TOPOLOGY PROCEEDINGS

Volume 5, 1980
Pages 185-186
http://topology.auburn.edu/tp/

ON AN EXAMPLE OF SUNDARESAN

by

Brian M. Scott

Topology Proceedings
 Web: http://topology.auburn.edu/tp/
 Mail: Topology Proceedings
 Department of Mathematics \& Statistics
 Auburn University, Alabama 36849, USA
 E-mail: topolog@auburn.edu
 ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON AN EXAMPLE OF SUNDARESAN

Brian M. Scott

In [Su] Sundaresan constructed a compact T_{2}-space X such that if Y and Z are the results of adding one and two isolated points, respectively, to X , then $\mathrm{X} \cong \mathrm{Z} \neq \mathrm{Y}$. ('ㅢㅡ denotes homeomorphism.) Thus, since each of X and Y embeds in the other, there is no Schroeder-Bernstein theorem for compact T_{2}-spaces and embeddings. Also, $\mathrm{X}+\mathrm{X} \cong \mathrm{X}+\mathrm{Z} \cong \mathrm{Y}+\mathrm{Y}$, where '+' denotes discrete union, and it follows from the well-known Banach-Stone theorem [Da] that $\mathrm{C}(\mathrm{X}+\mathrm{X}, \mathrm{R})$ and $\mathrm{C}(\mathrm{Y}+\mathrm{Y}, \mathrm{R})$ are isometric (denoted by 'ミ'). This was the focus of interest in [Su]; for if R_{∞}^{2} is R^{2} with the sup norm, then $\mathrm{C}\left(\mathrm{X}, \mathrm{R}_{\infty}^{2}\right) \equiv \mathrm{C}(\mathrm{X}+\mathrm{X}, \mathrm{R}) \equiv$ $C(Y+Y, R) \equiv C\left(Y, R_{\infty}^{2}\right)$, showing that the Banach-Stone theorem cannot be extended to arbitrary real Banach spaces.

At any rate, X has a number of interesting features, all but one of which (given X) are easy to verify. More difficult is that $X \neq Y$; nevertheless, the proof in [Su] is unnecessarily long and indirect, as I now show.

X is obtained by pasting together the remainders of two copies of $\beta \omega$. More precisely, let $X=\omega^{\star} U(\omega \times 2)$, where $\omega^{*}=\beta \omega \backslash \omega$, and let $\pi: X \rightarrow \beta \omega$ be the obvious projection; the topology on X is the coarsest making π continuous and each point of $N=\omega \times 2$ isolated. Let $N_{i}=\omega \times\{i\}$, i \in 2. Intuitively, $X \neq Y$ because the extra point in Y must be added to one of the N_{i} 's, and this 'skews' the
pasting-together: the two copies of ω^{*} no longer line up right. (In Z, of course, we can think of one new point as extending N_{0}, the other N_{1}, so that the two copies of ω *, being similarly 'shifted,' still line up.)

To express this idea rigorously, let $P_{n}=\{n\} \times 2$ for $n \in \omega$, and let $P=\left\{P_{n}: n \in \omega\right\}$. A function $f: X \rightarrow X$ preserves pairs iff $f[P] \in \mathcal{P}$ for all but finitely many $\mathrm{P} \in \mathcal{P}$, and the idea is that any embedding $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{X}$ must preserve pairs. Otherwise, since h is l-l, an easy recursion suffices to produce an infinite $M \subseteq \omega$ such that $\pi^{\circ} h$ is $1-1$ on $U\left\{P_{n}: n \in M\right\}$. Let $H_{i}=M \times\{i\}$ for $i \in 2$. Then $\left(c l_{X} H_{i}\right) \backslash N=\left(c l_{B \omega}{ }^{M}\right) \backslash \omega \neq \varnothing$ for $i \in 2$, so $\left(c l_{X} h\left[H_{0}\right]\right) \backslash N=$ $\left(\mathrm{cl}_{\mathrm{X}} \mathrm{h}\left[\mathrm{H}_{\mathrm{l}}\right]\right) \backslash \mathrm{N} \neq \varnothing$. But $\left(\mathrm{cl}_{\mathrm{X}} \mathrm{h}\left[\mathrm{H}_{\mathrm{i}}\right]\right) \backslash \mathrm{N}=\left(\mathrm{c} \mathrm{l}_{\beta \omega} \pi\left[\mathrm{h}\left[\mathrm{H}_{\mathrm{i}}\right]\right]\right) \backslash \omega$ for $i \in 2, \pi\left[h\left[H_{0}\right]\right] \cap \pi\left[h\left[H_{1}\right]\right]=\varnothing$, and disjoint subsets of ω have disjoint closures in $\beta \omega$, so the sets $\mathrm{cl}_{\mathrm{X}} \mathrm{h}\left[\mathrm{H}_{\mathrm{i}}\right]$ (i $\in 2$) must be disjoint; this is the desired contradiction. If, now, $h: Y \leftrightarrow X$ is a homeomorphism, then $h \upharpoonright X$ preserves pairs. Let $A=U\left\{P_{n} \in P: h\left[P_{n}\right] \in P\right\} U \omega^{*}$. Then clearly $|X \backslash h[A]|$ is finite and even, $|Y \backslash A|$ is finite and odd, and $\mathrm{h} \uparrow(\mathrm{Y} \backslash \mathrm{A})$ is a bijection between these two sets, which is absurd. Hence $X \neq Y$.

References

[Da] M. M. Day, Normed Zinear spaces, Springer-Verlag, Berlin, 1962.
[Su] K. Sundaresan, Banach spaces with Banach-Stone property, Studies in Topology (N. M. Stavrakas and K. R. Allen, eds.), Academic Press, New York, 1975, pp. 573580.

The Cleveland State University
Cleveland, Ohio 44115

