TOPOLOGY PROCEEDINGS

Volume 5, 1980
Pages 139-146
http://topology.auburn.edu/tp/

FUNCTION SPACES WHICH ARE k-SPACES

by
R. A. McCoy

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

FUNCTION SPACES WHICH ARE k-SPACES

R. A. McCoy

The space of continuous real-valued functions on X with the compact-open topology, denoted by $C_{K}(X)$, is first countable (in fact metrizable) if and only if X is hemicompact [1]. We study in this paper certain properties of $C_{K}(X)$ which are more general than first countability. In particular, Theorems 1 and 2 characterize when $C_{K}(X)$ is a k-space and when it has countable tightness. The proofs of these theorems are similar to the proofs of analogous theorems in [2], where the function spaces have the topology of pointwise convergence, except that modifications must be made to deal with compact sets (such as using Ascoli's theorem) instead of finite sets; and for this reason we do not include the proofs. Throughout this paper all spaces will be completely regular T_{1}-spaces.

A collection U of open subsets of a space X will be called an open cover for compact subsets of X provided every compact subset of X is contained in some member of U. Furthermore, if $\left\{U_{n}\right\}$ is a sequence of such covers, then a residual compact-covering string from $\left\{U_{n}\right\}$ will be a sequence $\left\{U_{n}\right\}$ such that each $U_{n} \in U_{n}$ and for every compact subset A of X, there exists an integer N so that $A \subseteq U_{n}$ for each $\mathrm{n} \geq \mathrm{N}$.

1. Theorem. The following are equivalent.
(a) $\mathrm{C}_{K}(\mathrm{X})$ is a k -space.
(b) $\mathrm{C}_{\mathrm{K}}(\mathrm{X})$ is a Fréchet space.
(c) Every sequence of open covers for compact subsets of X has a resiaual compact-covering string.
2. Theorem. $\mathrm{C}_{\kappa}(\mathrm{X})$ has countable tightness if and only if every open cover for compact subsets of X has a courlabie subcover for compact subsets of X .

Let us call space X k-compact whenever $\mathrm{C}_{\mathrm{K}}(\mathrm{X})$ is a k-space, and call X - -compact whenever $C_{K}(X)$ has countable tightness. We immediately obtain the following facts.
3. Proposition. Every hemicompact space is k -compact.
4. Proposition. Every k -compact space is $\mathrm{\tau}$-compact.
5. Proposition. Every t-compact space is Lindelöf.
6. Proposition. Every second countable space is τ-compact.

Froof. Let B be a countable base for X which is closed under finite unions, and let U be an open cover for compact subsets of X . Define

$$
B^{*}=\{B \in B \mid B \subseteq U \text { for some } U \in U\},
$$

and for each $B \in B^{*}$, let $U(B) \in U$ such that $B \subseteq U(B)$. Then define $\|^{*}=\left\{U(B) \mid B \in \beta^{*}\right\}$, which is a countable subcollection of U. To see that U^{*} is a cover for compact subsets of X, let A be a compact subset of X. Since U is a cover for compact subsets of X, there exists a $U \in U$ such that $A \subseteq U$. Now for each $a \in A$, there is a $B(a) \in B$ such that
$a \in B(a) \subseteq U . \quad$ Since A is compact, there exist $a_{1}, \ldots, a_{n} \in A$ such that $A \subseteq B\left(a_{1}\right) \cup \cdots \cup B\left(a_{n}\right)$. Define $B=B\left(a_{1}\right) \cup \cdots$ $\cup B\left(a_{n}\right)$, which is in B. Since $B \subseteq U$, then $B \in B^{*}$. Also $A \subseteq U(B)$, so that U^{*} is indeed a cover for compact subsets of X .
7. Proposition. Every first countable k-compact space is locally compact.

Proof. Suppose that X is not locally compact at x, and let $\left\{U_{n}\right\}$ be a countable base at x. For every positive integer n and compact subset A of X, let $U(n, \bar{A})$ be an open subset of X such that $\{x\} U A \subseteq U(n, A)$ and $U_{n} \backslash U(n, A) \neq \varnothing$. Then for every n, let

$$
U_{n}=\{U(n, A) \mid A \text { is a compact subset of } X\}
$$

which is an open cover for compact subsets of X.
Let $\left\{U\left(n, A_{n}\right)\right\}$ be any string from $\left\{U_{n}\right\}$. For every n, let $a_{n} \in U_{n} \backslash U\left(n, A_{n}\right)$. Then $\left\{a_{n}\right\}$ converges to x. Let $A=\{x\} U\left\{a_{n}\right\}$, which is a compact subset of X. Then for every $n, A \notin U\left(n, A_{n}\right)$, so that $\left\{U\left(n, A_{n}\right)\right\}$ cannot be a residual compact-covering string, and thus X is not k-compact.

Since every locally compact Lindelöf space is hemicompact, we then have the following.
8. Corolzary. Every first countable k-compact space is hemicompact.

Also if X is a hemicompact k-space, then $C_{K}(X)$ is completely metrizable [3].
9. Corolzary. If X is first countable, then the following are equivalent.
(a) $\mathrm{C}_{K}(\mathrm{X})$ is a k-space.
(b) $\mathrm{C}_{K}(\mathrm{X})$ is completely metrizable.
(c) X is hemicompact.
10. Corollary. If X is locally compact, then the following are equivalent.
(a) $\mathrm{C}_{\mathrm{K}}(\mathrm{X})$ is a k-space.
(b) $\mathrm{C}_{\mathrm{K}}(\mathrm{X})$ is completely metrizable.
(c) $\mathrm{C}_{K}(\mathrm{X})$ has countable tightness.
(d) X is hemicompact.

A natural question is whether X being "first countable" in Corollary 9 can be replaced by X being a "k-space." This will be true if the following question has an affirmative answer.
11. Question. Is every k-compact k-space, hemicompact?

Let us look finally at some examples which illustrate that the converses of the above propositions are not true. The first example follows from Propositions 6 and 7.
12. Example. The space of rational numbers is a τ-compact space which is not k-compact.

Also from Example 17 in [2] we obtain the following.
13. Example. Let F be the "Fortissimo space," which is an uncountable space with only one non-isolated point
whose neighborhoods have countable complements. Then F is k-compact but not hemicompact.
14. Example. The Sorgenfrey line, S , is not τ-compact.

Proof. For each compact subset A of S, define an open subset $U(A)$ of S as follows. First let $A^{*}=A \quad U\{0\}$, and let $a_{1}=\min A^{\star}$. If $a_{1}=0$, define $U(A)=[0, \infty)$; and we are through. Otherwise, if $a_{1} \neq 0$, let $x=\max \left(A^{*}\right.$ n $\left.\left[0,-a_{1}\right)\right)$, let $b_{1}=\frac{1}{2}\left(x-\max \left(A^{*} \cap\left(a_{1},-x\right)\right)\right)$, and let $a_{2}=\min \left(A^{*} \cap[-x, 0]\right)$. Suppose we have gone through the $n^{\text {th }}$ stage of this argument and found $\left\{a_{1}, \cdots, a_{n+1}\right\}$ and $\left\{b_{1}, \cdots, b_{n}\right\}$. Then if $a_{n+1}=0$, define
$U(A)=\left[a_{1},-b_{1}\right) \cup \cdots \cup\left[a_{n},-b_{n}\right) \cup\left[0, b_{n}\right) \cup$
$\left[-a_{n}, b_{n-1}\right) \cup \cdots \cup\left[-a_{2}, b_{1}\right) \cup\left[-a_{1}, \infty\right) ;$
and we are through. Otherwise continue by finding b_{n+1} and a_{n+2} as above. This process must terminate after a finite number of stages, since otherwise $\left\{a_{n}\right\}$ would be a strictly increasing sequence from A, contradicting the compactness of A. Therefore $U(A)$ is well-defined.

Define $U=\{U(A) \mid A$ is a compact subset of $S\}$. By construction, $A \subseteq U(A)$ for each A, so that U is an open cover for compact subsets of S . But each member of U contains only finitely many doubleton subsets of S of the form \{x,-x\}. Therefore U has no countable subcover for compact subsets of S .

We end by comparing $C_{K}(X)$ with $C_{\pi}(X)$, where $C_{\pi}(X)$ has the topology of pointwise convergence. Whenever $C_{\kappa}(X)$ is
first countable, then X is hemicompact and thus σ-compact. Then Proposition 6 of [2] tells us that when X is o-compact, $C_{\pi}(X)$ has countable tightness. One might wonder whether $C_{K}(X)$ has countable tightness whenever X is σ-compact, or in fact whether $C_{K}(X)$ has countable tightness whenever $C_{\pi}(X)$ is first countable (equivalently, X is countable). Our final example shows that neither is true.
15. Example. There exists a countable space Z which is not τ-compact.

Proof. Let N be the set of natural numbers, let Q be the space of rational numbers with the usual topology, and let

$$
A=\{0\} \cup\left(U\left\{N^{n} \mid n \in N\right\}\right) .
$$

Choose $\left\{Q_{\alpha} \mid \alpha \in \mathrm{A}\right\}$ to be a pairwise disjoint family of dense subspaces of Q such that $U\left\{Q_{\alpha} \mid \alpha \in A\right\}=Q \backslash\{0\}$. For each $\alpha \in A$, let $\phi_{\alpha}: Q_{\alpha} \rightarrow N$ be a bijection. Define $\phi: Q \rightarrow A$ as follows:

$$
\begin{aligned}
\phi(0)= & 0 ; \\
\phi(q)= & \left\langle\phi_{0}(q)\right\rangle \text { if } q \in Q_{0} ; \text { and } \\
\phi(q)= & \left\langle i_{1}, \cdots, i_{n}, \phi_{\alpha}(q)\right\rangle \text { if } q \in Q_{\alpha} \text { for } \\
& \alpha=\left\langle i_{1}, \cdots, i_{n}\right\rangle .
\end{aligned}
$$

Let $S=\left\{\left\{q_{0}, q_{1}, \cdots\right\} \subseteq Q \mid q_{0}=0, q_{n+1} \in Q_{\phi\left(q_{n}\right)}\right.$ for $n \geq 0$, and $\left\{q_{0}, q_{1}, \cdots\right\}$ converges to 0 in $\left.Q\right\}$.

Now define $\mathrm{Z}=\mathrm{Q}$ with the following topology. A subset $U \subseteq Z$ is open if and only if whenever $0 \in U$ then every element of S is eventually in U. Clearly every usual open subset of Q is open in Z. Also each point of Z
different than 0 is isolated, so that Z is a O-dimensional Hausdorff space.

Let K be the set of all nonempty compact subsets of z. Note that $S \subseteq K$, and that if $K \in K$, then $K \cap Q_{\alpha}$ is finite for each $\alpha \in A$. To see that the latter is true, suppose $K \cap Q_{\alpha}$ were infinite for some α; then $\left\{Z \backslash Q_{\alpha}\right\} U\{\{q\} \mid q \in$ $\left.K \cap Q_{\alpha}\right\}$ would be an open cover of K having no finite subcover.

For every $K \in K$, define $S(K)=\{\sigma \in S \mid \sigma \notin K\}$. Also for every $\sigma \in S(K)$, let $q(\sigma)$ be the first element of σ which is not in K. Finally for every $K \in K$, define $U(K)$ as follows. If $0 \notin K$, then take $U(K)=K$, which is a finite open subset of Z. If $0 \in K$, define

$$
U(K)=Z \backslash\{q(\sigma) \mid \sigma \in S(K)\}
$$

which certainly contains K.
To see that $U(K)$ is open in Z, let $\sigma \in S$. We wish to show that σ is eventually in $U(K)$. We may suppose that $\sigma \in S(K)$, say $\sigma=\left\{q_{0}, q_{1}, \cdots\right\}$. Then there exists $a k \geq 1$ such that $q(\sigma)=q_{k}$. Now let $n>k$, and take any $\bar{\sigma}=\left\{\bar{q}_{0}, \bar{q}_{1}, \cdots\right\} \in S(K)$. If $q(\bar{\sigma})$ were to equal q_{n}, then $\bar{q}_{n}=q_{n}$, which implies $\bar{q}_{n-1}=q_{n-1}, \cdots, \bar{q}_{k}=q_{k}$. But this contradicts $q(\bar{\sigma})=q_{n}$ since $q_{k} \notin K$. Therefore $q_{n} \notin\{q(\bar{\sigma}) \mid$ $\bar{\sigma} \in S(K)\}$, so that $q_{n} \in U(K)$. Hence σ is eventually in $U(K)$, so that $U(K)$ is open in Z.

Now define $U=\{U(K) \mid K \in K\}$, which is an open cover for compact subsets of Z. To see that no countable subfamily of U is a cover for compact subsets of Z, let
$\left\{K_{m} \mid m \in N\right\} \subseteq K$. Define $K \in K$ as follows. First let $j_{0}=0$ and $q_{0}=0$. Suppose integers $j_{0}<j_{1}<\cdots<j_{n-1}$ and elements $q_{0}, q_{1}, \cdots, q_{n-1}$ from Z have been defined so that for each $0<i<n$,

$$
q_{i} \in Q_{\sigma\left(q_{i-1}\right)} \backslash\left(u\left(K_{j_{i-1}}\right) \cup \cdots u U\left(K_{j_{i}-1}\right)\right) .
$$

If for every $m,\left\{q_{0}, \cdots, q_{n-1}\right\} \notin U\left(K_{m}\right)$, then define $K=\left\{q_{0}, \cdots, q_{n-1}\right\}$. Otherwise we continue and choose i_{n} to be the first m such that $\left\{q_{0}, \cdots, q_{n-1}\right\} \subseteq U\left(K_{m}\right)$. Now $\left.\left.U\left(K_{i_{n}}\right) \cap Q_{\phi\left(q_{n-1}\right.}\right)=K_{i_{n}} \cap Q_{\phi\left(q_{n-1}\right.}\right)$, which is finite. Since $Q_{\phi\left(q_{n-1}\right)}$ is dense in Q, there exists a $\left.q_{n} \in Q_{\phi\left(q_{n-1}\right)}\right)$ $U\left(K_{i_{n}}\right)$ such that $\left|q_{n}\right|<\frac{1}{n}$.

Then by induction, we have either defined K as a finite subset of z, or we have defined the sequence $\left\{q_{0}, q_{1}, \cdots\right\} \in S$. In the latter case, define $K=\left\{q_{0}, q_{1}, \cdots\right\}$, so that in either case $K \in K$. Also by construction, $K \notin U\left(K_{m}\right)$ for any m, so that U has no countable subcover for compact subsets of Z .

References

1. R. F. Arens, A topology for spaces of transformations, Annals of Math. 47 (1946), 480-495.
2. R. A. McCoy, k-space function spaces, International J. of Math. and Math. Sciences 3 (1980), 701-711.
3. S. Warner, The topology of compact convergence on continuous function spaces, Duke Math. J. 25 (1958), 265-282.

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

