." 

2.6. Theorem. Let K be an infinite regular cardinal. 

If every closed discrete subset of X has cardinality <K and 

if Wc(X) < K, then every discrete subset of X has cardinal­

ity <K. 

Proof. The proof is like that of [11, Theorem 2]. Let 

Wc(X) = a, let D be a discrete subset of X, and let A be the 

set of all limit points of D in X. A is closed in X and 
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hence X - A = U F~, where each F~ is closed in X. Then 
~<a 

IDI = IU~<ao n F~I ~ E~<alo n F~I. Since each 0 n F~ is 

closed discrete, 10 n F~I < K and thus IDI < K. 

2.7. Remark. Under the hypotheses of 2.6, if K is 

weakly compact and X is Hausdorff, then we can conclude 

that seX) < K since in Hausdorff spaces weakly compact 

spreads are attained [8, p. 40]. 

A Tychonoff space X is almost compact if Isx-xi < I 

(see [5, 6J]). 

2.8. Theorem. If X is normal and almost compact, then 

~(F,X) = X(F,X) for every closed subset F of x. 

Proof. Since ~(F,X) = X(F,X) for all closed subsets F 

of a compact space X, we may assume that X is not compact. 

00Then SX = X U {oo}, where ¢ X and basic neighborhoods of 

00 are complements in SX of compact subsets of X. 

Let F be closed in X. If F is compact, then cISXF = F 

and the result follows from the fact that ~(F,SX) = X(F,SX). 

Therefore we may assume that F is not compact. It suffices 

to show that for U c X, U is an open set in X containing F 

if and only if U U {oo} is an open set in SX containing cISXF. 

Let Feu with U open in X.. Then F and X-U are disjoint 

closed subsets of X and thus have disjoint zero-set neighbor­

hoods Zl and Z2' respectively. Since X is almost compact, 

either Zl or Z2 is compact [5, 6J], and thus Z2 is compact 

since F is not. Hence X-U is compact, which implies that 

U U {oo} is an open neighborhood of F U {oo} clSXF. 

Conversely, if U U {oo} is an open set in SX containing 
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claxF, then x-u is compact, and therefore U is an open set 

in X containing F. 

2.9. Rema~ks. (a) The referee has supplied the fol­

lowing example which shows that the hypothesis of normality 

cannot be omitted in 2.8: Let S = [0,W l ]2, X = S - {(Wl,wl)l, 

and F = [O,w ) x {wll. It.is well known that ax = S [5, 8L];l 

F is closed in X and ~(F,X) = wI' but X(F,X) > wI. 

(b) In [6], Ginsburg asserts that (*) if X is Hausdorff, 

then X(~,XXX) = W if and only if X is metrizable and the set 

of nonisolated points of X is compact. The proof of (*) in 

[6] is in error (in the assertion that any countably infinite 

closed discrete set of nonisolated points of a first counta­

ble space Y has uncountable character in Y; we need only note 

that if A is as in 2.3, then X(A,Z) = w), and in an earlier 

version of this paper we claimed that regularity of X was 

needed for (*). We are grateful to the referee for pointing 

out that (*) is, in fact, correct as stated, and that its 

proof can be corrected by the following: 

2.10. P~oposition. If X(~,xxX) = w, then the set of 

nonisoZated points of X is countabZy compact. 

P~oof. Let A be an infinite closed discrete set of 

nonisolated points of X. Let ~A = {(X,X): x E Al. Then 

X(~A,AXX) < X(~,xxX), but since the points of ~A can be 

separated by disjoint open sets in AXX, X(~A,AXX) > W by 

2.1. 

3.	 Some Independence R~8ult8 

We shall show the independence in ZFC of each of the 
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following: 

P.	 If X is normal and Xc(X) w, then X is para-

compact. 

Q.	 If X is normal, X (X) = w, and every closed 
c 

discrete subset of X is of Ulam-nonmeasurable 

power, then X is realcompact. 

3.1. Theorem [MA + ~CH]. Every reguZar space with 

countabZe cZosed character is paracompact. 

Proof. Let I be the set of all isolated points of X. 

By 2".4, X-I is countably compact. Hence, by Weiss's theorem 

[12, Corollary 3], X-I is compact. Thus X is the union of 

a compact space and a set of isolated points and is there­

fore paracompact. 

3.2. Theorem [MA +,CH]. If X is a reguZar space with 

countabZe cZosed character, and if every cZosed discrete sub­

set of X is of UZam-nonmeasurabZe power, then X is reaZcom­

pact. 

Proof. Let I be the set of all isolated points of X. 

III is Ulam-nonmeasurable by 2.6, and thus I is realcompact 

[5, 12.2]. As in the proof of 3.1, X-I is compact, and thus 

X is realcompact [5, 8.16]. 

3.3. Remarks. (a) Alternatively, 3.2 follows from 3.1 

and Kat~tov's theorem [9, Theorem 3] (which asserts that para-

compact spaces without closed discrete subsets of Ulam-mea­

surable power are realcompact) • 

(b) Under the hypothesis of 3.2 Ixi is Ulam-nonmeasura­

ble. (Since Ulam-measurable cardinals are weakly compact 
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[8, A6.5, and A6.3], this follows from 2.7 and the fact that 

IX I .::. exp exp s (X) [8, 2.9].) 

3.4. Theorem [0]. There exists a normal space with 

countable closed character and countable extent which is 

neither paracompact nor realcompact. 

Proof. Ostaszewski's space nO [10] is perfectly nor­

mal, countably compact, almost compact, but not compact. 

Thus e{n ) = w, and by 2.8, Xc{n ) = w, but nO is neitherO O

paracompact nor realcompact. 

3.5. Remarks. (a) The fact that Xc(n O) = w also 

follows from Aull's theorem [1, Theorem 5] that every per­

fectly normal countably compact space has countable closed 

character. 

(b) 3.1 and 3.2 establish the consistency of P and Q, 

while 3.4 establishes the consistency of ,P and 'Q. (This 

simultaneous use of Ostasewski's example and Weiss's theorem 

is not unlike [2,4.9].) 
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