TOPOLOGY PROCEEDINGS

Volume 5, 1980
Pages 147-154
http://topology.auburn.edu/tp/

TOPOLOGICAL GAMES AND ANALYTIC SETS, II

by
Adam J. Ostaszewski and Rastislav Telgársky

Topology Proceedings
 Web: http://topology.auburn.edu/tp/
 Mail: Topology Proceedings
 Department of Mathematics \& Statistics
 Auburn University, Alabama 36849, USA
 E-mail: topolog@auburn.edu
 ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

TOPCLOGICAL GAMES AND ANALYTIC SETS, II

Adam J. Ostaszewski and Rastislav Telgársky

This contribution is a continuation of the second author's note [3]. In contrast to [3], here the strategic situation of Player II in the game $G(X, Y)$ is considered (definitions below). Assuming Y is a separable metric space, the following is shown: $(a) \Rightarrow(b) \Rightarrow(c)$, where
(a) Y - X contains an analytic set which is not Borel separated from X,
(b) Player II has a winning strategy in $G(X, Y)$, and
(c) Y - X contains a copy of the Cantor discontinuum. Finally, some corollaries are derived and some open questions stated.

We recall the definition of the game $G(X, Y)$ of [3]. Let X be a subset of a topological space Y. Player I chooses a sequence $E_{1}=\langle E(1,1), E(1,2), \cdots\rangle$ of subsets of X so that $U E_{1}=X$. Then Player II chooses $k_{l} \in N$. Assume inductively that $E_{1}, k_{1}, \cdots, E_{n}, k_{n}$ have been chosen. Then Player I chooses a sequence $E_{n+1}=\langle E(n+1,1), E(n+1,2), \ldots\rangle$ of subsets of X so that $U E_{n+1}=E\left(n, k_{n}\right)$. After this Player II chooses $k_{n+1} \in N$. Player I wins the play $\left\langle\underline{E}_{1}, k_{1}, \underline{E}_{2}, k_{2}\right.$, $\ldots\rangle$ of $G(X, Y)$ if $\cap\left\{\overline{E\left(n, k_{n}\right)}: n \in N\right\} \subset X$, otherwise Player II wins.

A subset X of a topological space Y is said to be a Souslin set in Y (more precisely: a Souslin-F set in Y) if there is an indexed family

$$
\left\{F\left(k_{1}, \cdots, k_{n}\right):\left\langle k_{1}, \cdots, k_{n}\right\rangle \in N^{n}, n \in N\right\}
$$

of closed subsets of Y so that

$$
x=U\left\{\cap\left\{F\left(k_{1}, \cdots, k_{n}\right): n \in N\right\}:\left\langle k_{1}, k_{2}, \cdots\right\rangle \in N^{N}\right\} .
$$

Theorem 1 [3]. Player I has a winning strategy in $\mathrm{G}(\mathrm{X}, \mathrm{Y})$ iff X is a Souslin set in Y .

A subset X of a separable metric space Y is said to be analytic if either $\mathrm{X}=\varnothing$ or there is a continuous map from the space N^{N} onto X.

Since Souslin and analytic subsets of Polish spaces coincide ([1], p. 482), we have from Theorem 1

Corollary 1. Let X be a subset of a Polish space Y . Player I has a winning strategy in $\mathrm{G}(\mathrm{X}, \mathrm{Y})$ iff X is analytic.

Two subsets X and Z of a separable metric space Y are said to be Borel separated if there is a Borel set B in Y such that $X \subset B$ and $Z \subset Y-B$.

Theorem 2. If X is a subset of c separable metric space Y and Y - X contains an analytic set Z which is not Borel spearated from X, then Player II has a winning strategy in $\mathrm{G}(\mathrm{X}, \mathrm{Y})$. In particular, if $\mathrm{Y}-\mathrm{X}$ is analytic non-Borel, then Player II has a winning strategy in $\mathrm{G}(\mathrm{X}, \mathrm{Y})$.

By Corollary 1 and Theorem 2 we obtain

Corollary 2. If X is analytic or co-analytic in a Polish space Y , then the game $\mathrm{G}(\mathrm{X}, \mathrm{Y})$ is determined.

Question l. Let X belong to the o-algebra generated
generated by analytic subsets of an uncountable Polish space Y. Is then $G(X, Y)$ determined?

Theorem 3. If X is a subset of a separable metric space Y and Player II has a winning strategy in $\mathrm{G}(\mathrm{X}, \mathrm{Y})$, then $\mathrm{Y}-\mathrm{X}$ contains a copy of the Cantor discontinuum.

Question 2. Let X be a Lusin set on the real line R (i.e., X is uncountable and $X \cap F$ is at most countable whenever F is nowhere dense in R). Does Player II have a winning strategy in $G(X, R)$?

A subset X of an uncountable Polish space Y is said to be a Bernstein set if neither X nor Y - X contains a copy of the Cantor discontinuum. Each uncountable Polish space contains a Bernstein set ([1], p. 514). Hence by Corollary 1 and Theorem 3 we obtain

Corollary 3. If X is a Bernstein set in an uncountabie Polish space Y , then the game $\mathrm{G}(\mathrm{X}, \mathrm{Y})$ is undetermined.

Major question: Is the sufficient condition for the existence of a winning strategy for Player II given in Theorem 2 also necessary? Indeed, granted a winning strategy t for Player II, we are unable to determine the descriptive character of the set of points arising as outcomes of arbitrary plays in $G(X, Y)$ with II playing according to t.

Proofs. The proof of Theorem 1 given below differs from that of [3] and, moreover, is much simpler.

Proof of Theorem 1. Let s be a strategy of Player I in $G(X, Y)$. Then s determines a Souslin set

$$
x_{s}=U\left\{\cap\left\{\overline{E_{s}\left(k_{1}, \cdots, k_{n}\right)}: n \in N\right\}:\left\langle k_{1}, k_{2}, \cdots\right\rangle \in N^{N}\right\}
$$

in Y as follows: $E_{s}\left(k_{1}\right)=s(\varnothing)\left(k_{1}\right), E_{s}\left(k_{1}, k_{2}\right)=s\left(k_{1}\right)\left(k_{2}\right)$, $E_{s}\left(k_{1}, k_{2}, k_{3}\right)=s\left(k_{1}, k_{2}\right)\left(k_{3}\right)$, and so on. It is easy to check that $X_{s}>X$. Clearly, s is a winning strategy iff $X_{s}=X$. Hence, in particular, if s is a winning strategy of Player I, then X is a Souslin set in Y. To prove the converse implication, assume that X is a Souslin set in Y , i.e.,

$$
x=U\left\{\cap\left\{F\left(k_{1}, \cdots, k_{n}\right): n \in N\right\}:\left\langle k_{1}, k_{2}, \cdots\right\rangle \in N^{N}\right\},
$$

where each $F\left(k_{1}, \cdots, k_{n}\right)$ is closed in Y. Let us put $E\left(k_{1}, \cdots, k_{n}\right)=U\left\{n\left\{F\left(j_{1}, \cdots, j_{m}\right): m \in N\right\}:\left\langle j_{1}, j_{2}, \cdots\right\rangle \in\right.$ $\left.B\left(k_{1}, \cdots, k_{n}\right)\right\}$, where

$$
\begin{gathered}
B\left(k_{1}, \cdots, k_{n}\right)=\left\{\left\langle i_{1}, i_{2}, \cdots\right\rangle \in N^{N}:\right. \\
\left.\left\langle i_{1}, \cdots, i_{n}\right\rangle=\left\langle k_{1}, \cdots, k_{n}\right\rangle\right\} .
\end{gathered}
$$

It is easy to verify that for any $\left\langle k_{1}, k_{2}, \cdots\right\rangle \in N^{N}$

$$
\begin{aligned}
& E\left(k_{1}, \cdots, k_{n}\right) \subset F\left(k_{1}, \cdots, k_{n}\right), \\
& \cap\left\{F\left(k_{1}, \cdots, k_{n}\right): n \in N\right\}=\cap\left\{E\left(k_{1}, \cdots, k_{n}\right): n \in N\right\}, \\
& U\{E(k): k \in N\}=X, \text { and } \\
& U\left\{E\left(k_{1}, \cdots, k_{n}, k\right): k \in N\right\}=E\left(k_{1}, \cdots, k_{n}\right) .
\end{aligned}
$$

Hence

$$
x=U\left\{\cap\left\{E\left(k_{1}, \cdots, k_{n}\right): n \in N\right\}:\left\langle k_{1}, k_{2}, \cdots\right\rangle \in N^{N}\right\}
$$

and a winning strategy for Player I can be defined as follows: $s(\varnothing)\left(k_{1}\right)=E\left(k_{1}\right), s\left(k_{1}\right)\left(k_{2}\right)=E\left(k_{1}, k_{2}\right), s\left(k_{1}, k_{2}\right)\left(k_{3}\right)=$ $E\left(k_{1}, k_{2}, k_{3}\right)$, and so on. The proof of Theorem 1 is complete.

Lemma. Let X and Z be subsets of a topological space Y , and let $\mathrm{X}=\mathrm{U}\left\{\mathrm{X}_{\mathrm{m}}: \mathrm{m} \in \mathrm{N}\right\}$ and $\mathrm{Z}=\mathrm{U}\left\{\mathrm{Z}_{\mathrm{n}}: \mathrm{n} \in \mathrm{N}\right\}$. If X and Z are not Borel separated, then there are $\mathrm{m} \in \mathrm{N}$ and $\mathrm{n} \in \mathrm{N}$ so that X_{m} and Z_{n} are not Borel separated.

The lemma is classical, see [1], p. 485 or [2], p. 228, for proof (which is easy).

Proof of Theorem 2. Let us assume that Y - X contains an analytic set Z which is not Borel separated from X . Let f be a continuous map from N^{N} onto Z and let

$$
F\left(j_{1}, \cdots, j_{n}\right)=f\left(B\left(j_{1}, \cdots, j_{n}\right)\right),
$$

where, as before,

$$
\begin{gathered}
B\left(j_{1}, \cdots, j_{n}\right)=\left\{\left\langle i_{1}, i_{2}, \cdots\right\rangle \in N^{N}:\right. \\
\left.\left\langle i_{1}, \cdots, i_{n}\right\rangle=\left\langle j_{1}, \cdots, j_{n}\right\rangle\right\} .
\end{gathered}
$$

Then

$$
\begin{aligned}
& U\{F(j): j \in N\}=Z, \\
& U\left\{F\left(j_{1}, \cdots, j_{n}, j\right): j \in N\right\}=F\left(j_{1}, \cdots, j_{n}\right), \text { and } \\
& \operatorname{diam} F\left(j_{1}, \cdots, j_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for each $\left\langle j_{1}, j_{2}, \cdots\right\rangle \in N^{N}$. We shall define a winning strategy t for Player II in $G(X, Y)$ as follows. Let $E_{1}=\langle E(1,1), E(1,2), \cdots\rangle$, where $U E_{1}=x$. Since x and z are not Borel separated, it follows from the lemma that there is $k_{1} \in N$ and $j_{1} \in N$ so that $E\left(1, k_{1}\right)$ and $F\left(j_{1}\right)$ are not Borel separated. We set $t\left(\underline{E}_{1}\right)=k_{1}$. Let $\underline{E}_{2}=\langle E(2,1)$, $E(2,2), \cdots)$, where $U E_{2}=E\left(1, k_{1}\right)$. Again by the lemma we infer the existence of $k_{2} \in N$ and $j_{2} \in N$ such that $E\left(2, k_{2}\right)$ and $F\left(j_{1}, j_{2}\right)$ are not Borel separated. We set $t\left(\underline{E}_{1}, E_{2}\right)=k_{2}$, and so on. Since $E\left(n, k_{n}\right)$ and $F\left(j_{1}, \cdots, j_{n}\right)$ are not Borel
separated, it follows that

$$
\overline{E\left(n, k_{n}\right)} \cap \overline{F\left(j_{1}, \cdots, j_{n}\right)} \neq 0
$$

since $\cap\left\{\overline{F\left(j_{1}, \cdots, j_{n}\right)}: n \in N\right\}=\{z\} \subset z$, where $z=f\left(j_{1}, j_{2}\right.$, $\cdots)$, and diam $F\left(j_{1}, \cdots, j_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, we also have $z \in \cap\left\{\overline{E\left(n, k_{n}\right)}: n \in N\right\}$. Indeed, if U is an open neighbourhood of z in Y and $n \in N$, then there is $m \geq n$ such that $\overline{F\left(j_{1}, \cdots, j_{m}\right)} \subset U$. since $\overline{F\left(j_{1}, \cdots, j_{m}\right)} \cap \overline{E\left(m, k_{m}\right)} \neq 0$, we have $\overline{E\left(m, k_{m}\right)} \cap U \neq 0$ and so $E\left(n, k_{n}\right) \cap U \neq 0$, because $E\left(n, k_{n}\right)=E\left(m, k_{m}\right)$. Thus $z \in \overline{E\left(n, k_{n}\right)}$. Finally, $(Y-X) n$ $n\left\{\overline{E\left(n, k_{n}\right)}: n \in N\right\} \neq 0$ and thus t is a winning strategy for Player II. The proof is complete.

Proof of Theorem 3. Let t be a fixed winning strategy for Player II in $G(X, Y)$, where Y is a separable metric space. If $\left\langle\underline{E}_{1}, k_{1}, \cdots, E_{n}, k_{n}\right\rangle$ is a partial t-play (i.e., a partial play of $G(X, Y)$ in which Player II follows the strategy t), let $T\left(\underline{E}_{1}, \cdots, E_{n}\right)=E_{n}\left(k_{n}\right)$, the set determined by Player II's nth move; let $T\left(\underline{E}_{1}, \cdots, E_{n}\right)=X$ if $n=0$. Let $M\left(E_{1}, \cdots, E_{n}\right)$ be the set of all sequences $E=\langle E(k)$: $k \in N\rangle$ such that $U E=T\left(E_{1}, \cdots, E_{n}\right)$; i.e., $M\left(E_{1}, \cdots, E_{n}\right)$ is the set of all legal moves by Player I following $\left\langle E_{1}, k_{1}\right.$, \cdots, E_{n}, k_{n}. Clearly, it will suffice to establish the following:

Claim l. We can associate with every finite sequence $\left\langle b_{1}, \cdots, b_{n}\right.$ 〉 of 0 's and 1 's a sequence $E_{b_{1}}, \cdots, b_{n}$ of subsets of X , so that the following conditions are satisfied:
(I) $E_{b_{1}}, \cdots, b_{n} \in M\left(E_{b_{1}}, E_{b_{1}}, b_{2}, \cdots, E_{b_{1}}, b_{2}, \cdots, b_{n-1}\right)$;

(2) $T\left(\underline{E}_{\mathrm{b}_{1}}, \mathrm{E}_{\mathrm{b}_{1}}, \mathrm{~b}_{2}, \cdots, \underline{E}_{\mathrm{b}_{1}}, \cdots, \mathrm{~b}_{\mathrm{n}}\right)$ has diameter $<1 / \mathrm{n}$;
 (3) the sets $T\left(E_{b_{1}}, \cdots, E_{b_{1}}, \cdots, b_{n}, E_{b_{1}}, \cdots, b_{n}, 0\right)$ and $T\left(E_{b_{1}}, \cdots, E_{b_{1}}, \cdots, b_{n}, E_{b_{1}}, \cdots, b_{n}, 1\right)$ have disjoint closures.
 In fact, it will suffice to prove:

Claim 2. Let $\left\langle\underline{E}_{1}, k_{1}, \cdots, E_{n}, k_{n}\right\rangle$ be a partial t-play, and let $\mathcal{J}=\left\{T\left(\underline{E}_{1}, \cdots, \underline{E}_{n}, \underline{E}\right): \underline{E} \in M\left(\underline{E}_{1}, \cdots, E_{-n}\right)\right\}$. Then there are sets $F^{\prime}, F^{\prime \prime} \in \mathcal{J}$ such that F^{\prime} and $F^{\prime \prime}$ have diameter $<1 /(n+1)$ and $\bar{F}^{\prime} \cap \bar{F}^{\prime \prime}=\varnothing$.

Proof of Claim 2. Let $W=\{y \in Y: ~ e v e r y ~ n e i g h b o u r-~$ hood of y contains a member of $7 f$. It will suffice to show that W contains at least two points. Let $U=\{U \subset Y$: U is open in Y , and U contains no member of 7$\}$. Then $U U=Y$ - W. Since Y is a separable metric space, we can write $Y-W=U\left\{U_{n}: n \in N\right\}, U_{n} \in U$. Now let $E=T\left(E_{1}, \cdots, E_{n}\right)$, and let $E_{n+1}=\left\langle E \cap W, E \cap U_{1}, E \cap U_{2}, \cdots\right\rangle \in M\left(E_{1}, \cdots, E_{n}\right)$. Since $E \cap U_{n} \notin \mathcal{Z}$, we must have $T\left(\underline{E}_{1}, \cdots, E_{n+1}\right)=E \cap W$. Now $E \cap W \subset X$, but $\overline{E \cap W} \notin X$ since t is a winning strategy for Player II in $G(X, Y)$; hence $E \cap W$ is infinite. The proof is complete.

We are grateful to Fred Galvin for helpful remarks during the preparation of this paper--in particular for suggested improvements to the proof of Theorem 3.

References

[1] K. Kuratowski, Topology, Vol. I, Academic Press, New York and London, 1966.
[2] W. Sierpiński, General topology, University of Toronto Press, Toronto, 1952.
[3] R. Telgársky, Topological games and analytic sets, Houston J. Math. 3 (1977), 549-553.

London School of Economics
Houghton Street, London WC2A 2AE
and
Southern Illinois University
Carbondale, Illinois 62901

