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COMPACT ccc NON-SEPARABLE 

SPACES OF SMALL WEIGHT 

Murray G. Bell 

o.	 Introduction 

This paper is devoted to constructing compact ccc 

non-separable spaces of weight 2 c, which we shall hence­

forth refer to as C-spaces. In section 2 we verify a 

conjecture of van Mill [16], namely, that there is a 

C-space growth of w. Let L stand for the Stone space of 

the Boolean algebra of Lebesgue measurable subsets of [0,1] 

mudulo the nullsets. L is an extremally disconnected 

C-space. As van Mill points out, assuming CH, L is a growth 

of w. Not being able to show in ZFC that L is a growth of 

w, we have extracted from L a space X that is a growth of 

w. 

C-spaces are hard to come by in ZFC. L is a C-space 

which has a a-linked base but there also exists a C-space 

which does not have a a-linked base, see Galvin and Hajnal 

[7]. MA + .CH, see Juhasz [10], implies that no C-space 

of n-weight < c exists. 2 K is a supercompact and dyadic 

ccc space of weight K but is non-separable only when c < K. 

No dyadic C-spaces exist. 

Assuming CH, Kunen [11] has constructed an hereditarily 

Lindelof C-space. A Souslin continuum, assuming one exists, 

is a supercompact hereditarily Lindelof C-space. Sections 

2 and 3 present new C-spaces. In contrast to L which is 

extremally disconnected, in section 3 we construct a C-space 
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Y in which each point is the limit of a non-trivial con­

vergent sequence. Furthermore, Y is the union of c dyadic 

subspaces. Note that because L is extremally disconnected, 

every dyadic subspace of L is finite and thus L cannot 

have this property. The problem of whether in ZFC there 

is a C-space of size c remains unsolved, although we give 

an affirmative answer assuming MAS. 

In section 3, we present, assuming CH, a new example 

of a 1st countable C-space. This example actually has a 

a-linked base. Kunen was the first to construct such an 

example which moreover was hereditarily Lindelof which our 

space is not. Our example even exists under the weaker 

assumption of MAC + cfc = wI. Recall that MA + ,CH implies 

no 1st countable C-spaces exist (however in ZFC there is a 

1st countable a-compact ccc non-separable space [2]). 

This is so because of the following theorem in Juhasz [10]: 

MA + ,CH implies that every compact ccc space K with 

[t(K)]+ < c is separable. In section 3 we show that 

[t(K)]+ < c cannot be weakened to t(K) < c or even 

char(K) < c. Tall [17] has pointed out that if c is weakly 

inaccessible, then char(K) < c suffices in this theorem. 

1.	 Notation and DefinitionfJ 

If f is a function, then dom f is the domain of f and 

rng f is the range of f. If A and Bare sets, then 

AB = {f: dom f = A and rng f c B} . If f E AB and C ~ A, 

then f ~ C is the restriction of f to C. For two functions 

f and g, we write f ~g if dom f ~ dom 9 and 9 ~ dam f = f. 
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If A is a collection of sets, then A 9= {nJ: J is a finite 

subset of I/} and At!) = {uJ: J is a fini te subset of A}. 

The least infinite ordinal is denoted by w, c is the 

least ordinal of the same cardinality as w2 and cfc is the 

least ordinal K such that c = U A where for each a < K, 
a<K a 

IA I < c. For a set A and a cardinal K, define [A]K
a 

{C ~A: Ici = K} and define [A]<K and [A]2K analogously. 

Let K be a topological space and let p E K. Then 

char(p,K) = least K such that there exists a neighbourhood 

base at p of cardinality K, and, t(p,K) = least K such that 

whenever pEA, there exists C E [A]~K with P E C. 

Char(K) = sup{char(p,K): p E K} and t(K) = sup{t(p,K): 

P E K}. 

The Stone-Cech compactification of the discrete space 

w is denoted by 8w. 2K is the Tychonov product of K copies 

of the discrete space {O,l}. A space is dyadic if it is 

a T2 continuous image of 2K
, for some cardinal K. For a 

compact T space K, the compactness number of K, cmpn K = 2 

least nEw (if one exists) such that there exists an open 

subbase 5 of K for which every cover of K by merriliers 5 has 

a < n subcover. If no such nEw exists, then we say that 

K has infinite compactness number. If cmpn K = 2, then K 

is said to be supercompact. The compactness number of a 

space is defined in [4]. Supercompact spaces were intro­

duced by de Groot in [8]. Supercompact spaces are similar 

to dyadic spaces in that they have lots of convergent 

sequences. Whether every dyadic space is supercompact is 

presently unknown. The reader who wants to find out more 
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about supercompact spaces can refer to van Mill [15]. 

A space is ccc if every disjoint collection of open, 

sets is countable. K has a a-n-linked (a-centered) base 

if there exists an open base B for K such that B U B mmEw 

where for each mEw and for each J E [B ]n (for each 
m 

2.	 A C-Space Growth of C.tJ 

A growth of w is a remainder yw - w for some compacti ­

fication yw of the discrete space w. A weak P-point p of 

a space K is a point that is not in the closure of any 

countable subset of K - p. Clearly no separable space 

without isolated points can have weak P-points. However, 

as pointed out to me by Alan Dow, there exist compact ccc 

spaces without isolated points that have weak P-points; L 

is such an example. Kunen [12] proved that there exist 

weak P-points in Sw - w. This supplied a very concrete 

reason why Sw - w is not homogeneous. In [16], Jan van 

Mill generalized this fact to: every compact F-space of 

weight ~ c in which non-empty Go's have non-empty interiors 

has weak P-points. He also proved that if there was a 

C-space growth of w, then the weight condition was not 

needed. This and the bottle of Jenever that he offered 

for the solution supplied the motivation for this paper. 

We remark that his result has been generalized in Dow and 

van Mill [6] to: every compact nowhere ccc F-space has 

weak P-points. 
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Example 2.1. A compactification yw of w for which 

yw - w is a C-space. 

w
Define P = {f E w: 0 < f (n) < n + 1 for each n E w} 

-

and N = {f l' n: f E P and n E w}. Define T {1T E wN: 

dam 7T (n) = n+l for each n E w}. For ecah s E N, define 

C {t E N: set} and for each 7T E T, define Cn = U C
7T 

(n).
s nEw 

Note that N - C is infinite for each 1T. Define A = {C : 
7T 'IT 

1T E T} U {N C : 1T E T} and B B is a Boolean 
1T 

subalgebra of <~(N) ,u,n,-,~,N) such that {{s}: sEN} U 

{C :	 sEN} ~ B. Let yw denote the Stone space of all 
s 

ultrafilters of B. yw is a compactification of the counta­

ble discrete subspace {{B E B: s E B}: sEN} which we 

identify with the discrete space w. Let X = yw - w. Then 

X is a C-space growth of w. 

A. X is not separable. 

Proof. Let {Pn: nEw} be countably many free ultra­

filters of B. For each nEw, there exists 1T(n) with 

dam 7T (n) n + 1 such that C E Pn. This is so, because1T(n) 

N {s E N: dam s < n} U U{C : dam s = n + l} for each - S 

n E w. Thus, {p E X: N - C E p} is a non-empty open set 
11" 

in X disjoint from {Pn: n E w}. 

B.	 X has a o-2-linked base and hence is ccc. 

Proof. It suffices to show that {B E B: IBI = w} = 

U En such that for each n every two menIDers of Bn have 
nEw 

infinite intersection. To this end, for each jEw and for 

each sEN with 2j - 1 < -dam s, define E(j,s) {B E B: 
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there exist K E [T]<w and L E [T]j with sEn C n 
nEK n 

n N - C E [B]w}. Since for each B E B with IBI W, 
n EL n 

there exists D E Ae with D E [B] wand any infinite subset 

of N contains elements of arbitrarily large domain, it 

follows that {B E B: IBI = w} = U{B(j,s): jEw and 

2j - 1 < dam s}. 

Fix an index j,s with 2j - 1 < dam s. If {BO,B } ~ 
l 

B(j,s), then there exist K. E [T]<w and L. E [T]j such that 
1 1 

for each i = 0,1, s E D n n Ni 
nEL. 

1 

We now define, by induction on dam s ~ n, an h E P such 

that {h ~ n: dam s < n} ~ DO n D Stage dam s: Letl . 

h ~ dam s = s. Then h l' dam s E DO n D • Assume we havel 

defined h ~ n for some dam s < n such that h ~ n E DO n Dl · 

Stage n + 1: Define h r n + 1 to be some sequence in N of 

domain n + 1 that extends h r n and such that h t n + 1 f 
{n(n) : n E L U Ll }· This is possible because there areO 

n + 2 sequences in N of domain n + 1 that extend h t nand 

ILa U LII ~ 2j < dam s + 2 < n + 2. Then h ~ n + 1 E DO 

n D .
l 

Remark 1. If we replace 2j - 1 by nj - 1, then we 

find that X also has a a-n-linked base. Thus X, like the 

space L, is a compact space that has a a-n-linked base for 

each nEw, but does not have a a-centered base (= separa­

bility in compact spaces) . 

Remark 2. <Pew) ,u,n,-,~,W) can be embedded as a 

Boolean subalgebra of B. This means that Sw is a continuous 
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image of yw. It follows, see [4], that yw has infinite 

compactness number. X also has infinite compactness number, 

since it is easy to see that if cmpn K nand K has a 

a-n-linked base, then K is separable. This latter fact 

was first proved by Eric van Douwen [5]. According to [1], 

if ow is a supercompactification~of w, then ow - w is ccc. 

This was the author's first approach to van Mill's ques­

tion. Is there a supercompactification ow of w with 

ow - w non-separable? 

3.	 More C-Spaces 

In this section, we produce "nicer" examples of 

C-spaces. Nicer, in the sense that they have more pro­

perties in cornman with the closed unit interval. Our main 

example requires only ZFC, but its offshoots require Martin's 

Axiom MA; MA is known to be consistent with ,CH, see Martin 

and Solovay [14]. For undefined terms, we refer the reader 

to Jech [9]. 

MA asserts that for every ccc poset P and for every 

collection V of < c dense subsets of P, there is a 

V-generic G ~ P. CH implies MA. MAS is MA restricted to 

a-centered posets. MAS is strictly weaker than MA, see 

Kunen and Tall [13], and is known to be equivalent to the 

combinatorial principle P(c), see [3]. MAC is MA restricted 

to countable posets. MAC is strictly weaker than MAS and 

is known to be equivalent to the statement that the real 

line cannot be covered by < C nowhere dense sets, see [13]. 

What is nice about MAC is that it places no cardinal 
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restriction on the continuum c. MAS implies that for each 

w ~ K < C, 2
K 

= c and hence that c is regular, whereas MAC 

is consistent with any permissible cardinal behaviour. MAC 

holds in any model of ZFC obtained by adding Cohen reals 

to a model of ZFC + GCH. 

The following lemma is the key construction for our 

C-spaces. 

Lemma 3.1. The Cantor Set C has a base B u B and nnEw 
a collection 0 of open sets such that: 

(a) Each B is finite and if B E Band J E [{a E 0: 
n n 

B t O}]~n+l, then B - uJ ~ ~. 

(b) For each f E C, Of {O E 0: f ~ O} is inde­

pendently dense at f, i.e., for disjoint finite subsets 

J and ~ of Of we have that f E nJ - u~. 

(c) For each A E [C]w, there exists an 0 E 0 with 

A ~ 0 ~ C. Furthermore, assuming MAC, we have that for 

each A E [C]<c there exists an 0 E 0 with A ~ 0 ~ c. 

Proof. Let {1 : mEw} be finite subsets of w such m 

that n ~ m implies In n I $, IIml = m + land m < min I . m m 

Give each 1 the discrete topology and give C = m~w1m them 

product topology. C is a compact metric space homeomorphic 

to the Cantor Set. For each nEw and s E IT 1 , define 
mm<n 

B = {f E C: s ~ f} and B {B : s E Each B is s n s n 

finite and B U B is a base for the open sets of C. n
nEw 

Define T {n E 
w

w: nCO) E 1 and n(n + 1) E I for
0 n(n) 

each n E w}. For each n E T, define 0 = {f E C: there n 
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exists an nEw with f(n(n» = n{n + l)}. o = {O : nET}
n 

is a collection of open sets of C. Let us check that (a), 

(b) and (c) hold. 

(a) Let B E B with s E II and let F E [n E T: 
s n m<n 

B t o } ]2.n+l . For each n < m, choose a E I - {n (j):
s n m m 

n E F and j E w}. This is possible because n + 1 < m + 1 

II I and for each m and n there is at most one j with m 

n(j) E 1 . Define f E C by f(m) = s(m) for m < nand m 

f (m) am for n < m. Then, f E B u 0 . s nEF n 

(b) Let f E B and let F and G be two disjoint finite s 

subsets of {n E T: f f O}. We must show that B n ( n 0 ­
n s nEF n 

U 0 ) ~~. Choose dam s < k such that {{n(n): k < n}: 
nEG n 
n E F U G} is a disjoint family. This is possible because 

{{n(n): nEw}: nET} is an almost disjoint family. Let 

t = max{n(k): n E F U G}. Define g E C so that 

g(m) = s(m) for m < t 

g(n(r» n(r + 1) for n E F and t < n(r) 

g(n(r» ~ n(r + 1) for nEG and t < n(r) 

g(m) = min 1 otherwise. m 

g E B since dam s < k < t. By the definition of 9 and the s 

0 's and the facts that G ~ {n E T: f f On} and s ~ f, we n 

have that 9 E n 0 - U On as well.
 
nEF n nEG
 

(c) Let {f : n E w} ~ C. Define n E T by induction 
n 

so that n(O) E 1 0 and n(n + 1) = fn(n(n» for each nEw. 

Then, {fn : nEw} ~ On ~ C. 

Now assume MAC and let {fa: a < K < c} ~ C. Define 

p {p: p E nw for some nEw, p(O) E 10' and p(i + 1) E Ip(i) 
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for each i E w with i + 1 Edam pl. Define < on P by 

p < q iff q ~ p. (P,~) is a countable poset. For each 

a < K, define D = {p E P: there exists n + 1 Edam pa 

with fa (p (n) ) = p(n + 1) } and for each n E w, define 

E {p E P: n < dam pl. {D : a < K} U {E : n E w} are n a n 

< c dense subsets of P. Let G be a generic subset of P 

meeting all of these dense sets. Let TI = UG. Then TI E T 

and On is our required member of O. Let a < K. There 

exists pEG n D . There exists n + 1 Edam p with a 

fa(p(n)) p(n + 1). Thus, n(n + 1) p(n + 1) = fa(p(n)) 

Example 3.2. A C-space Y that has a o-n-linked base 

for all nEw and is the union of c dyadic subspaces. 

Let C, B u B n , 
nEw 

0 and {Of: 
0 

f E C} be as in Lemma 

3.1. Define Y = U ({f} x 2 f). Remember that if Of = ~, 
Of fEC 

then 2 {~}. For each B E B, define B* = {(f,p) E Y: 

fEB} and for each ° E 0, define 0** = {(f,p) E Y: (f E 0) 

or (f t 0 and p(O) I)}. Let 5 = {B*: B E B} u {O**: 

o	 E O} u {y - 0**: 0 E O} serve as an open subbase for the 

Of 
topology on Y. Y has weight < c and each {f} x 2 is 

10fi 
homeomorphic to 2 

A. Y is compact. 

Let {B*: B E a ~ B} u {O**: 0 E b ~ O} u {y - 0**: 

0 E d ~ O} be a cover of Y by subbasic open sets where we 

may assume that b n d = <p. If f E C - ( U B U U 0) , then 
BEa OEb 
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Of 
we define p E 2 , if Of 1 ~, by p(O) = 1 iff 0 t bi if 

Of = ~, then b = ~ and we define p =~. In either case, we 

see that (f,p) is not contained in any of {B*: B E a} U 

{O**: 0 E b} U {Y - 0**: 0 Ed}. Consequently C U B U 
bEa 
lU 0, and as C is compact, we have finite subsets a of a 

OEb 

and b l of b such that C = U B U U O. Hence, {B*: B E al} 
BEa l OEb' 

U {O**: 0 E bl} is a finite subcover of Y. 

B. Y is T2 · 

Let (f ,p) and (g,q) be two distinct points of Y. If 

f 1 g, choose disjoint sets U and V in B such that f E U and 

g E V. Then (f ,p) E U*, (g,g) E V* and U* n V* = ~. If 

f g and p ~ q, then Of ~ ~ and we can choose 0 E Of such 

that p(O) ~ q(O). Then 0** and Y - 0** separate (f,p) and 

(f ,q) . 

C.	 Y is non-separabZe. 

Choose 0 E 0 with {f : nEw}
n 

~ 0 ~ C. Y - 0** is a nonempty open set disjoint from 

{ (f , Pn): nEw}.n 

D. Y has a a-2-linked base. 

For each (a,b,d) E [B]<w x [O]<w x [O]<w, define 

(a,b,d> = n U* n n 0** n n Y - 0**. For each nEw and 
UEa OEb OEd 

B	 E B , define A(n,B) = {( a,b,d): B ~ nun n 0, 
n UEa OEb 

1
B - U 0 1 ~ and Idl < I(n + l)} - {~}. 

OEd ­

(a) U{A(n,B): nEw and B E B } is a base for Y. To 
n 

see this, let (f,p) E (a,b,d). Therefore b n d =~. Now 
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b = b O U b l where fEn 0 U o. Since Of is indepen-
OEb OEb

O l 

dently dense at f and b n d = ~, there exists g E nunl 
UEa 

non ( n 0 - U 0) • Choose nEw and B E B such that nOEbO OEb OEd
l 

1 g E B ~ nun n 0 and < I(n + 1). Then <a , b ,d) E 
UEa UEb 

A(n,B) • 

(b) Each A(n,B) is 2-linked. Choose (a,b,d), 

(a',b',d') E A(n,B). Therefore, dUd' ~ {O E 0: B ~ O} 

and Id U d'i < n + 1. Thus, by (a) of Lemma 3.1, there 

0g
exists g E B - U{O: 0 E dUd'}. Define p E 2 ,if 

° ~~, by p(O) = 0 for all 0 EO; if ° =~, theng g g 

dUd' = ~ and define p =~. In either case, we have that 

(g,p) E (a,b,d) n (a' ,b' ,d'). 

Replacing !(n + 1) by ~(n + 1) gives us that Y also
2 J 

has a o-j-linked base for any jEw. 

E. For each (f,p) E Y, char ( (f,p) ,Y) < w • 10f l • 

Define Sf {B*: fEB E B} U {O**: f $ 0 E O} U 

{y - 0**: f fOE a}. 15fl = w • 10fl. Each member of 5 

containing (f,p) contains a member of Sf that contains 

(f,p) so Sf is a neighbourhood subbasis at (f,p) and our 

claim follows. 

Example 3.3. (MAC) A C-space Z with a o-n-linked 

base for all nEw, of cardinality < L 2
k 

and for which 
k<cfc 

each p E Z has char(p,Z) < cfc. 
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Let c,B,O and {Of: f E C} be as in Lemma 3.1. Let 

C U Fa where each IFa I < c. For each a < cfc, choose 
a<cfc 

c0 E 0 such that U F ~O C. Define 0' = {O : a < cfc}
a	 a + aS<a f3 

and 0i nO' . For each f E C we have < cfc.Of 10il 
C, Band O'satisfy (a) , (b) and (c) of Lemma 3.1 except 

possibly for the furthermore part of (c). The space Z is 

to be constructed from C, Band 0' in the same way that Y 

was constructed from C, Band O. Z is compact, T2 , non­

separable and has a a-n-linked base for all nEw. Each 

P E Z has char(p,Z) < cfc according to E of Example 3.3. 

Also, Iz I	 I 2 I°f'I < 
fEC 

Remark 3. If we assume CH or just MAC +cfc = wI' 

then Z is a 1st countable C-space with a a-n-linked base for 

all nEw. By previous remarks, it follows that Z has 

infinite compactness number. This gives an answer, modulo 

CH or MAC + cfc= wI' to a question raised in [4] of whether 

1stthere exists a countable compact space of infinite com­

pactness number. 

Remark 4. If we assume MAS, then Z is a compact ccc 

non-separable space of size c. 

Remark 5. Assuming MA + ,CH, see Juhasz [10], every 

compact ccc space K with [t(K)]+ < c is separable. If we 

assume MA + ,CH + c is a successor, then Z is a compact ccc 

space with char(K) < c that is non-separable. This shows 

that [t(K)]+ < c cannot be replaced by t(K) < C in this 

theorem. 
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Remark 6. Both Y and Z are growths of w in a natural 

way. 
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