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ON THE M3 ~ Ml QUESTION 

Gary Gruenhage 

1. Introduction 

In 1961, J. Ceder [C] defined the Mi-spaces, i = 1,2,3, 

proved that M ~ M ~ M and asked whether any of the3 ,l 2 

implications reversed. H. Junnila [J] and the author [G ]
l 

independently proved that M3-spaces, usually called 

"stratifiable spaces," are M The question remains whether 

M ~ M that is, whether every stratifiable space has a 

2 . 

l ,3 

a-closure-preserving base. Some partial results obtained 

so far are that the closed image of a metric space is Ml 

(F. Slaughter [Sl]), and that a-discrete stratifiable spaces 

are M [G ]. Recently, R. Heath and Junnila showed thatl 2

every stratifiable space is the image of an Ml-space under 

a perfect retraction (and hence is a closed subset of an 

Ml-space) · 

Let us call a space which is a countable union of 

closed metrizable subspaces an Fa-metrizable space. In 

the first part of this paper, we prove that every stratifi­

able Fa-metrizable space is MI. Many common examples of 

stratifiable spaces seem to be of this type. For example, 

all the examples given in Ceder's paper, as well as the 

chunk-complexes (which he proves to be MI ), are Fa-metriza­

ble. Hyman's M-spaces [H], called paracomplexes and proved 

M by J. Nagata [N], are also of this type.I 

Another interesting class of stratifiable spaces is 

the following. Let I be an index set, and for each i E I, 
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let Xi be a stratifiable space. Let p E D X., where "0" 
iEI 1 

denotes the box product. Let y {x E 0 X.: x{i) = p{i) 
iEI 1 

for all but finitely many i E I}. Borges [B ] proved that3

if each Xi is stratifiable, so is Y. It is not hard to 

show that if each Xi is Fa-metrizable, then so is Y; 

hence Y is Ml in this case. 

In [G ], we asked whether a stratifiable space which2

has a a-discrete network consisting of compact-sets is Ml . 

Since compact stratifiable spaces are metrizable, our 

result implies an affirmative answer to this question. 

Unfortunately, the class of stratifiable Fa-metrizable 

spaces is not closed under closed maps. In fact, the 

closed image of a metric space need not be Fa-metrizable 

[F]. It must be M though, by Slaughter's result men­l , 

tioned above. Now suppose a space X has the following 

property: whenever Hand K are closed subsets of X with 

H c K, then H has a a-closure-preserving outer base in K 

(i.e., there is a a-closure-preserving collection lj of 

relatively open subsets of K such that whenever H c 0, 0 

open, there exists U E lj with H cUe 0). In the second 

section of this paper, we prove that if an Ml-space X has 

the above property, then every closed image of X is M andl 

has the same property. From the fact that stratifiable 

Fa-metrizable spaces are M it is easily shown that they 

also have the above property. Thus every closed image of 

a stratifiable Fa-metrizable space is Ml • This generalizes 

Slaughter's theorem, and answers a question of Nagata con­

cerning the paracomplexes mentioned above. 

l , 



TOPOLOGY PROCEEDINGS Volume 5 1980 79 

Nagata also showed that if X is a paracomplex, then 

Ind X < n if and only if X has a a-clos~re-preserving base 

B such that Ind(aB) < n - 1 for every B E B. He asked if 

this result is true for any Ml-space. Mizokami [M] showed 

that it is true for an Ml-space which is Fa-metrizable 

and satisfies a certain further condition. With our tech­

niques, we can show it is true for any stratifiable 

Fa-metrizable space. 

2. Definitions and Other Preliminaries 

All spaces are assumed to be regular. Let AO denote 

the interior of a set A. A collection ~ of subsets of a 

space X is interior-preserving if whenever ~' c ~, then 

o
(n~')o = n{G : G E ~'}. A collection H of subsets of X 

is alosure-preserving if whenever H' c H, then uH' 

U{H: H E H'}. It is easy to see that the set of comple­

ments of an interior-preserving family is closure-preserving, 

and vice-versa. 

If H is a subset of a space X, an outer base for H is 

a collection lj of open subsets of X such that whenever H 

is contained in an open set 0, then there exists U E lj such 

that H c U c: o. 

A collection B is a quasi-base for X if whenever 

x E U, U open, there exists B E B such that x E BO 
c B c U. 

(Bo denotes the interior of B.) A space X is an Ml-spaae 

(M2-spaae) if X has a a-closure-preserving base (quasi­

base). An M3-spaae, or stratifiable spaae, is the same 

as an M2-space. 
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We will often use the following characterization of 

M2-spaces due to Nagata [N ].
2

Theorem 2.1 (Nagata). A regular space X is an 

M2-space if and only if for each x E X and n E W3 there 

exists an open neighborhood gn(x) of x such that 

(1) y E gn (x) :::;> gn (y) c gn (x); and 

(2) if H	 is closed and x ~ H3 there exists nEw such 

that	 x f U 9 (x).
 
xEH n
 

Clearly,	 we may assume go(x) ~ gl(x) 

A collection J is a network for X if whenever x E U, 

U open, there exists F E J such that x E Feu. X is a 

a-space if X has a a-discrete network. 

A space X is monotonically normal if for every pair 

(H,K) of disjoint closed subsets, there exists an open set 

D(H,K) such that 

(1) H c D(H,K) c D(H,K) c X - K; 

(2) H c H' and K ~ K' => D(H,K) c D(H',K'). 

We shall be using the fact that stratifiable spaces 

are paracompact and perfectly normal [e], that they are 

a-spaces [H], and that they are monotonically normal [HLZ]. 

Also, every subspace of a stratifiable space is stratifia­

ble [C], and every closed image of a stratifiable space 

is stratifiable [B]. 

3. Main Results, Outlines of the Proofs, and Some Questions 

Since the proof of our main results are rather long 

and tedious, we will defer them to later sections, giving 

only brief outlines here. 
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Theorem 3.1. Let X be stratifiable and Fa-metrizable. 

Then X is MI. Also~ Ind X ~ n if and only if X h~R a 

a-closure-preserving base B such that Ind(aB) < n-l for 

each B E B. 

Outline of proof. Suppose X is stratifiable. Then 

there exist gn(x) 's satisfying the conditions of Theorem 

2.1. The standard way to get a a-closure-preserving 

quasi-base back from the gn(x) 's is as follows. For each 

closed set H, define Gn(H) = U gn(x). It is easy to see 
xEH 

from property (1) of Theorem 2.1 that 

Y = {Gn(H): H is closed, Hex}n 

is interior-preserving. Hence, 

B = {X - G (H): H closed, Hex}
n n 

is closure-preserving, and from property (2) , U B is a 
nEw n 

closed quasi-base. A naive attempt to get a a-closure­

B

preserving base would be to define
 

f = {(X - G (H))o: H closed, HeX}.

n n 

However, B' may fail to be closure-preserving. But it 
n 

turns out that if the Gn(H) 's are regular open sets, then 

B' will be closure-preserving. (See Lemma 5.1.)
n 

So we construct gn(x) 's satisfying the conditions of 

Theorem 2.1 so that the corresponding Gn(H) 's are regular 

open. We do this by constructing a certain sequence 

VO,V l ,··· of locally finite open covers of X, and then 

use the Vi's to construct the gn(x) IS, so that: 

(i) each gn(x) is an element of some Vi; 

(ii) for each m E w, every union of elements of U V. 
. 1
l<m 

is regular open; and 
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(iii)	 if H is closed and y f u g (x), then there exists 
XEH n 

an	 integer k such that 

y f Cl (U {g(x): x E H, g (x) f u [I.}). 
n n i<k 1 

It easily follows that G (H) = U g (x) is regular open 
n xEH n 

whenever H is closed. The Fa-metrizable hypothesis is 

used to obtain property (iii). It is possible to construct 

[10,[11'··· and the gn(x)'s satisfying (i) and (ii) in any 

stratifiable space. 

The "if" part of the last statement of Theorem 3.1 

is a result of Nagata [N ]. To obtain the "only if" part,2

we show that if Ind X < n, we can construct the V.'s so 
1 

that Ind(aV) < n-l for each V E Vi. It then follows that 

Ind(aB) < n-l for each B E B' • n 

Theorem 3.2. Suppose X is stratifiable and has the 

following property: whenever H and~K are closed subsets 

of X with H c K, then H has a a-closure-preserving outer 

base in K. Then every closed image of X has the same 

property, and is therefore MI ­

Outline of proof. Let (*) denote the property of 

Theorem 3.2. Any stratifiable space satisfying (*) is 

MI. This follows easily from the facts that every closed 

subset has a a-closure-preserving outer base, and that 

stratifiable spaces are a-spaces. 

Let f be a closed map of X onto Y, where X is strati ­

fiable and satisfies (*). Since every closed subset K of 

Y is the closed image of a stratifiable space satisfying 

(*), namely f-l(K), it is enough to show that every closed 
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image of a stratifiable space satisfying (*) has the 

property that every closed subset has a a-closure-preserving 

outer base. So we are done if we show that Y has this 

property. 

lI -1
By a theorem of Okuyama [0], Y = Y' U y , where f (y) 

is compact for each y E Y', and y" is a-discrete. We use 

this to show that Y Yo U Y where Yo is a closedl , 

irreducible image of a closed subset X of X, and Y is o l 

open and a-discrete. From results in [BL], it follows 

that every closed subset of Yo has a a-closure-preserving 

outer base in Yo. Thus Y can be written as the union of 

a closed subspace having the property we want, and an 

open a-discrete subspace. The final step is to show that 

any stratifiable space which admits such a decomposition 

also has the property that every closed subset has a 

a-closure-preserving outer base. 

Remark. For stratifiable spaces, property (*) is 

equivalent to the following property: whenever Hand K 

are closed subsets of X with H c K, then K/H is MI. 

Corollary 3.3. The closed image of a stratifiable 

Fa-metrizable space is MI. 

Proof. Suppose X is stratifiable and Fa-metrizable. 

Let H eKe X, where Hand K are closed. Then K/H is 

stratifiable and Fa-metrizable, hence MI. By the above 

remark, X satisfies the conditions of Theorem 3.2. 

It is not known whether every M1-space satisfies the 

property of Theorem 3.2. In fact, it is not known if 
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every closed subset of an Ml-space is MI. However, the 

result of Heath and Junnila mentioned in the introduction 

implies, as they note, that this question is equivalent to 

the M ~ M question. It is also not known whether every3 I 

closed subset of an Ml-space has a a-closure-preserving 

outer base. But if not, then by results of Ceder, there 

is a stratifiable space which is not MI. On the other 

hand, Borges and Lutzer [BL] have shown that if each point 

of a stratifiable space has a a-closure-preserving base, 

then every stratifiable space is MI. 

Borges and Lutzer have also shown that if every closed 

subspace of a space X is M then every perfect image ofI , 

X is MI. This suggests the following question, which 

would generalize Theorem 3.2 if answered affirmatively. 

Question 3.4. If every closed subspace of a space X 

is M is every closed image of X also M ?I , 
I 

A class of spaces which Heath and Junnila called 

Mo-spaces may have an important role to play in settling 

the M ~ M1 question. An Mo-space is a space which has3 

a a-closure-preserving base of open and closed sets. It 

is easy to see that every subspace of an Mo-space is Mo. 

Thus every perfect image of an Mo-space is MI. Recently, 

Junnila [J ] has obtained an alternate proof that strati­2

fiable Fa-metrizable spaces are M by showing that theyI 

are perfect images of Mo-spaces. Heath and Junnila ask 

whether every stratifiable space is the perfect image of 

an Mo-space. If so, then M => MI. Our next corollary3 
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shows that it would be enough (for the purpose of obtain­

ing M =>M ) to prove that every stratifiable space is the3 l 

closed image of an Mo-space. 

Corollary 3.5. The closed image of an Mo-space is 

Proof. We show that every Mo-space X satisfies the 

property of Theorem 3.2. If K c X, then K is Mo. By 

mimicing Ceder's proof that every closed subset of an 

M2-space has a closure-preserving outer quasi-base, we see 

that every closed subset of K has a closure-preserving 

base in K. 

The class of stratifiable Fa-metrizable spaces is not 

closed under closed maps or countable products. These are 

still M of course. In fact, since products of perfectl , 

maps are perfect, the countable product X of stratifiable 

Fa-metrizable spaces is the perfect image of an Mo-space. 

Hence X satisfies the property of Theorem 3.2, and so every 

closed subspace and closed image of X is MI. But further 

iterations of the procedures of taking closed subspaces, 

closed images, and countable products, produces spaces that 

I can't prove are MI. What one might aim for is a solution 

to the following: 

Problem 3.6. Find a class of Ml-spaces which contains 

the Fa-metrizable spaces, and which is closed under closed 

subspaces, closed images, and countable products. 

Note that the class of stratifiable F -metrizable 
a 

spaces is closed under arbitrary subspaces, perfect images, 
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and finite products. The class of stratifiable spaces 

satisfying the property of Theorem 3.2 is closed under 

closed subspaces and closed images. Thus one would have 

a solution to the Problem 3.6 if one could show that this 

property is closed under countable products. For another 

approach, note that the class of perfect images of Mo-spaces 

satisfies all the desired properties except perhaps closure 

under closed images. 

Although we don't do it here, the techniques of sec­

tion 6 can be used to show that if a stratifiable space X 

is the union of a closed Ml-space and an Fa-metrizable 

space, then X is MI. This suggests a couple of questions, 

for which affirmative answers to both (or a negative answer 

to one) would obviously settle the M ~ M question.,3 I 

Question 3.7. If a stratifiable space X is a counta­

ble union of a closed M subspaces, is X M ?I I 

Question 3.8. Is every stratifiable space the counta­

ble union of closed M subspaces?1 

4. Preliminary Lemmas 

In this section we present a series of lemmas on 

regular open sets, leading up to the result that in a 

paracompact hereditarily normal space, every open cover 

has a locally finite refinement V such that every union 

of elements of V is regular open. In fact, if W is any 

locally finite collection such that every union of elements 

of W is regular open, then V can be constructed so that 
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every union of elements of V U W is regular open. 

Lemma 4.1. Let X be a hepeditapily nopmal space. 

Suppose U~ V~ and U U V ape pegulap open~ and H is a 

pelatively closed subset of v. Suppose H is contained in 

an open set o. Then thepe is a set W such that HeW c V~ 

wc O~ and both Wand U U W ape pegulap open. If X is 

pepfectly nopmal~ Ind X < n~ and Ind(aU) < n-l~ then we can 

obtain Ind(aW) ~ n-l. 

Ppoof. Let 0' be an open set such that H c 0' c a' c O. 

Using the hereditary normality X, we can find open sets VI 

and V such that2 
-v -vH c VI c VI c V2 c V2 c V n 0' , 

where XV denotes the closure of A in the subspace V. Now 
o 0 

let W = ~V-I--U-U~ n v We claim that W has the desired
2

. 

properties. 

Clearly, Hew c V, and Wc O. Also, since the inter­

section of two regular open sets is regular open, W is 

regular	 open. It remains to show W U U is regular open. 
o 

To see this, suppose p E W U U - W U U. Observe that 
o 

w-u-u c VI U U. Thus p E V--I--U-U- - U. Hence p E VI' 
o 

since U is regular open. Also, p E v-u-u - U (V U U) 

- U, so P E V. Hence p E VI n V c V2 . So we have 
o 0 

p E =V-l~U-u~ n V = W, contradiction.
2 

To see the last statement, note that aw c aV U aVl 2 

U au. Since Ind V < n, we can obtain Ind(aVVi ) ~ n-l, 

i = 1,2, where "a " denotes the boundary of a set in the v 

subspace v. Now ·av = [aV n	 aV] U aVv Thus Ind(aV )i .i i i 

~ n-l, and so Ind(aV U aV U aU) < n-l. Thus Ind(aW) < n-l.l 2 
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Lemma 4.2. If Uis a collection of subsets of a space 

X such that every finite union of elements of Uis regular 

open, then every finite union of finite intersections of 

elements of U is regular open. 

Proof. This follows from the fact that a finite 

union of finite intersections of elements of Ucan be 

written as the finite intersection of finite unions of 

elements of U, and that a finite intersection of regular 

open sets is regular open. 

Lemma 4.3. Suppose U is a finite collection of open 

sets of a hereditarily normal space X such that every union 

of elements of U is regular open. Let H 0, H closed,C 

o open. Then there exists a set W such that HeW c 0, 

and every union of elements of U U {W} is regular open. 

If X is perfectly normal, Ind X ~ n, and Ind(aU) < n-l for 

each U E U, then we can obtain Ind(aW) < n-l. 

Proof. If I U/ = 1, apply Lemma 1 with U the element 

of U, V = X, and Hand 0 as in the hypothesis of this 

lemma. The set W guaranteed by Lemma 4.1 is easily seen 

to satisfy the desired conditions. 

Now suppose lUI = n > 1. Let U = {U ,ul,---,U l}.o n-

Let W be a regular open set such that HeW eWe 0,
o o 0 

and (uU) u W is regular open.o 

Suppose W has been defined, k < n. For each subset
k 

I of k + 1 distinct elements of n {O,l,---,n-l}, let 

H(I) (aw ) n ( n U.). Then the hypotheses of Lemma 4.1
k iEI 1 

are satisfied with U = U U. , V n U., H = H (I) , and 0 
jfI J iEI 1 

as in this lemma. (Note the use of Lemma 4.2 to get U U V 
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regular open.) Let W(I) be the set given by Lemma 4.1, 

and let 

W = W U (U{W(I): len, III = k + I}).k+l k 

Let W = W . We claim that W has the desired property.
n o 

To see this, assume mc U U {W}, and x E um - Um. Clearly, 

we may assume W E mand x E W. 

Let I = {i < x and let m = = 0,n: E Ui}' I II · If m 
0 0 

then x E (UO) U W - ( UU) U W = (uO) u W - (UU) U W
0 0' 

contradiction. So we may assume m > 1. Then x f Wm-l' 

for otherwise x E aW
m

_
l 

n ( n U.) = H (I) c W(I) c W. So 
iEI 1 

there is an open set G such that 
o 

x E G c (Um) n ( n U.) n (X - W 1).
iEI 1 m-

Since W(I) U ( U U.) is regular open and doesn't con­
jfI J 

tain x, there exists y E G with Y f W(I) U ( u U.). But 
jfI J 

Y E um, so Y E U(m - {W} ) or yEW. Since U(m - {W}) c 

U U., it must be true that yEW. Thus there exists a 
jfI J 

nonempty set J c n such that y E W(J). Since y f W ­ l ,m 

we have IJI > m. Since y f W(I), we have J ~ I. There­

fore, there exists jo E J - I. But W(J) c -n-u. c u. , 
iEJ 1 J o 

contradicting y f -u-u .. 
jfI J 

Thus W has the desired property. The last statement 

of Lemma 4.3 follows because W is the union of a finite 

number of sets obtained from the application of Lemma 4.1. 

Lemma 4.4. Let U be an open cover of a paracompact 

hereditarily normal space X, and let V be a locally 

finite collection such that every union of elements of V 
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is regular open. Then there is a locally finite refine­

ment W of lj such that every union of elements of V U W is 

regular open. If X is perfectly normal, Ind X ~ n, and 

Ind(aV) < n-l for each V E V, then we can obtain Ind(aW) 

< n-l for each W E W. 

Proof. Let J U I be a locally finite open cover 
nEw 

n 

of X by sets whose closures refine lj and meet only finitely 

many elements of V, and such that each J is discrete. 
n 

Let ~ = {GF : F E J} be a shrinking of J; i.e., ~ is an 

open cover such that GF c F for each F E J. Let V(F) = 

{V E V: V n F ~ ~}. For each F E J ' let W be the set o F 

given by Lemma 4.3 where lj = V(F), H = G and ° F.F , 

Then GF c WF c F, and every union of elements of V U {WF : 

F E J } is regular open. Let W o o 

Now suppose that for each F E J k < n, we havek , 

defined a W such thatF 

(i) W = {W : F is a discrete collection of
k F 

E J k } 

open sets; 

(ii)	 if F E J
k

, then G - U (uW j ) c W c F;

F j<k F
 

(iii) if F E J k , then	 WF n GF , = ~ whenever F' E J. 
J 

with j < k; 

(iv) every union of elements of V U ( u W) is regular
j

j~k 
open. 

TO define WF for F E I , let 0 = {OF: F E I } be a n n 

discrete collections of open sets such that 

GF - u (uWk ) c OF c F, and 
k<n 

OF n (U {GF : F E J k' k < n}) ~ · 
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This	 is possible, since U{G : F E J k < n} c U (UW ).
k

,F	 kk<n 

Now, for each F E I , let W be the set given by Lemma 4.3 n F 

applied to the case where U= V(F) U {uW
k

: k < n}, H = G
F 

­

u (uWk ), and 0 = OF. 
k<n 

It ia easy to check that W = {W : F E J} satisfies n F n 

properties (i)-(iii) above. To see that (iv) is satisfied, 
o 

suppose x E um - Um, where V U ( u Wk ). Since this 
k<n 

collection is locally finite, we may assume mis finite 

and x E M - M for every M E m. Let I = {k < n: mn W ~ ~}.
k 

For each i E I, x ~ uW. 
]. 

since W. 
1 

is discrete and x E W- W 

for some W E W.• By the induction hypothesis, we can 
1 

assume there exists W E mn W , where F E J. Then
F n n 

mn V = mn V(F), since x E W
F 

c F. Thus x is in the 

interior of the closure of 

but is not in this set, contradicting the way W was defined
F 

(i.e., the above set must be regular open). Thus W satis­n 

fies (iv). 

Let W= U W • That Wis a refinement of U follows 
nEw n 

from property (ii). That W is locally finite follows from 

(i) and (iii). And that every union of elements of V U W 

is	 regular open follows from (iv) and the local finiteness. 

Let us see how to obtain the last statement of Lemma 

4.4. First note that under the hypotheses we can get 

Ind(aW) ~ n-l for W E W ' since these sets were also o 

obtained from Lemma 4.3. If it's true for W E U W thenk , 
k<n 

it's also true for W E W , since these sets were also n 
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obtained from Lemma 4.3, with the U of Lemma 4.3 being a 

subset of V together with {UW : k < n}, and Ind(d(UW ))
k k 

< n-l for k < n since each W is discrete.
k 

5. Stratifiable Fo-Metrizable Spaces 

In this section, we prove that stratifiable Fa-metriza­

ble spaces are MI. First, an easy lemma. 

Lemma 5.1. Let U be an interior-preserving collection 

of regular open subsets of a space X. Then {(X - U)o: 

U E U} is closure-preserving. 

Proof. Suppose U' c U, and x E U{ (X - U)o: U E U/}. 

Suppose for each U E U', we have x f (X - U)O. Since 

each U is regular open, we must have x E U for each U E U'. 

Thus x E nU', which is an open set missing (X - U)O for 

every U E U'. This contradiction establishes the lemma. 

Proof of Theorem 3.1. Let X be a stratifiable 

Fa-metrizable space. Let X U M , where each M is a 
n n

nEw 

closed, metrizable subspace of X. Let M no,
n mEw n,m 

where 0 is open.
n,m 

Let {U'} be a sequence of relatively open covers 
n,m mEw 

of M which is a development for M For each U' E U' n n n,m' 

let U be open in X such that U n M U' , and U c 0 
n n,m 

Let U = {U: U' E U' }• n,m n,m 

For each x E X and nEw, let gn(x) be an open neigh­

borhood of x such that the gn(x) 's satisfy the conditions 

of Theorem 2.1, and that go(x) = X for each x E X. Let 

J = u I be a closed network foro X such that each I is n n
nEw 
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discrete. For each F E I , let UF be an open set such 
n 

~ whenever F ' E J , F ' ~ F. n 

Let V U n (n{gi(x): i < nand F c gi(x)}). Since theF F 

gi (x) I s satisfy property- (1) of Theorem 2.1, V is open.
F 

Now use Lemma 4.4 to inductively construct a sequ~nce 

V ,V, ••• 6f locally finit.e open covers of X such thato 1 

(i) V + star-refines V ;n l n 

(ii) V refines {V : F E J.} u {X - uJ.} for each i < n;n F 1 1 

(iii) V refines U. . u {X - M .} for each i,j _< n;n 1,J 1

(iv) every union of elements of U V. is regular open. 
. 1
l<n 

It is easy to see from Lemma 4.2 that we may assume that 

if x E X, then n{V E V.: x E V, i < n} is an element of V • 
1 n 

Claim I. For each x E X, for each nEw, there exists 

mEw such that st(x,V ) c g (x).m n 
lProof of Claim I. There exists n > nand F E J I 

n 
lsuch that x E F c gn(x). (To get n ~ n, we can assume 

that each I is repeated infinitely often.) If x EVE Vnl ,n 
lthen by (ii), V c V = U n (n{gi (y): i 2. n and F c gi (y)})F F
 

gn (x).
 

l
Let m = n + 1. Then st(x,V ) is contained in some m

element of V so st (x, V ) c gn (x) ·I' n m

Claim II. If H is closed in x, and y f H n M , then n

there exists mEw and V E V such that y E V and st(V,V )
m m 

n H n M ~. n 

Proof of Claim II. If Y f M , there exists n l such n 

that y ~ 0 I. Let m = n + n l + 1, and pick V E V with n,n m 

y E V. Then st (V, V ) eWE V + W must be contained inI. m n n 
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some eleInent of U ,U {X Each element of U ,isn,n n,n 

contained in 0n,n" so W c X - M . Thus st(V,V ) n H n 
n m 

M ~. n
 

If Y E M , there exists n" E 00 such that st(y,lj n)
n n,n 

n H n M =~. Let m = n + nn + 1, and pick V E V with 
n m 

y E V. Then st(V,V ) eWE Vn+nn. But W c U for some m

U E U ", where y E U n M E lj' ". Thus U n H n M ~, n,n n n,n n 

so st(V,V ) n H n M ~. m n 

For each x E X, let j(x) E 00 be such that x E Mj(x) ­

U M.. From Claims I and II, it is easy to see that, 
i<j (x) 1 

for each nEw, there is a least integer l(n,x) such that 

st(x,Vl(n,x» c gn(x) - U M.. We define g~(x) = n{v E Vi: 
i<j (x) 1 

x EVE V., i < l(j(x) + n, x)}. By the statement immedi­
1 ­

ately preceding Claim I we have g~(x) E Vl(j(x)+n,x). It's 

not re~lly necessary to have this, but we said we could get 

it in the outline in section 3. 

Claim III. If Y E g~(x), then g~(y) c g~(x). 

Proof of Claim III. If Y E g~(x), then y E gj(x)+n(x) 

c gn(x), so gn(y) c gn(x). Since g~(x) n (U M.) = ~, 
i<j (x) 1 

we have j(y) ~ j(x). Thus gJ. (y)+n(y) - U M. c 
i<j (y) 1 

gJ.(x)+n(x) - U M .• If l(j(y)+n,y) < l(j(x)+n,x), then 
i <j (x) 1 

we would have st(x,Vl(j(y)+n,y» c st(y,Vl(j(y)+n,y» c 

gJ. (y)+n(y) - .U. Mi c gJ. (x)+n(x) - U M.. This con-
l<J (y) i<j (x) 1 

tradicts the definition of l(j(x)+n,x). Thus l(j(y)+n,y) 

> 1 (j (x) +n, x), and so 9 I (y)/ c 9 I (x) • 
- n I n 
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For each closed set H, define Gn(H) = U g' (x). By 
xEH n 

Claim III, the collection {G (H): H closed, HeX} is 
n 

interior-preserving. Since g~(x) c gn(x), the g~(x) 's 

satisfy property (2) of Theorem 2.1, so if we define 

B = {(X - G (H» 0: H closed, Hex}n n 

then U B is a base for X. By Lemma 5.1, each B is 
nEw n n 

closure-preserving if Gn(H) is always regular open. So 

we are finished after proving the next claim. 

Claim IV. Gn(H) is regular open. 
o 

Proof of Claim IV. Suppose y E Gn(H) - Gn(H). 

There exists k E w such that y f u gk(x). So, since 
xEH 

g~ (x) c gj (x) +n (x), y $ Cl (U {g~ (x): x E H, j (x) > k}). 

By Claim II, for each j < k, there exists m E wandj 

V. E V such that y E V. and st(V.,V ) n H n M. = ~. 
J m. J J mj J

J 
Let V = n V .• Suppose x E H, j(x) < k, and g~(x) n V ~ ~. 

Jj <k 

Now is contained ing~(x) some W E Vl(j(x)+n,x)' and 

W n Vj(x) ~~. If l(j(x)+n,x) ~ mj(x)' then 

W c st(V. ( ) V ). But x E W n H n MJ.(x)' so 
J x , mj (x) 

x E st(V.( },V ) n H n M. (x)' contradiction. Thus 
J x mj(x) J

l(j (x)+n,x) < mj (x). 

Let m = sup{m.}. We see, then, that 
j<k J 

Y ~ Cl (u{g~ (x): x E H, j (x) < k, 1 (j (x)+n,x) ~ m}). 

Combining this with the first paragraph, we have 

y t Cl(u{g~(x): x E H, l(j(x)+n,x) ~ m}). 

Thus y is in the interior of the closure of those g~(x) 's 
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which are elements of U V.. This c?ntradicts the fact that 
i<m 1 

unions of elements of U V. are regular open l and the 
. 1
l<m
 

proof that X is M is finished.

I 

Now suppose Ind X < n. We will show how to obtain 

Ind(aB) < n-l for each B E U B . Sinc~ a(A - Gk(H))o c n
nEw 

aGk(H), we will be done if we can get Ind(aGk(H)) < n-l 

for an arbitrary k E wand closed set H. 

By Lemma 4.4, we can add the following to the list of 

properties of the sequence Vo,VI ,···: 

(v) For each nEw and V E V , Ind(aV) < n-l. 
n 

Then since each gk(x) is the intersection of finitely many 

members of U V., we have Ind(agk(x)) < n-l~ 
iEW 1 

Suppose y E aGk(H). Then by the proof of Claim IV, 

we see that there exists mEw such that 

y t Cl (U {gk (x): x E Hand gk (x) ~ . U Vi})· 
l<m 

Thus there is a neighborhood of y meeting only finitely 

many elements of {gk(x): x E H}, and so we have loc 

Ind(aGk(H)) < n-l. Since X is hereditarily paracompact, 

Ind (dG (H» < n-l.
k 

6. Closed Images 

In this section we prove Theorem 3.2. We present the 

main part of the proof as a series of lemmas, some of 

which may be of independent interest. 

A map f: X ~ Y is irreducibZe if no proper closed
 

subset maps onto Y.
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Lemma 6.1. Suppose X is stratifiable, and f: X + Y 

is a closed continuous surjection. Then there exists a 

closed set X c X such that fl : X + f(X ) is irreducible,
o o oxo 

and Y - f(X ) is open and a-discrete. 
o 

Proof· By a theorem of Okuyama [0], Y = Yo U Y
l

, 

where each point of Yo has a compact pre-image, and Y is
l 

a-discrete. Let C= {XI C X: Xl is closed and f(X I ) ~ Yo}. 

Partially order Cby inclusion. It is easy to see from 

the fact that f-l(y) is compact for each y E Yo that every 

chain [ in C has a lower bound, namely n[. Thus C has a 

minimal element X . X is closed, and Y - f(X ) C Y
l

,
o o o 

hence is a-discrete. The minimality of X implies that o 

fix: X + f(X ) is irreducible. 
o o 

o 

The next lemma is essentially due to Borges and Lutzer 

[BL] • 

Lemma 6.2. If each closed subset of X has a a-closure­

preserving outer base, and f: X + Y is closed and irredu~i-

ble, then each closed subset of Y has a a-closure-preserving 

outer base. 

Proof. Suppose Key is closed. Let U = U Un be an 
nEw 

outer base for f-l(K) such that each 0 is closure-preserv­
n 

ing. For A C X, let f#(A) {y E Y: f-l(y) c A}. By [BL, 

Lemma 3.3], 0' = {f#(U): U EO} is closure-preserving.
n n 

Thus 0# = u 0# is a a-closure-preserving outer base for K. 
nEw 

n 

Lemma 6.3. A closed set K c X has a o-closure-preserv­

ing outer base if and only if for each closed HeX - K, 
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there exists a sequence {G (H,K)} such that 
n nEw 

(1) each Gn(H,K) is a regular open set containing H; 

(2) for each n E W3 {Gn(H,K): H closed3 H n K =~} is 

interior-preserving; and 

(3) for each closed HeX - K3 there exists nEw such 

that Gn(H,K) n K = ~. 

Proof. To see the "if" part, suppose we are given 

G (H,K)'s satisfying (1)-(3). Let U = {(X - G (H,K»o:
n n n 

G (H,K) n K = ~}. By (3), U = U lj is an outer base for 
n nEw n 

K. By (1), (2), and Lemma 5.1, each U is closure­n 

preserving. 

To see the "only if" part, suppose U = U Un is an 
nEw 

outer base for K, where each U is closure-preserving.n 

Define G (H,K) = X - U{U: U E U and IT n H = ~}. Clearlyn n 

G (H,K) is open and contains H. Since U is an outer base n 

for K, (3) holds. Since the set of complements of a 

closure-preserving collection is interior-preserving, (2) 

holds. It remains to prove that Gn(H,K) is regular open. 

Suppose x f Gn(H,K). Then there is U E Un with x E IT and 

IT n H =~. Then U n Gn(H,K) = ~, and every open set con-
o 

taining x meets U. Thus x f ~G--(H=-,K~) • 
n 

Lemma 6.4. Suppose Y = Yo where Y is mono­U Y13 

tonically normal, Yo is closed 3 and Y = Y - Yo. Let Kl 

be closed in Y. If U is an interior-preserving collection 

of relatively open subsets of Yo whose closures miss K3 

then one can assign to each U E U a set U* open in Y such 

that 
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(1) U* n Y u·o " 
(2) U* n Y u;o 

(3) U* n K = ~; and 

(4) if y E nu'" where U' c U" then y E [niu*: 

U E U/}]o. 

Proof. According to [B2 , Theorem 2.4], since Y is 

monotonically normal, for each x E Y and open neighborhood 

U of x, one can assign an open neighborhood U of x such 
x 

that 

( i) U c V => Ux c Vxi 

(ii) U x n V
y 

~ l' => x E U or y E V. 

Note that (ii) implies U c U. 
x 

For each U E U, let U* = U [(U U Y
l

) - K] • That (1) 
xEU x 

is satisfied is obvious. To see (2), suppose y E (U*' n Yo) 

- U. Let W be an open neighborhood of y such that W n U 

~~. Since W n U* ~ 1', there exists x E U such that 
y 

w n [(U U Y ) - K)x ~~. This contradicts property (ii)y l 

above. To see (4), suppose y E nU', where U c U. Then' 
[ ( ( nU ') U Y1) - K] y C [(U U Y1) - K] y c U* for each U E UI. 

It remains to prove (3). Suppose y E U* n K. Since 

IT n K = iJ, it follows from (2) that y E Then (Yl)y nYl • 

U* ~ 1', so there exists x E U such that (Yl)y n [U U Y )
l 

K]x ~ 1', again contradicting (ii) • 

Lemma 6.5. Let X be stratifiable and a-discrete" and 

suppose for each x E X we have assigned a neighborhood 

O(x) of x. Then one can assign to each x E X an open 

neighborhood U(x) of x such that 
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( 1) U (x) c a (x) ; 

(2) y E U(x) ~ U(y) c U(x); 

(3)	 if HeX is eZosed3 then U U(x) is open and 
xEH 

closed. 

Proof. The proof is similar to that of [G Theorem2 , 

1]. Let X = U F , where each F is closed discrete, and 
nEw n n 

F n F = ~ if m ~ n. For each x E X, let n(x) be the m n 

least integer such that x E Fn(x). Let D be a monotone 

normality operator for X. Inductively, define, for each 

x E X, a set U(x) containing x such that 

(i) {U(x): x E F } is a discrete collection of open and 
n

closed sets; and 

(ii)	 U(x) c a(x) n D({x}, u F.) n (n{u(y): x E U(y) 
i <n (x) 1 

and n (y) < n (x) } . 

Since X is a-dimensional and collectionwise-normal, 

the above construction can easily be carried out. These 

U(x) 's clearly satisfy (1). Also, if Y E U(x), then 

n(x) < n(y), so U(y) c U(x) by (ii). Thus (2) holds. 

Finally, to see (3), suppose H is closed and y f U U(x). 
xEH 

Then D(H,{y}) ~ D({x}, u F.) for all x E H with 
i<n(x) 1 

n (x) > n (y). Thus D (H, {y}) ~ U{U (x): x E H, n (x) > n (y) } , 

and so y ~ U{U(x): x E H, n(x) > n(y)}. But U{U(x): x E H, 

n(x) < n(y)} is open and closed. Thus y ~ U U(x). 
xEH 

Lemma 6.6. Suppose Y is stratifiable 3 Y = Yo U Yl~ 

where Yo is closed, Y is a-discrete, and Yo n Yl =~. Ifl 

every closed subset of Y has	 a a-closure-preserving outer 
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base in Yo' then every closed subset of Y has a o-closure­

preserving outer base. 

Proof. For a closed set Hey, let H = H n Yo and 
o 

HI = H n Y Let Key be closed. We will show that K hasl . 

a o-closure-preserving outer base. 

For closed Hey - K, let Gn(Ho,K ) be a relativelyo 

open subset of Yo having the properties of Lemma 6.3. 

If Gn(Ho,K ) n K = ~; let Gn(Ho,K )* be as in Lemma 6.4. o o 

Otherwise, let Gn(Ho,K )* Y. o 

Let {gn(Y): Y E Y, nEw} have the properties of 

Theorem 2.1. Let Y n Un' where each Un is open and o nEw 

contains U +l . For each x E Yl - K, let O(x) = [(Un(x) ­n 

U (x)+2) n gn(x) (x)] - K, where n(x) is the largest integern 

such that x E Un(x). Let U(x) be as in Lemma 6.5 applied to 

Y .• 
1 

Now for H closed, Hey - K, and nEw, define 

V (H,K) = G (Ho,K ) * U (U {U (x) : n n o 

x E [G (H , K ) * U H] n Y }).
n 0 0 l 

We will show that properties (1)-(3) of Lemma 6.3 hold for 

the Vn(H,K) IS. 

First we will show that Vn(H,K) n Yo = Gn(Ho,K ). o 

Suppose not. Then there exists Y E Vn(H,K) - Gn(Ho,K ).o 

Observe by Lemma 6.5 that Vn(H,K) n Y is open and closedl 

in Yl . Thus Y E Yo. By Lemma 6.4, y $ Gn(Ho,K )*. Also o 

y $ H, so there exists nEw such that y ~ Cl(U{gn (x): 
o 0 

x E Gn(Ho,K )* U H}). Thus y ~ C1(U{U(x): x E (Gn(Ho,K )*o o 

U H) n Y n U }). But C1(U{U(x): x E (Gn(Ho,K )* U H) n
l ono 

Yl n (Y - U )}) c Y - U +1. Thus Y ~ V (H,K), contradiction. 
no no n 
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Clearly Vn(H,K) is open and contains H. Suppose 

y E Vn(H,K) - Vn(H,K). Since Vn(H,K) n Yl is closed in Yl , 

we have y E Yo n V (H,K) = G (Ho,K )· Since G (Ho.,K ) is n n o n o 

regular open in Yo' each neighborhood of Y contains a point 

Z E Yo - Gn(Ho,K )· Then z t Vn(H,K). Thus Vn(H,K) is o 

regular open, and so property (1) of Lemma 6.3 holds. 

To see (2) , suppose II' is a collection of closed sets 

missing K, and y E n V (H, K) . We may assume Vn(H,K) ~ Y. 
HE II' n 

Then y t K. If Y E Y then U(y) C Vn(H;K) for each H E II'l
, · 

If Y E Yo' then yEn G (H ,K ), so by Lemma 6.4,
HEll' n 0 0 

y E (n G (H ,K )*)0 c n V (H,K). Thus (2) holds. 
HEll' n 0 0 HEll' n 

Finally, to see (3), let Hex - K be closed. There 

~. If Y E Vn(H,K) n K, 

then since Vn(H,K) n Yo Gn(Ho,K )' we have y E Yl • But o 

Vn(H,K) n Y is closed in Y and misses K. Thus Vn(H,K) nI I 

K = ~. 

Proof of Theorem 3.2. Let us call the property of 

Theorem 3.2 property (*). Suppose X is a stratifiable 

space satisfying (*), and let f: X ~ Y be a closed map of 

X onto Y. Then Y is stratifiable. We need to show that 

Y satisfies (*). 

Let Key be closed. Since fl 
f-l(K) 

is closed, by 

Lemma 6.1, there exists a closed set K o C K such that K o 

is the closed irreducible image of a closed subset of f-l(K), 

and K - K is a-discrete. By Lemma 6.2, and the fact that o 

every closed subset of X satisfies (*), we see that every 
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closed	 subset of K has a a-closure-preserving outer base o
 

in K . Then by Lemma 6.6, every closed subset of K has a
 o
 

a-closure-preserving outer base in K. Thus Y satisfies
 

(*) • 
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