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FUNCTION SPACES WHICH ARE k-SPACES

R. A. McCoy

The space of continuous real-valued functions on X
with the compact-open topology, denoted by CK(X), is first
countable (in fact metrizable) if and only if X is hemi-
compact [l]. We study in this paper certain properties of
CK(X) which are more general than first countability. In
particular, Theorems 1 and 2 characterize when CK(X) is a
k-space and when it has countable tightness. The proofs
of these theorems are similar to the proofs of analogous
theorems in [2], where the function spaces have the topology
of pointwise convergence, except that modifications must be
made to deal with compact sets (such as using Ascoli's
theorem) instead of finite sets; and for this reason we
do not include the proofs. Throughout this paper all
spaces will be completely regular T,-spaces.

A collection (/ of open subsets of a space X will be
called an open cover for compact subsets of X provided
every compact subset of X is contained in some member of (/.
Furthermore, if {Oh} is a sequence of such covers, then a
residual compact-covering string from {Uh} will be a
sequence {Un} such that each Ur1 € Oh and for every compact
subset A of X, there exists an integer N so that A < Un

for each n > N.

1. Theorem. The following are equivalent.

(a) CK(X) is a k-space.
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(b) CK(X) 18 a Fréchet space.
(e) Every sequerce of open covers for compact subsets

of X has a residual compact-covering string.

2. Theorem. CK(X) has countable tightness if and
only if every open cover for compact subsets of X has a

countabie subcover for compact subsets of X.

Let us call space X k-compact whenever C (X) is a
k-space, and call X t-compact whenever CK(X) has countable

tightness. We immediately obtain the following facts.
3. Proposition. Every hemicompact space is k-compact.
4., Prcposition. Every k-compact space is t-compact.
5. Proposition. Every T-compact space is Lindelof.

6. Proposition. Every second countable space is
T-conmpact.

Proof. Let 8 be a countable base for X which is
closed under finite unions, and let [/ be an open cover for
compact subsets of X. Define

B* = {B € B|B = U for some U ¢ ([},
and for each B ¢ A% 1let U(B) ¢ { such that B < U(B). Then
define {* = {U(B)|B ¢ 8%}, which is a countable subcollec-
tion of . To see that {/* is a cover for compact subsets
of X, let A be a compact subset of X. Since { is a cover
for compact subsets of X, there exists a U ¢ { such that

A © U, Now for each a ¢ A, there is a B(a) € B such that
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a € B(a) € U. Since A is compact, there exist a **sa €A

1’
such that A < B(al) U see U B(an). Define B = B(al) U eoe
U B(an), which is in 8. Since B < U, then B € 3*. Also

A © U(B), so that {/* is indeed a cover for compact subsets

of X.

7. Proposition. Every first countable k-compact
space 18 locally compact.

Proof. Suppose that X is not locally compact at x,
and let {Un} be a countable base at x. For every positive
integer n and compact subset A of X, let U(n,&) be an open
subset of X such that {x} U A < U(n,A) and Un\U(n,A) # 4.
Then for every n, let
Un = {U(n,A) |A is a compact subset of X},
which is an open cover for compact subsets of X.

Let {U(n,An)} be any string from {Un}. For every n,
let a, € Un\U(n,An). Then {an} converges to x. Let
A= {x} U {an}, which is a compact subset of X. Then for
every n, A & U(n,An), so that {U(n,An)} cannot be a residual

compact-covering string, and thus X is not k-compact.

Since every locally compact Lindel&f space is hemi-

compact, we then have the following.

8. Corollary. Every first countable K-compact

space i1s hemicompact.

Also if X is a hemicompact k-space, then CK(X) is

completely metrizable [3].
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9. Corollary. If X is first countable, then the
following are equivalent.

(a) C _(X) is a k-space.

(b) CK(X) is completely metrizable.

(e) X 1s hemicompact.

10. Corollary. If X is locally compact, then the
following are equivalent.

(a) CK(X) is a k-space.

(b) CK(X) 18 completely metrizable.

(e) CK(X) has countable tightness.

(d) X is hemicompact.

A natural question is whether X being "first countable"
in Corollary 9 can be replaced by X being a "k-space."
This will be true if the following question has an affirma-

tive answer.

11. Question. 1Is every k-compact k-space, hemicom-
pact?

Let us look finally at some examples which illustrate
that the converses of the above propositions are not true.

The first example follows from Propositions 6 and 7.

12. Ezxzample. The space of rational numbers is a
T-compact space which is not k-compact.

Also from Example 17 in [2] we obtain the following.

13. Example. Let F be the "Fortissimo space," which

is an uncountable space with only one non-isolated point
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whose neighborhoods have countable complements. Then F is

k-compact but not hemicompact.

14, Example. The Sorgenfrey line, S, is not
T-compact.

Proof. For each compact subset A of S5, define an
open subset U(A) of S as follows. First let A* = A y {0},
and let a; = min A*, If a; = 0, define U(A) = [0,»);
and we are through. Otherwise, if a; # 0, let x = max(A¥
n [0,-a1)), let bl = %(x - max (A* N [al,-x))), and let
a, = min(A* n [-x,0]). Suppose we have gone through the
nth stage of this argument and found {al,---,an+l} and

{bl,---,bn}. Then if a = 0, define
u(a) = laj,=by) v +++ v la ,-b ) v [0,b) b
[-anlbn_l) U s Uy [_azlbl) U [_allw);

+1

as above. This process must terminate after a

and we are through. Otherwise continue by finding bn
and a o
finite number of stages, since otherwise {an} would be a
strictly increasing sequence from A, contradicting the
compactness of A. Therefore U(A) is well-defined.

Define (/ = {U(A)|A is a compact subset of S}. By
construction, A < U(A) for each A, so that ¢ is an open
cover for compact subsets of S. But each member of (/ con-
tains only finitely many doubleton subsets of S of the

form {x,-x}. Therefore { has no countable subcover for

compact subsets of S.

We end by comparing CK(X) with Cn(x)' where cn(x) has

the topology of pointwise convergence. wheneverCK(X) is
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first countable, then X is hemicompact and thus o-compact.
Then Proposition 6 of [2] tells us that when X is o-compact,
CW(X) has countable tightness. One might wonder whether
C.(X) has countable tightness whenever X is o-compact, or
in fact whether C_(X) has countable tightness whenever

cﬂ(x) is first countable (equivalently, X is countable).

Our final example shows that neither is true.

15. Example. There exists a countable space Z which
is not t-compact.

Proof. Let N be the set of natural numbers, let Q be
the space of rational numbers with the usual topology, and
let

A= {0}y W{N"|n e N}).
Choose {Qa|a € A} to be a pairwise disjoint family of dense
subspaces of Q such that U{Qa|a € A} = Q\{0}. For each
o € A, let ¢a: Qa + N be a bijection. Define ¢: Q - A as
follows:

$(0) = 0;

¢(Q) =<d (@) if g € Qy; and

$(q)

(il,---,in,¢a(q)) if g € Q, for
a = (il,---,in).
Let S = {{qO,ql,"-} c Q|q0 =0, q . € Q¢(qn) for n > 0,
and {qo,ql,-~-} converges to 0 in Q}.
Now define Z = Q with the following topology. A sub-
set U € Z is open if and only if whenever 0 ¢ U then
every element of § is eventually in U. Clearly every usual

open subset of Q is open in Z. Also each point of 2
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different than 0 is isolated, so that 2 is a 0-dimensional
Hausdorff space.

Let £ be the set of all nonempty compact subsets of 2.
Note that § € £, and that if K ¢ £, then K n Q, is finite
for each o ¢ A. To see that the latter is true, suppose
K N Qa were infinite for some a; then {Z\Qa} u {{g}|q ¢
KN Qu} would be an open cover of K having no finite sub-
cover.

For every K ¢ K, define S(K) = {0 ¢ S]o £ K}. Also
for every o ¢ S(K), let g(o) be the first element of ¢
which is not in K. Finally for every K ¢ £, define U(K)
as follows. If 0 ¢ K, then take U(K) = K, which is a
finite open subset of Z. If 0 ¢ K, define

U(K) = 2\{g(o)|o ¢ S(K)},
which certainly contains K.

To see that U(K) is open in Z, let o ¢ 5. We wish to
show that ¢ is eventually in U(K). We may suppose that
0 ¢ S(K), say o = {qo,ql,---}. Then there exists a k > 1
such that g(og) = 9y Now let n > k, and take any
o = {EO,EI,---} € S(K). 1If gq(o) were to egual q,r then
q, = d,, which implies q_ _; = q,_1,**,q, = q, - But this
contradicts q(o) = 9, since 9 Z K. Therefore a, ¢ {qlo)]
o € S(K)}, so that q, € U(K). Hence o is eventually in
U(K), so that U(K) is open in &Z.

Now define [/ = {U(K)|K € K}, which is an open cover
for compact subsets of Z. To see that no countable sub-

family of {/ is a cover for compact subsets of Z, let



146 McCoy

{Km|m € N} € . Define K ¢ K as follows. First let

= 0 and 4y = 0. Suppose integers j0 < jl < ese <

Jo n-1

and elements qo,ql,-~-,qn_l from Z have been defined so

that for each 0 < i < n,

q )\(U(Kj'

i-1
If for every m, {qo,.--,qn_l} & U(Km), then define

L€ %, USSR TSR

K = {qo,---,qn_l}. Otherwise we continue and choose i
to be the first m such that {qo,---,qn_l} c U(Km). Now

U(Ki)ﬂQ = K,

nQ , which is finite.
n ¢(qn-l) 1n ¢(qn-l)

Since Q ) is dense in Q, there exists a q, € Q \

¢(qn—l ¢(qn-l)

1
U(Kin) such that |qn| < =

Then by induction, we have either defined K as a
finite subset of Z, or we have defined the sequence
{agrayreeet € S. In the latter case, define K = (CNT I
so that in either case K ¢ . Also by construction,
K & U(Km) for any m, so that {/ has no countable subcover

for compact subsets of 2.
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