TOPOLOGY PROCEEDINGS Volume 5, 1980 Pages 185–186

http://topology.auburn.edu/tp/

ON AN EXAMPLE OF SUNDARESAN

by

BRIAN M. SCOTT

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON AN EXAMPLE OF SUNDARESAN

Brian M. Scott

In [Su] Sundaresan constructed a compact T₂-space X such that if Y and Z are the results of adding one and two isolated points, respectively, to X, then $X \cong Z \not\cong Y$. (' $\tilde{=}$ ' denotes homeomorphism.) Thus, since each of X and Y embeds in the other, there is no Schroeder-Bernstein theorem for compact T2-spaces and embeddings. Also, $X + X \stackrel{\sim}{=} X + Z \stackrel{\sim}{=} Y + Y$, where '+' denotes discrete union, and it follows from the well-known Banach-Stone theorem [Da] that C(X + X, R) and C(Y + Y, R) are isometric (denoted by 'E'). This was the focus of interest in [Su]; for if R_{m}^{2} is R^{2} with the sup norm, then $C(X, R_{m}^{2}) \equiv C(X + X, R) \equiv$ $C(Y + Y,R) \equiv C(Y,R_{\infty}^{2})$, showing that the Banach-Stone theorem cannot be extended to arbitrary real Banach spaces.

At any rate, X has a number of interesting features, all but one of which (given X) are easy to verify. More difficult is that $X \not\geq Y$; nevertheless, the proof in [Su] is unnecessarily long and indirect, as I now show.

X is obtained by pasting together the remainders of two copies of $\beta \omega$. More precisely, let $X = \omega^* \cup (\omega \times 2)$, where $\omega^* = \beta \omega \setminus \omega$, and let $\pi: X \to \beta \omega$ be the obvious projection; the topology on X is the coarsest making π continuous and each point of N = $\omega \times 2$ isolated. Let N_i = $\omega \times \{i\}$, i \in 2. Intuitively, X \neq Y because the extra point in Y must be added to one of the N_i 's, and this 'skews' the

pasting-together: the two copies of ω^* no longer line up right. (In Z, of course, we can think of one new point as extending N₀, the other N₁, so that the two copies of ω^* , being similarly 'shifted,' still line up.)

To express this idea rigorously, let $P_n = \{n\} \times 2$ for $n \in \omega$, and let $\mathcal{P} = \{P_n : n \in \omega\}$. A function f: $X \to X$ preserves pairs iff f[P] $\in \mathcal{P}$ for all but finitely many $P \in \mathcal{P}$, and the idea is that any embedding h: $X \to X$ must preserve pairs. Otherwise, since h is 1-1, an easy recursion suffices to produce an infinite $M \subseteq \omega$ such that $\pi^{\circ}h$ is 1-1 on $\cup\{P_n : n \in M\}$. Let $H_i = M \times \{i\}$ for $i \in 2$. Then $(cl_XH_i)\setminus N = (cl_{\beta\omega}M)\setminus \omega \neq \emptyset$ for $i \in 2$, so $(cl_Xh[H_0])\setminus N =$ $(cl_Xh[H_1])\setminus N \neq \emptyset$. But $(cl_Xh[H_i])\setminus N = (cl_{\beta\omega}\pi[h[H_i]])\setminus \omega$ for $i \in 2$, $\pi[h[H_0]] \cap \pi[h[H_1]] = \emptyset$, and disjoint subsets of ω have disjoint closures in $\beta\omega$, so the sets $cl_Xh[H_i]$

If, now, h: $Y \leftrightarrow X$ is a homeomorphism, then h+X preserves pairs. Let $A = \bigcup \{P_n \in \mathcal{P}: h[P_n] \in \mathcal{P}\} \cup \omega^*$. Then clearly $|X \setminus h[A]|$ is finite and even, $|Y \setminus A|$ is finite and odd, and h+(Y \setminus A) is a bijection between these two sets, which is absurd. Hence $X \neq Y$.

References

- [Da] M. M. Day, Normed linear spaces, Springer-Verlag, Berlin, 1962.
- [Su] K. Sundaresan, Banach spaces with Banach-Stone property, Studies in Topology (N. M. Stavrakas and K. R. Allen, eds.), Academic Press, New York, 1975, pp. 573-580.

The Cleveland State University Cleveland, Ohio 44115