TOPOLOGY PROCEEDINGS

Volume 4, 1979

Pages 631-633

Research Announcement:

THE SPAN OF MAPPINGS AND SPACES

by

A. Lelek

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

THE SPAN OF MAPPINGS AND SPACES

A. Lelek

Let X, Y be metric spaces, and let $f: X \to Y$ be a mapping. By p₁ and p₂ we denote the standard projections of the product $X \times X$ onto X, i.e., $p_1(x,x') = x$ and $p_2(x,x')$ = x' for $(x,x') \in X \times X$. The $span \sigma(f)$ of the mapping f is the least upper bound of the set of real numbers α with the following property: there exist connected sets $C_{\alpha} \subseteq X \times X$ such that $p_1(C_\alpha) = p_2(C_\alpha)$ and $\alpha \le dist[f(x), f(x')]$ for $(x,x') \in C_{\alpha}$ (see [2], p. 99). The span $\sigma(X)$ of the space Xis the span of the identity mapping on X (see [4], p. 209). The purpose of the present paper (1) is to announce some results which relate to spans of mappings and have a number of interesting consequences for spans of spaces. A complete version will be published elsewhere.

The proofs of the following four propositions are rather straightforward.

- 1. If f: $X \rightarrow Y$, then $0 < \sigma(f) < \sigma(Y) < diam Y$.
- 2. If $f: X \rightarrow Y$ and X is compact, then Inf{d[f⁻¹(y),f⁻¹(y')]: $\sigma(f) < dist(y,y')$ } < $\sigma(X)$.
- 3. If f: X + Y, X is compact and 0 < ϵ \leq diam Y, then $0 < Inf\{d[f^{-1}(y), f^{-1}(y')]: \varepsilon < dist(y,y')\}.$
- 4. If f: $X \rightarrow Y$ and X is compact, then $\sigma(X) = 0$ implies $\sigma(f) = 0$.

¹This paper was presented during the Thirteenth Spring Topology Conference at Ohio University, on March 17, 1979.

632 Lelek

Note that proposition 4 follows from propositions 2 and 3. By S we denote the unit circle on the plane, and by T we denote the union of two tangent circles each of radius $1/2\pi$. We consider T to be a metric space with the geodesic metric ρ . In other words, $\rho(y,y')$ is the length of the shortest arc joining the points y and y' in T for $y,y' \in T$, so that the diameter of T is one. We say that a mapping is essential if it is not homotopic to a constant mapping.

5. Lemma. If f: S \rightarrow T is an essential mapping and $0 \le \varepsilon \le \frac{1}{2}$, then there exist a continuum K and two surjective mappings ϕ , ψ : K \rightarrow S such that

$$\rho \left[f \phi \left(x \right), f \psi \left(x \right) \right] = \varepsilon \qquad (x \in K).$$

6. Theorem. If $f: X \to T$ is an essential mapping, X is compact, $\dim X \le 1$ and $0 \le \varepsilon \le \frac{1}{2}$, then there exists a continuum $K \subseteq X \times X$ such that $p_1(K) = p_2(K)$ and $p[f(x), f(x')] = \varepsilon$ for $(x,x') \in K$.

The following four statements are corollaries to theorem 6.

- 7. If f: X + T is an essential mapping, X is compact and dimX < 1, then $\sigma(f) \geq \frac{1}{2}$.
- 8. If f: X + T is an essential mapping, X is compact, $\dim X \leq 1 \text{ and } 0 < \epsilon \leq \frac{1}{2}, \text{ then}$ $0 < \inf\{d[f^{-1}(y), f^{-1}(y')]: \rho(y, y') = \epsilon\} < \sigma(X).$
- 9. If X is compact and $\sigma(X) = 0$, then each mapping f: $X \to T$ is inessential.

10. If X is a continuum and $\sigma(X) = 0$, then X is tree-like.

It is known [4] that continua of span zero are one-dimensional if non-degenerate. By corollary 9, the mappings defined on them and having values in one-dimensional polyhedra [3] are all inessential, and then corollary $10^{(2)}$ can be obtained via a well-known characterization of tree-like continua [1]. Also, notice that $\sigma(T) = \frac{1}{2}$. Hence, by proposition 1 and corollary 7, we get $\sigma(f) = \sigma(T)$ for all essential mappings f of one-dimensional compact metric spaces into T. It remains as an open problem to determine a wider class of mappings f: X \rightarrow Y such that $\sigma(f) = \sigma(Y)$.

References

- [1] J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960), 73-84.
- [2] W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), 99-107.
- [3] J. Krasinkiewicz, On one-point union of two circles, Houston J. Math. 2 (1976), 91-95.
- [4] A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-214.
- [5] _____, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), 35-45.

University of Houston

Houston, Texas 77004

²A recent result of James F. Davis establishes the equality between the span and the semi-span [5] for a certain class of continua. Using the tree-likeness of continua of span zero (corollary 10), it implies, among other things, that they have the fixed point property.