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FUNCTION SPACES WHICH ARE k-SPACES 

R.A.McCoy 

The space of continuous real-valued functions on X 

with the compact-open topology, denoted by CK(X), is first 

countable (in fact metrizable) if and only if X is hemi­

compact [1]. We study in this paper certain properties of 

C (X) which are more general than first countability. In 
K 

particular, Theorems 1 and 2 characterize when C (X) is a 
K 

k-space and when it has countable tightness. The proofs 

of these theorems are similar to the proofs of analogous 

theorems in [2], where the function spaces have the topology 

of pointwise convergence, except that modifications must be 

made to deal with compact sets (such as using Ascoli's 

theorem) instead of finite sets; and for this reason we 

do not include the proofs. Throughout this paper all 

spaces will be completely regular Tl-spaces. 

A collection lj of open subsets of a space X will be 

called an open cover for compact subsets of X provided 

every compact subset of X is contained in some member of U. 

Furthermore, if {U } is a sequence of such covers, then a n 

residual compact-covering string from {Un} will be a 

sequence {Un} such that each Un E Un and for every compact 

subset A of X, there exists an integer N so that A ~ U 
n 

for each n > N. 

1. Theorem. The following are equivalent.
 

(aJ C (X) is a k-space.

K 
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(bJ CK(X) is a Frechet space. 

(c) Every sequence of open covers for compact subsets 

of X has a residual compact-covering string. 

2. Theorem. CK(X) has countable tightness if and 

only if every open cover for compact subsets of X has a 

countable subcover for compact subsets of x. 

Let us call space X k-compact whenever CK(X) is a 

k-space, and call X T-compact whenever CK(X) has countable 

tightness. We immediately obtain the following facts. 

3. Proposition. Every hemicompact space is k-compact. 

4. Proposition. Every k-compact space is T-compact. 

5. Proposition. Every T-compact space is Lindelof. 

6. Proposition. Every second countable space is 

T-compact. 

Proof. Let B be a countable base for X which is 

closed under finite unions, and let U be an open cover for 

compact subsets of X. Define 

B* {B E BIB ~ U for some U E U}, 

and for each B E B*, let U(B) E U such that B c U(B). Then 

define U* = {U(B) IB E B~, which is a countable subcollec­

tion of U. To see that U* is a cover for compact subsets 

of X, let A be a compact subset of X. Since U is a cover 

for compact subsets of X, there exists a U E U such that 

A C U. Now for each a E A, there is a B(a) E B such that 
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a E B(a) =U. Since A is compact, there exist E Aa l ' • • • , an 

such that A =B(a ) U ... U B(a ) · Define B B(a ) U ... l n l 

U B (an)' which is in B. Since B c U, then B E LB* • Also 

A =U(B), so that U* is indeed a cover for compact subsets 

of X. 

7. Proposition. Every first countable k-compact 

space is locally compact. 

Proof. Suppose that X is not locally compact at x, 

and let {Un} be a countable base at x. For every positive 

integer n and compact subset A of X, let U(n,A) be an open 

subset of X such that {x} U A =U(n,A) and un\U(n,A) 1 ~. 

Then for every n, let 

U {U(n,A) IA is a compact subset of X},n 

which is an open cover for compact subsets of X. 

Let {U(n,A )} be any string from {Un}. For every n,n 

let an E Un\U(n,A ). Then {an} converges to x. Let n 

A = {x} U {an}' which is a compact subset of X. Then for 

every n, A ~ U(n,A ), so that {U(n,A )} cannot be a residual n n 

compact-covering string, and thus X is not k-compact. 

Since every locally compact Lindelof space is hemi­

compact, we then have the following. 

8. Corollary. Every first countable k-compact 

space is hemicompact. 

Also if X is a hemicompact k-space, then CK(X) is 

completely metrizable [3]. 
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9. Corollary. If X is first countable, then the 

following are equivalent. 

(a) C K(X) is a k-space. 

(b) C K(X) is completely metrizable. 

(c) X is hemicompact. 

10. Corollary. If X is locally compact, then the 

following are equivalent. 

(a) C K(X) is a k-space. 

(b) C K(X) is completely metrizable. 

(c) C K(X) has countable tightness. 

(d) X is hemicompact. 

A natural question is whether X being "first countable" 

in Corollary 9 can be replaced by X being a "k-space." 

This will be true if the following question has an affirma­

tive answer. 

11. Question. Is every k-compact k-space, hemicom­

pact? 

Let us look finally at some examples which illustrate 

that the converses of the above propositions are not true. 

The first example follows from Propositions 6 and 7. 

12.	 Example. The space of rational numbers is a 

T-compact	 space which is not k-compact. 

Also from Example 17 in [2] we obtain the following. 

13. Example. Let F be the "Fortissimo space," which 

is an uncountable space with only one non-isolated point 
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whose neighborhoods have countable complements. Then F is 

k-compact but not hemicompact. 

14. Example. The Sorgenfrey line, s, is not 

T -compact. 

Proof. For each compact subset A of S, define an 

open subset V(A) of S as follows. First let A* = A U {O}, 

and let a l = min A*. If a l = 0, define V(A) [0,(0) ; 

and we are through. Otherwise, if a l ~ 0, let x = max(A* 

1n [O,-al », let b l = 2(x - max(A* n [al,-x»), and let 

= min(A* n [-x,O]). Suppose we have gone through thea 2 

nth stage of this argument and found {a1,···,a + } and n 1

{bl,···,b }. Then if a +l = 0, definen n 

U(A) = [al,-bl ) U ••• U [an,-b ) U [O,b ) U n n 

[-an,b - l ) U ••• U [-a ,bl ) U [-al,oo);n 2 

and we are through. Otherwise continue by finding b +ln 

and a +2 as above. This process must terminate after a n 

finite number of stages, since otherwise {a } would be a 
n 

strictly increasing sequence from A, contradicting the 

compactness of A. Therefore U(A) is well-defined. 

Define U = {U(A) IA is a compact subset of S}. By 

construction, A ~ U{A) for each A, so that lj is an open 

cover for compact subsets of S. But each member of U con­

tains only finitely many doubleton subsets of S of the 

form {x,-x}. Therefore lj has no countable subcover for 

compact subsets of S. 

We end by comparing C (X) with C (X), where C (X) has 
K IT IT 

the topology of pointwise convergence. WheneverCK(X) is 



144 McCoy 

first countable, then X is hemicompact and thus a-compact. 

Then Proposition 6 of [2] tells us that when X is a-compact, 

C (X) has countable tightness. One might wonder whether 
Tf 

CK(X) has countable tightness whenever X is a-compact, or 

in fact whether CK(X) has countable tightness whenever 

CTI(X) is first countable (equivalently, X is countable). 

Our final example shows that neither is true. 

15. Example. There exists a countable space Z which 

is not T-compact. 

Proof. Let N be the set of natural numbers, let Q be 

the space of rational numbers with the usual topology, and 

let 

Choose {Q la E A} to be a pairwise disjoint family of dense a 

subspaces of Q such that U{Q la E A} = Q\{O}. For each a 

a E A, let ~a: Q ~ N be a bijection. Define~: Q ~ A as a 

follows: 

<p(0) 0; 

<P(q) <<Po(q» if q E QO; and 

<p (q) (i ,···,i,<1> (q» if q E Q forl n a a 

a = (il,···,i >. n 

Let 5 = {{qO,ql'···} ~ Q1qo = 0, qn+l E Q<1>(q ) for n > 0, 
n 

and {qO,ql'···} converges to 0 in Q}. 

Now define Z = Q with the following topology. A sub­

set U ~ Z is open if and only if whenever 0 E U then 

every element of 5 is eventually in U. Clearly every usual 

open subset of Q is open in Z. Also each point of Z 
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different than 0 is isolated, so that Z is a O-dimensional 

Hausdorff space. 

Let K be the set of all nonempty compact subsets of Z. 

Note that 5 ~ K, and that if K E K, then K n Q is finite 
u 

for each u E A. To see that the latter is true, suppose 

K n Q were infinite for some Ui then {Z\Qu} u {{q}\q E 
u 

K n Q } would be an open cover of K having no finite sub-
u 

cover. 

For every K E K, define S(K) = {o E 510 E K}. Also 

for every 0 E 5(K), let q(o) be the first element of 0 

which is not in K. Finally for every K E K, define U(K) 

as follows. If 0 f K, then take U(K) K, which is a 

finite open subset of Z. If 0 E K, define 

U(K) = Z\{q(o)ld E 5(K)}, 

which certainly contains K. 

To see that U(K) is open in Z, let a E S. We wish to 

show that 0 is eventually in U(K). We may suppose that 

0 E 5(K) , say 0 = {qO,ql'---}· Then there exists a k > 1 

such that q(a) = qk· Now let n > k, and take any 

-0 = {qO,ql'---} E 5 (K) · If q(o) were to equal qn' then 

qn = qn' which implies qn-l = qn-l,···,qk = qk- But this 

contradicts q(o) = qn since qk ~ K. Therefore qn i {q(o) I 

a E 5(K)}, so that qn E U(K). Hence a is eventually in 

U(K), so that U(K) is open in Z. 

Now define U = {U(K) IK E K}, which is an open cover 

for compact subsets of Z. To see that no countable sub­

family of U is a cover for compact subsets of Z, let 
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{K 1m E N} =K. Define K E K as follows. First let 
m 

jo = 0 and qo = O. Suppose integers jo < jl < ••• < jn-l 

and elements qO,ql,···,qn-l from Z have been defined so 

that for each 0 < i < n, 

q E Q \ (U (K ) U ••• u U (K . 1) ) • 
i o(qi-l) ji-l Ji-

If for every m, {qo,···,qn-l} ~ U(K ), then define m

K = {qo,···,qn-l}. Otherwise we continue and choose in 

to be the first m such that {qo,···,qn-l} =U(K ). Now m

U(Ki ) n Q~( ) = K. n Q~(q )' which is finite.
 
n ~ qn-l l n ~ n-l
 

Since Q is dense in Q, there exists a qn E Q~(q )\
q,(qn-l) ~ n-l
 

U(K. ) such that Iq I < 1
 
1	 n n 

n 

Then by induction, we have either defined K as a 

finite subset of Z, or we have defined the sequence 

{qO,ql'···} E S. In the latter case, define K = {qO,ql'···}' 

so that in either case K E K. Also by construction, 

K ~	 U(K ) for any m, so that lj has no countable subcover m


for compact subsets of Z.
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