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WEAK P-POINTS IN COMPACT F-SPACES

Jan van Mill

0. Introduction

All spaces are completely reqular and X* denotes BX-X.

The point X € X is called a P-point whenever x ¢ F for
each }E'(j F of X which does not contain x. It is known that
w* contains P-points under CH (cf. Rudin [R]); however,
Shelah (see [M] or [w]) showed that it is consistent with
the usual axioms of set theory that there are no P-points
in w*. The point x € X is called a weak P-point whenever
x ¢ F for each countable F = X - {x}. Clearly each P-point
is a weak P-point. Recently, Kunen [K2] showed that there

w

are 22 points in w* which are weak P-points but not P~points.

In this note we generalize this result.

0.1. Theorem. Let X be a compact infinite F-space
without isolated points of weight 2% in which each nonempty
w
Gg has nonempty interior. Then there are 22 points in X

which are weak P-points but not P-points.

The condition that each nonempty GG in X has nonempty
interior is essential of course, since no separable space
without isolated points can have weak P-points (we don't
know whether the theorem is true for compact nowhere separable
F-spaces). Such F-spaces cannot have weak P-points, but they
might have points which are not limit points of countable

discrete sets. We have the following partial answer.
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0.2. Theorem. Let E be the projective cover of a com-
pact space which is a product of at most wy spaces of
countable m-weight. Then there is an x € E such that

x § D for each countable discrete D < E - {x}.

Let us notice that under CH such points exist in each

compact F-space of weight 2 ([VMZ]).

Let (*) denote the innocent statement that there is a
compactification yw of w such that yw-w is ccc but not
separable. It is known (cf. section 5) that CH implies (*).
I conjecture that (*) is true in ZFC. It is certainly
worthwhile to try to solve this conjecture since a positive

answer would imply that the following theorem is true in ZFC.

0.3. Theorem. Assume (*) and let X be a compact infi-
nite F-space without isolated points in which each nonempty
w
Gsg has nonempty interior. Then there are 2 points in X

which are weak P-points but not P-points.

In particular, the theorem is true under CH. I have

also been able to prove ‘that the theorem is true under

w
2% =2 L,

I am indebted to Evert Wattel for some helpful sugges-
tions and to Charley Mills for reading a preliminary version

of this note.

1. Independent Matrices

An ordinal is the set of smaller ordinals and a cardinal
is an initial ordinal. Whenever X is a set and k is a cardi-

nal we define (as usual)
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(x1© = {a = x: |Aa| = «}
and

x1%% = (A € x: |a] < «}
respectively.

Let X be a space. An indexed family {A?: ie I,j € J}
of subsets of X is called a J by I independent matrix if
- each A% is the closure of some nonempty open FO in X;
- whenever jo,jl € J are distinct and i € I then
A§0 n A§1 = @;
- for each finite F ¢ I and ¢: F » J we have that

:a ¢ F} # 8.

6

n{A¢ (@)
(This concept, in a slightly different form, is due to

Kunen.)

An F-space is a space in which each cozero-set is
C*-embedded. It is well-known, and easy to prove, that a
normal space X is an F-space iff any two disjoint open
Fo's of X have disjoint closures. This fact will be used
frequently without explicit reference throughout the
remaining part of this note.

The following Proposition is the key to our construc-
tion. I am indebted to Evert Wattel for pointing out to me
that my original proof was unnecessarily complicated and for

allowing me to publish his proof here.

1.1. Proposition. Let X be a compact infinite F-space
without isolated points in which every nonempty G has non-
empty interior. Then each nonempty open subset of X contains
an wy by wy independent matrixz for X.

Proof. Wellorder Wy X Wy by <* in order type w For

1°
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each €o,B8> € w, x w, let

1 1
Q<o By = {Ky,8>: (y,8)y <* (a,R)}.
F¢a,By = {¢: ¢ is a function with |¢| < w and
¢ =Qa,B }, and
G<a,By = {9 € F¢a,By: ¢a,B> € ¢}.

Notice that @ € #<a,B) - §<a,B> for each (a,B) € Wy X Wy
A function § € F<¢a,B> is called an extension of ¢ ¢ Hy,86?
whenever (y,§) <* (a,B> and ¢y n Qy,8r = ¢. Without loss of

generality 0,0y is the first element of w For the

1 X wl.
sake of notational simplicity we write max g = <0,0)>.

We will now construct for each (a,B) € Wy X wy a collec-
tion of nonempty closed G;'s {S(a,By,d): ¢ € 3<a,F)} and a
collection of nonempty open F_'s {U(¢,BYd): ¢ € Ga,BY}
such that

(1) {s(<a,B8Y,4): ¢ € ¥a,B>} is a disjoint collection;

(2) if (y,8) <* (,By and ¢ € F¢a,By extends Y € F¢y,dSy

then S(<¢o,B8Y,¢) = S(«y,8),¥);

(3) if ¢ € §<o,BY and y = ¢ - {<,B>} then S(4a,B), ) <

U(¢o,B>,9) < U(Ka,BY,¢) = S(¢v,8y,¥) whenever
max Y <* ¢y,8y <* (a,Br;

(4) if ¢ € G¢a,By and ¢ = ¢ - {(a,B>} then U(Ca,BY,d)"

n s(<,Brv) = g.

Let S(¢0,0),8) and S(<0,0?,{40,0>}) be any two nonempty
disjoint closed Gd's. In addition, let U(<0,0%,{<0,0>}) be
any nonempty open Fc of X the closure of which is properly
contained in int S(¢0,0Y,{<0,03}). Now suppose that we have

completed the construction for all (vy,d8Y <* ¢a,B8). For each

¢ € ](G,B> - _g(Ot;B) put
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T(<,BY,9) = n{S(&,8),0): max ¢ <* Cy,8) <* ¢,BY}.
Observe that by (1) and (2)
{T(<w,B),0): ¢ € Ko,By ~ G¢a,Br}
is a disjoint collection of nonempty closed Gé's. Put
Aa,BY = {¢ € Fa,BY: ¢ U {€o,B>} ¢ GCo,By}.
For each ¢ ¢ Ha,BY - #¢u,B8) define S(Ka,B),9) = T((x,BY,9).
In addition, for each ¢ ¢ #¢a,BY choose disjoint nonempty
Gs's Z0(¢), Zl(¢) c int T(<¢,BY,¢). In addition, let U(¢)
be an open F0 such that
2;(6) = U(®) = U(P)™ < int T(Ca,B),¢) - Z,(9).
Define
S(Ka,B),9) = Zo(¢):
S(€ax,B¥,6 y {<&,B8>1})

z, (9).
u(e).

UKa,Br, ¢ U {<a,B>})
It is trivial that our inductive hypotheses are satisfied.
For each €o,B) ¢ Wy X wy now put
UCo, B> = U{U(«a,By,9): ¢ € G¢a,By}.
Now let ¢ be a finite subset of Wy X Wy such that no two
elements of ¢ have their first entries equal. Let (a,B¥ be
the maximal member of ¢. Then
N{Tr,8%: ¢v,8> € ¢} = S(Ka,By,9),
since, U¢y,8 = uldy,8Y,¢ n Q¢ ,6)) = S(Ly,6),9 n Kv,8>) =
S(¢o,BY»,9), according to (2) and (3), and since S(¢o,B),¢)
# @, also
n{ucy,63: <y, 8> ¢ ¢} # B.
Suppose that (a,yy <* ¢a,B8). We claim that U<a,y> n
U¢a,B> = #§. Let us assume, to the contrary, that U¢a,yvy N
U%a,BY # @, say
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U€a,y2,9) n U(Ka,Bd,y) # 8

for certain ¢ € §<a,yy and ¢ ¢ G¢o.,By. Define y' =y

Q€a,y>. Notice that o,y § ¥'. So ¢ # ¢' and consequently
U(€o,Y>,9) N S(Ca,yy,p") = 4.

Put y" = ¢ - {€a,B¥}. Then
U(4o,B),¢9) < S(max $",¢") = Sa,yd,¥")

by (2) and (3). We conclude that U{<a,yy,¢) n U(Lo,B),y)

= f, a contradiction. ‘

Finally, since every U(¢a,8),¢) is an F0 and since

§(a,6) is at most countable, each U¢a,B) is itself and open

Fc' So U<,y N UCu,B> = @ for all (a,yd <* La,Ry. We
conclude that {U¢a,RY: €a,BY ¢ wy x wl} is an wy by wy inde-
pendent matrix. The same proof shows that actually such a

matrix can be chosen in any nonempty open subset of X.

1.2. Remark. In the sequel we will only need the

existence of an w by wy independent matrix.

1.3. Question. Let X be a compact F-space without

isolated points in which each nonempty Gs has nonempty

interior. Is there a 2% by 2% independent matrix for X?

2. Nice Filters

Let X be a normal space. A closed filterbase on X is
a collection of closed subsets of X which is closed under
finite intersections and which does not contain the empty
set. The closed filter generated by the filterbase 7 is the
collection {A = X: A=A &3 F ¢ #: F = A}. A closed
ultrafilter is a maximal filter. The points X* are identi-

fied with the nonprincipal closed ultrafilters on X. So
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A ¢ p means p € cleA.

Let X be the topological sum of countably many nonempty
compact spaces, say Xn(n < w). A closed filter J on X is
called nice provided that for each F ¢ 7 the set

{n<w:FNX = g}
is finite, while in addition nF = g.
It is clear that no nice filter is an ultrafilter, in
w

fact each nice filter can be extended to at least 22 ultra-

filters.

2.1. Lemma. Let X be a compact F-space without
isolated points in which each nonempty G has nonempty
interior. For each n < w let z be a nonempty closed Gs in
X such that 2 0 (u{z;: i # n})” =g and put z = (u{z:

n < wl. Then there is a nice filter F on

n < w}) - uiz
U{Zn: n < w} such that
(a) each F € F is the closure (in U{Zx: n < w}) of
some open F_ in X;
(B) for each countable D © X - Z there is some F ¢ 3
such that DN F = @ (hence DN F = #).
Proof. For each n < w let {Ag(n): m< w,B < wl} be an
w by Wy independent matrix for X each element of which is
contained in int Zn (Proposition 1.1). Let Dc X - Z be
countable. Observe that for each n < w and m < w the family
{;E(n): B < wl}
is pairwise disjoint. Consequently, for each n < w and m <
we can find an index B(n,m;D) < Wy such that
D N (A (4 mspy (M) = 2.

For each n < w put
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k

n
Un(D) =V AB(n,k;D)

k=0
Notice that Un(D) < Zn and that D N Un(D) = f. Define

(n).

u(p) = v U, (D)
n<w

and let ) = {D =X - Z: |D| < w}.

Claim. U(D) N D =@ for each D € ). Moreover, for
each finite £ = ) there is an i < w such that Zj N N{U(E):

E e €} # 8 for each j > 1i.

It is clear that U(D) N D = @ which implies that U(D) n D
= f since D is countable ?nd X is an F-space. The second
clause of the claim is trivial.

Now let 7 be the closed filter generated by {U(D) n

Uz:De¢ D}. Then 7 is as required.
n<w

3. Extending Nice Filters to OK-Points

For technical reasons we slightly change Kunen's [K2]
concept of an OK-point. Let X be a normal space. In this
note, a point p ¢ X* is called k-OK provided that for each
sequence {Un: n < w} of neighborhoods of p in X* there are
Aa € p(a < k) such that for each n > 1 and 0 <@, < cee <

2

n cl,,A n x* < u_.
l<i<n B¥9%j n
Observe that the property of being k-OK gets stronger as

K gets bigger.

3.1. Lemma. Let X be a locally compact and o-compact
space and let p € X* be wl—OK. Then p is a weak P-point of
X*.

Proof. Let F < X* - {pl} be countable. Since p is
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wy XA NF=40 (with

precisely the same technique as in [K2, 1.3]). Put Y =

-OK there is an A ¢ p such that clB

X U F. Then Y is o-compact, hence normal, and since F and
A are both closed in Y there is a Urysohn map f: Y » [0,1}
such that f[F] = 0 and £[A] = 1. Let Bf: BY » [0,1] be the
Stone extension, of f£. Since BX = BY ([GJ, 6.7]) and since
BEf(p) = 1 we conclude that p ¢ ClBXF (this type of argument

is due to Negrepontis [N]).

We are going to treat X like Kunen treated w, so we

have to make appropriate adaptations of Kunen's definitions.

3.2. Definition. Let F be a closed filter on X and
assume that no F € J is compact.
If 1 < n < w, an indexed family {Ai: i € I} of closed
subsets of X is precisely n-linked w.r.t. Fif for all
o€ 11" and F ¢ 7, NA NF is not compact, but for all
ico

g € [I]n+l, n Ai is compact.

i€o
An indexed family {Ain: ie I,1 <n < w}lis a linked
system w.r.t. # if for each n, {Ain: i € I} is precisely

-— 1 ) c
n-linked w.r.t. #, and for eachn andi, AL Ai,n+l'

An indexed family {Ain: i€I1,l<nc<w,je€J}is an I
by J independent linked family w.r.t. F if for each j € J,
{A}n: i €1I,1 <n< w} is a linked system w.r.t. ¥ , and:

n(n Ajin)ﬂF
jet iEGj 3j

is not compact, whenever T € [J]<w, and for each j € T,
ns
1< nj < w and Oj € [1] J and F ¢ 7.

(All these definitions are copied from Kunen [KZ])'
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3.3. Lemma. There is aq 2" by 2¥ independent linked

family in w w.r.t. the filter of cofinite sets.
For a proof of this Lemma see [K2, 2.2].

3.4. Theorem. Let X be the topological sum of countably
many compact nonempty spaces of weight at most 2w, say
Xn(n < w). Then each nice filter F on X can be extended
to a closed ultrafilter p which is 2*°-OK.

Proof. Let {Zu: pu < 2 & p is even} enumerate all non-
empty closed GG'S of X (there are clearly only 2¥ closed

G

's). Let {(cun: n<owyp<2¥sg p is odd} enumerate all

8
sequences of closed nonempty GG'S satisfying

C c int C n u X,

u,n+l un i>n
for each n < w. Furthermore w; assume that each sequence is
listed cofinally often. Finally, let {A® : a < 2”,1 < n < o,
B < 2%} be an independent linked family of w with respect
to the cofinite filter.

By induction on u we construct ]u and Ku so that

1) ]p is a closed filter on X, Ku < 2%, and {U{Xi:

ie Agn}: a < 29,1 <n< w,B € Ku} is an independent

linked family w.r.t. ]u;

— oW - 7.
2) Ky = 2" and ]0 = F;

3) v < u implies }v < ]u and K, » Ku;
4) if y is a limit ordinal, ¥ = y F and K = 0 K ;
v<u o oy<qp

5) for each u, Ku - Ku+l is finite;

6) if u is even, either Zu € }u or some F € ]u misses

Zu;

7) if u is odd and each Cun € Ju, then there are
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D € 7 for o < 2*° such that for all n > 1 and all

Mo H+l
w

@) <Oy < oere <A< 2", (Dudl N eeoe N Dudn) - C.u

n
has compact closure.

Notice that since 7 is a nice filter, the collection

{U{Xi: i€ Azn}: e < 29,1 <n<uw,B < 2%} is indeed an

independent linked family w.r.t. 7.

That this construction can be carried out follows by
precisely the same argumentation as in Kunen [KZ’ the proof
of theorem 3.1]. The only place where the proof, modulo
some obvious adaptations, is different, is at the end,

namely in the case that u is odd and each C _ € JL. Now the

un
"refinement system" for <cun: n < w) must be defined as

follows:

_ Lo B _ s
D = U U {Xi. i€ Aan} n (Cun int C

).
HO. 1<n<w H,n+l

For details we refer to [Kz, 3.1]. Now let p be the ultra-
filter generated by Uu}u' Then p is as required.

3.5. Proof of Theorem 0.1. We only show that some p € X

w

is a weak P-point but not a P-point; one can find 22 such
points by combining our proof with the argument in [Kz, 0.1].

Let Zn(n < w) be a sequence of nonempty closed Gd's of
X such that

z N (U{Zi: i#n) =g.

Put Y = U Z_ and observe that Y is C*-embedded in X, or,
n<w

equivalently, BY = Y. Let F be a nice filter for Y as
described in Lemma 2.1. By Theorem 3.4, 7 can be extended
to a closed ultrafilter p € Y* which is 2”-0K. Let D =X

- {p} be countable. Take a neighborhood U of p in X which
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misses D N (Y - Y) (Lemma 3.1). By Lemma 2.1 some F € 7
misses D - Y¥*; hence,

Fn(-Y* =g,

Since p € F we can find a neighborhood V of p which misses

D - Y*, Then U N V does not intersect D. Hence p is a

weak P-point; clearly p is not a P-point.

3.6. Remark. In fact, Theorem 0.1 can be generalized.
With the same proof it follows that each compact F-space X
of weight 2¥ which can be mapped onto a compact F-space
without isolated points in which each nonempty G6 has non-

empty interior contains a weak P-point.

3.7. Remark. Notice that Theorem 0.1 implies that each
compact F-space of weight 2* in which each nonempty GcS has

nonempty interior contains a weak P-point.

4. Remote Points

The point x € X* is called a remote point of X provided
that

x ¢ clgyA

for each nowhere dense set A = X. Van Douwen [vD, 4.2] and
Chae and Smith [CS] have shown that each nonpseudocompact
space of countable w—weightl has a remote point. Subse-
quently, van Mill [le] showed that, more generally, each

nonpseudocompact space which is a product of at most wy

spaces of countable m-weight has a remote point. For more

lA n-basis B for X is a collection of nonempty open sub-
sets of X such that each nonempty open set in X contains an
element of B. The m-weight, 7(X), is w.min{|8]: B8 is a

. m-basis for X}. = S -
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information concerning remote points, see [vD], [vDvM], [CS],

[KvMM] , [lel . [Wol.

4.1. Theorem. Let X be a locally compact normal non-
pseudocompact space which is a product of at most wy spaces
of countable w-weight. Then X has a remote point x which
is also a 2°-OK point.

Proof. The "remote filter" 7 for X constructed in
[le] is defined on a discrete sequence of compact subspaces

while this filter in addition is nice. Now apply Theorem 3.4.

For each space X let EX be the unique extremally discon-
nected space which admits a perfect irreducible map onto X.
The space EX is called the projective cover of X (for a

beautiful survey on projective covers, see Woods [Wo]l).

4.2. Proof of Theorem 0.2. The theorem is trivial in
case E has an isolated point, so assume that E has no iso-
lated points. Theorem 4.1 implies that there is a sequence
{Cn: n < w} of pairwise disjoint nonempty clopen sets such
that

c= yc

n<w
has a remote point x which is also a 2¥-0K point (observe

n

that whenever f: Z0 -+ Zl is perfect and irreducible and Z0
is normal, that ]Bf-l(p)| = 1 for each remote point p of Z;
(Bf is the Stone extension of f)). We claim that x ¢ D for
each countable discrete D « E -~ {x}. This is trivial how-

ever, since X is 2¥-0K and D N C is nowhere dense in C for

each countable discrete D E - (C - C).
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5. Proof of Theorem 0.3

Let us recall that (*) denotes the statement that there
is a compactification yw of w such that yw - w is ccc and

not separable.

5.1. Lemma. CH implies (*) and (*) implies that there
is a compactification yw of w such that Yo — w is ccc and
nowhere separable.

Proof. By Tall [T, Ex. 7.5], the Stone space of the
Boolean algebra of Lebesgue measurable subsets of [0,1]
modulo the nullsets is a compact extremally disconnected
ccc nonseparable space of weight 2”. Under CH, each compact
space of weight at most 2" is a continuous image of w*, or,
equivalently, is the remainder of some compactification of
w (cf. Parovicenko [P]). Hence CH implies (*).

Now assume that bw is a compactification of w such that
bw - w is ccc and not separable. Let (/ be a maximal dis-
joint family of noﬁempty separable open subsets of bw - w.
Then |{/| < w and y{/ is not dense. Let V be a nonempty open
F_ of bw - w such that Vnyd=g@g. Now let yw be the guotient
space one obtains from bw by collapsing (bw - w) - V to a
single point.

For each space X let RO(X) be the Boolean algebra of
regular open subsets of X. It is clear that |RO(X)| < w(X)c(xa
where w(X) and c(X) denote the weight and cellularity of X.
If f: X » Y is a closed irreducible2 surjection then

f#: RO(X) + RO(Y) defined by

2A continuous surjection f: X + Y is called <irreducible
whenever f£[A] # Y for each proper closed set A < X.
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f#(U) =Y - £[X - U]
clearly is a Boolean isomorphism, hence |RO(X)| = [RO(Y)|
< w(Y)c(Y). This observation will be used in the remaining

part of this section.

5.2. Proof of Theorem 0.3. For each n < w let Zn be a
nonempty closed Gd of X such that
z, N (u{z;: i #n})” = 4.
Let {En: n < w} be a partition of w in countably many
infinite sets. For each n < w let 3n be a nice filter on
U{Zi: i€ En} as described in Lemma 2.1l. For each n < w put

F(n) = n F.
Fe}n

Notice that F(n) N F(m) = @ whenever n # m and that U F(n)
n<w

is C*-embedded in X. Define f: Zn > w by
n<w

f(x) = n <= x € Z_;
n

let £ =f ¢ y Z,. Let Bf_ be the Stone extension of
n ieg_ * n
n

fn(n < w). Since Yy Z_ is C*-embedded in X,
n<w

B(u{zi: ie En}) = (u{zi: i€ En})
for each n < w. Put
S(n) = (u{z;: i ¢ En})" -ulz;: i€ E}

(n < w). Then clearly Bfn[s(n)] = E* z w*. Since }n is a

*
n
nice filter we also have that
= *
Bfn[F(n)] En’
By (*), let Y be some ccc nowhere separable remainder of a
compactification of w (cf. Lemma 5.1). For each n < w let

g, map E; onto Y and let hn be the composition of Bfn * S(n)

and 9n- Notice that hn[F(n)] = Y for each n < w. For each
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n < w let Y(n) < F(n) be closed such that hn M Y(n) » Y is

an irreducible surjection. Then |RO(Y(n))| = |RO(Y)]| <

w(Y)c(Y) < (2°)Y = 2“. We conclude that Y(n) has weight 2%,

For each countable subset G of | S(n) let {Un(G):
n<w

n < w} be a maximal pairwise disjoint collection of nonempty
regular closed sets of Y none of which intersects
(U h [GN Smn)]). Define

n<w

L@ = u (' U U (6] n ¥(n).
n<w ien

Notice that L(G) is a closed subset of y S(n) and that
n<w

L(G) does not intersect the closure (in y S(n)) of G. Also,
n<w

[ = {L(G): G is a countable subset of Uy S(n)}
n<w

is centered and the filter [’ generated by /[ is nice. By
Theorem 3.4 [’ can be extended to an ultrafilter p which is
2¥-0K. Since clearly y Y(n) is C*-embedded in X, p is a
n<w
point of X. We claim that p is a weak P-point of X.
Let H © X -~ {p} be countable. Put 2 = ( y Zi)_ -
i<w
U 2, and let
i<w

H, = H - 2.

0
For each n < w there is some Gn € }n such that Gn n H0 = g.
By construction of the filters ]n, and since X is an F-space,

(uUG) niH,=2.

n<w B 0
Since p € (U Gn)— this shows that p ¢ ﬁb. Now, notice that
n<w

Z is an F-space, being a closed subspace of the compact
F-space X, and that each S(n) is a clopen subspace of Z;
consequently

(usm) NE
n<w

]
=
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for each countable E © Z - ( Uy S(n)) . We conclude that
n<w

p¢ (HN (2 - (U Sm))).
n<w

Now let
Hy =HN U S(n).
n<w
By construction of [/ some L € /[ misses the closure (in

U S(n)) of H
n<w

1° Therefore

LnH =48,

since disjoint closed sets in |y S(n) have disjoint closures
n<w
in X. This shows that p ¢ ﬁi. Define

Hy =HN ((U S(n))" - U S(n).
n<w n<w

If Hé =H, - ( y Y(n)) , then by precisely the same technique
n<w

as in Lemma 3.1 it follows that

HS N (U Y(n)) = #;
n<w

we conclude that p ¢ ﬁé. Finally, put

Hy =HN ((y Y()™ - y ¥(n).
n<w n<w

Then p § §3 since p is 2“-OK. We conclude that p ¢ H, i.e.
p is a weak P-point of X. By construction, p is not a
P-point.

By making an appropriate adaptation of [K 0.1] one

2l
w
can find 22 weak P-points which are not P-points.
5.3. Remark. By a somewhat different and more technical
comstruction I have proved that Theorem 0.3 is true if one
w
assumes that 2% = 2 l. In addition, Theorem 0.3 is true

under the following hypothesis.

(**%) for each compact ccc space X of weight 2% there is
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a closed P—set3 in w* which can be mapped onto
X.

As (*), (**) is true if CH.
5.4. Question. Is one of (*), (**) true in ZFC?

5.5. Question. Let X be a compact infinite F-space
without isolated points in which each nonempty Gs has

nonempty interior. Are there |X| weak P-points in X?

6. Remarks

It is shocking that the answer to a question as simple
as:
is there in ZFC a compactification yw of w such

that yw - w is ccc and not separable4

is unknown. The easiest way of solving this question would
be to construct a compact ccc nonseparable space of weight

Wy since each compact space of weight wy is the remainder

of some compactification of w ([P]). However, under

MA + =CH, each compact ccc space of weight less than 2Y is
separable ([T, Theorem 1.4 (a)]), which blocks this attempt
(this was brought to my attention by Eric van Douwen) .

Let us finally notice that Kunen has asked whether one

can delete "F-space" from the hypotheses of our results.

6.1. Question (Kunen). Let X be a compact space of

weight 2¥ in which each nonempty G6 has nonempty interior.

3A subset P © X is called a P-set whenever P NF=2g
for each FBF of X which misses P.

4The author offers a bottle of Jenever (Dutch gin) for
the first valid solution of this problem.
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Is there a weak P-point in X?
It is clear that this is true under CH.

Remarks added in August 1980: Our question whether a ccc
nonseparable growth of w exists was answered, in the affirma-
tive, by Bell [B]. Theorems 0.1 and 0.3 were generalized by
Dow and van Mill [DvM] who showed, using Bell's result, that
each compact nowhere ccc F-space contains a weak P-point.
Subsequently, Dow [D] showed that each compact F-space of
weight greater than 2¥ contains a weak P-point. For more

generalizations, see [VM1], [VM3].
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