TOPOLOGY PROCEEDINGS Volume 5, 1980

Pages 139–146

http://topology.auburn.edu/tp/

FUNCTION SPACES WHICH ARE $$k$\mbox{-}{\rm SPACES}$

by

R. A. McCoy

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

FUNCTION SPACES WHICH ARE k-SPACES

R. A. McCoy

The space of continuous real-valued functions on X with the compact-open topology, denoted by $C_{\kappa}(X)$, is first countable (in fact metrizable) if and only if X is hemicompact [1]. We study in this paper certain properties of $C_{\kappa}(X)$ which are more general than first countability. In particular, Theorems 1 and 2 characterize when $C_{\kappa}(X)$ is a k-space and when it has countable tightness. The proofs of these theorems are similar to the proofs of analogous theorems in [2], where the function spaces have the topology of pointwise convergence, except that modifications must be made to deal with compact sets (such as using Ascoli's theorem) instead of finite sets; and for this reason we do not include the proofs. Throughout this paper all spaces will be completely regular T_1 -spaces.

A collection $\langle l$ of open subsets of a space X will be called an open cover for compact subsets of X provided every compact subset of X is contained in some member of $\langle l$. Furthermore, if $\{ \langle l_n \rangle\}$ is a sequence of such covers, then a residual compact-covering string from $\{ \langle l_n \rangle\}$ will be a sequence $\{ U_n \}$ such that each $U_n \in \langle l_n \rangle$ and for every compact subset A of X, there exists an integer N so that $A \subseteq U_n$ for each n > N.

Theorem. The following are equivalent.
 (a) C_x(X) is a k-space.

139

(b) $C_{\kappa}(X)$ is a Fréchet space.

(c) Every sequence of open covers for compact subsets of X has a residual compact-covering string.

2. Theorem. $C_{\kappa}(X)$ has countable tightness if and only if every open cover for compact subsets of X has a countable subcover for compact subsets of X.

Let us call space X k-compact whenever $C_{\kappa}(X)$ is a k-space, and call X τ -compact whenever $C_{\kappa}(X)$ has countable tightness. We immediately obtain the following facts.

3. Proposition. Every hemicompact space is k-compact.

- 4. Proposition. Every k-compact space is τ -compact.
- 5. Proposition. Every t-compact space is Lindelöf.

6. Proposition. Every second countable space is τ -compact.

Proof. Let β be a countable base for X which is closed under finite unions, and let l' be an open cover for compact subsets of X. Define

 $\beta^* = \{ B \in \beta | B \subseteq U \text{ for some } U \in \ell \},\$

and for each $B \in \beta^*$, let $U(B) \in U$ such that $B \subseteq U(B)$. Then define $U^* = \{U(B) \mid B \in \beta^*\}$, which is a countable subcollection of U. To see that U^* is a cover for compact subsets of X, let A be a compact subset of X. Since U is a cover for compact subsets of X, there exists a $U \in U$ such that $A \subseteq U$. Now for each $a \in A$, there is a $B(a) \in \beta$ such that $a \in B(a) \subseteq U$. Since A is compact, there exist $a_1, \dots, a_n \in A$ such that $A \subseteq B(a_1) \cup \dots \cup B(a_n)$. Define $B = B(a_1) \cup \dots \cup B(a_n)$, which is in β . Since $B \subseteq U$, then $B \in \beta^*$. Also $A \subseteq U(B)$, so that $l^{\prime*}$ is indeed a cover for compact subsets of X.

7. Proposition. Every first countable k-compact space is locally compact.

Proof. Suppose that X is not locally compact at x, and let $\{U_n\}$ be a countable base at x. For every positive integer n and compact subset A of X, let U(n,A) be an open subset of X such that $\{x\} \cup A \subseteq U(n,A)$ and $U_n \setminus U(n,A) \neq \emptyset$. Then for every n, let

 $U_n = \{U(n,A) \mid A \text{ is a compact subset of } X\},$ which is an open cover for compact subsets of X.

Let $\{U(n,A_n)\}$ be any string from $\{U_n\}$. For every n, let $a_n \in U_n \setminus U(n,A_n)$. Then $\{a_n\}$ converges to x. Let $A = \{x\} \cup \{a_n\}$, which is a compact subset of X. Then for every n, $A \notin U(n,A_n)$, so that $\{U(n,A_n)\}$ cannot be a residual compact-covering string, and thus X is not k-compact.

Since every locally compact Lindelöf space is hemicompact, we then have the following.

8. Corollary. Every first countable k-compact space is hemicompact.

Also if X is a hemicompact k-space, then $C_{\kappa}(X)$ is completely metrizable [3].

9. Corollary. If X is first countable, then the following are equivalent.

(a) C_K(X) is a k-space.
(b) C_K(X) is completely metrizable.
(c) X is hemicompact.

10. Corollary. If X is locally compact, then the following are equivalent.

(a) C_κ(X) is a k-space.
(b) C_κ(X) is completely metrizable.
(c) C_κ(X) has countable tightness.
(d) X is hemicompact.

A natural question is whether X being "first countable" in Corollary 9 can be replaced by X being a "k-space." This will be true if the following question has an affirmative answer.

ll. Question. Is every k-compact k-space, hemicompact?

Let us look finally at some examples which illustrate that the converses of the above propositions are not true. The first example follows from Propositions 6 and 7.

12. Example. The space of rational numbers is a τ -compact space which is not k-compact.

Also from Example 17 in [2] we obtain the following.

13. Example. Let F be the "Fortissimo space," which is an uncountable space with only one non-isolated point whose neighborhoods have countable complements. Then F is k-compact but not hemicompact.

14. Example. The Sorgenfrey line, S, is not τ -compact.

Proof. For each compact subset A of S, define an open subset U(A) of S as follows. First let $A^* = A \cup \{0\}$, and let $a_1 = \min A^*$. If $a_1 = 0$, define U(A) = $[0,\infty)$; and we are through. Otherwise, if $a_1 \neq 0$, let $x = \max(A^* \cap [0, -a_1))$, let $b_1 = \frac{1}{2}(x - \max(A^* \cap [a_1, -x)))$, and let $a_2 = \min(A^* \cap [-x, 0])$. Suppose we have gone through the nth stage of this argument and found $\{a_1, \dots, a_{n+1}\}$ and $\{b_1, \dots, b_n\}$. Then if $a_{n+1} = 0$, define

$$U(A) = [a_{1}, -b_{1}) \cup \cdots \cup [a_{n}, -b_{n}) \cup [0, b_{n}] \cup [-a_{n}, b_{n-1}) \cup \cdots \cup [-a_{2}, b_{1}) \cup [-a_{1}, \infty);$$

and we are through. Otherwise continue by finding b_{n+1} and a_{n+2} as above. This process must terminate after a finite number of stages, since otherwise $\{a_n\}$ would be a strictly increasing sequence from A, contradicting the compactness of A. Therefore U(A) is well-defined.

Define $l' = \{U(A) | A \text{ is a compact subset of } S\}$. By construction, $A \subseteq U(A)$ for each A, so that l' is an open cover for compact subsets of S. But each member of l' contains only finitely many doubleton subsets of S of the form $\{x, -x\}$. Therefore l' has no countable subcover for compact subsets of S.

We end by comparing $C_{\kappa}(X)$ with $C_{\pi}(X)$, where $C_{\pi}(X)$ has the topology of pointwise convergence. Whenever $C_{\kappa}(X)$ is first countable, then X is hemicompact and thus σ -compact. Then Proposition 6 of [2] tells us that when X is σ -compact, $C_{\pi}(X)$ has countable tightness. One might wonder whether $C_{\kappa}(X)$ has countable tightness whenever X is σ -compact, or in fact whether $C_{\kappa}(X)$ has countable tightness whenever $C_{\pi}(X)$ is first countable (equivalently, X is countable). Our final example shows that neither is true.

15. Example. There exists a countable space Z which is not $\tau\text{-compact.}$

Proof. Let N be the set of natural numbers, let Q be the space of rational numbers with the usual topology, and let

$$A = \{0\} \cup (\cup \{N^{11} | n \in N\}).$$

Choose $\{Q_{\alpha} \mid \alpha \in A\}$ to be a pairwise disjoint family of dense subspaces of Q such that $\bigcup \{Q_{\alpha} \mid \alpha \in A\} = Q \setminus \{0\}$. For each $\alpha \in A$, let $\phi_{\alpha} \colon Q_{\alpha} \neq N$ be a bijection. Define $\phi \colon Q \neq A$ as follows:

$$\begin{split} \phi(0) &= 0; \\ \phi(q) &= \langle \phi_0(q) \rangle \text{ if } q \in Q_0; \text{ and} \\ \phi(q) &= \langle i_1, \cdots, i_n, \phi_\alpha(q) \rangle \text{ if } q \in Q_\alpha \text{ for} \\ \alpha &= \langle i_1, \cdots, i_n \rangle. \end{split}$$

Let $\mathcal{J} = \{\{q_0, q_1, \cdots\} \in Q | q_0 = 0, q_{n+1} \in Q_{\phi}(q_n) \text{ for } n \geq 0, \}$ and $\{q_0, q_1, \cdots\}$ converges to 0 in Q}.

Now define Z = Q with the following topology. A subset $U \subseteq Z$ is open if and only if whenever $0 \in U$ then every element of S is eventually in U. Clearly every usual open subset of Q is open in Z. Also each point of Z different than 0 is isolated, so that Z is a 0-dimensional Hausdorff space.

Let k' be the set of all nonempty compact subsets of Z. Note that $S \subseteq k'$, and that if $K \in k'$, then $K \cap Q_{\alpha}$ is finite for each $\alpha \in A$. To see that the latter is true, suppose $K \cap Q_{\alpha}$ were infinite for some α ; then $\{Z \setminus Q_{\alpha}\} \cup \{\{q\} \mid q \in$ $K \cap Q_{\alpha}\}$ would be an open cover of K having no finite subcover.

For every $K \in k'$, define $\mathcal{J}(K) = \{\sigma \in \mathcal{J} | \sigma \notin K\}$. Also for every $\sigma \in \mathcal{J}(K)$, let $q(\sigma)$ be the first element of σ which is not in K. Finally for every $K \in k'$, define U(K) as follows. If $0 \notin K$, then take U(K) = K, which is a finite open subset of Z. If $0 \in K$, define

 $U(K) = Z \setminus \{q(\sigma) \mid \sigma \in \mathcal{S}(K)\},\$

which certainly contains K.

To see that U(K) is open in Z, let $\sigma \in S$. We wish to show that σ is eventually in U(K). We may suppose that $\sigma \in S(K)$, say $\sigma = \{q_0, q_1, \dots\}$. Then there exists a $k \ge 1$ such that $q(\sigma) = q_k$. Now let n > k, and take any $\overline{\sigma} = \{\overline{q}_0, \overline{q}_1, \dots\} \in S(K)$. If $q(\overline{\sigma})$ were to equal q_n , then $\overline{q}_n = q_n$, which implies $\overline{q}_{n-1} = q_{n-1}, \dots, \overline{q}_k = q_k$. But this contradicts $q(\overline{\sigma}) = q_n$ since $q_k \notin K$. Therefore $q_n \notin \{q(\overline{\sigma}) \mid \overline{\sigma} \in S(K)\}$, so that $q_n \in U(K)$. Hence σ is eventually in U(K), so that U(K) is open in Z.

Now define $\mathcal{U} = \{U(K) \mid K \in \mathcal{K}\}$, which is an open cover for compact subsets of Z. To see that no countable subfamily of \mathcal{U} is a cover for compact subsets of Z, let

145

 $\{K_m \mid m \in N\} \subseteq k$. Define $K \in k$ as follows. First let $j_0 = 0$ and $q_0 = 0$. Suppose integers $j_0 < j_1 < \cdots < j_{n-1}$ and elements $q_0, q_1, \cdots, q_{n-1}$ from Z have been defined so that for each 0 < i < n,

$$\begin{split} q_{i} \in Q_{\sigma}(q_{i-1})^{\setminus (U(K_{j_{i-1}}) \cup \cdots \cup U(K_{j_{i}-1}))}. \\ \text{If for every m, } \{q_{0}, \cdots, q_{n-1}\} \notin U(K_{m}), \text{ then define} \\ \text{K} = \{q_{0}, \cdots, q_{n-1}\}. \quad \text{Otherwise we continue and choose } i_{n} \\ \text{to be the first m such that } \{q_{0}, \cdots, q_{n-1}\} \subseteq U(K_{m}). \quad \text{Now} \\ U(K_{i_{n}}) \cap Q_{\phi}(q_{n-1}) = K_{i_{n}} \cap Q_{\phi}(q_{n-1}), \text{ which is finite.} \\ \text{Since } Q_{\phi}(q_{n-1}) \text{ is dense in } Q, \text{ there exists a } q_{n} \in Q_{\phi}(q_{n-1})^{\setminus} \\ U(K_{i_{n}}) \text{ such that } |q_{n}| < \frac{1}{n}. \end{split}$$

Then by induction, we have either defined K as a finite subset of Z, or we have defined the sequence $\{q_0,q_1,\dots\} \in S$. In the latter case, define $K = \{q_0,q_1,\dots\}$, so that in either case $K \in K$. Also by construction, $K \not\subseteq U(K_m)$ for any m, so that l' has no countable subcover for compact subsets of Z.

References

- R. F. Arens, A topology for spaces of transformations, Annals of Math. 47 (1946), 480-495.
- R. A. McCoy, k-space function spaces, International J. of Math. and Math. Sciences 3 (1980), 701-711.
- S. Warner, The topology of compact convergence on continuous function spaces, Duke Math. J. 25 (1958), 265-282.

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061