TOPOLOGY PROCEEDINGS

Volume 5, 1980 Pages 209–213

http://topology.auburn.edu/tp/

Research Announcement:

U-EMBEDDED SUBSETS OF THE PLANE

by

Ronnie Levy and M. D. Rice

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

U-EMBEDDED SUBSETS OF THE PLANE

Ronnie Levy and M. D. Rice

For a metric space M, let U(M) denote the set of all real-valued uniformly continuous functions on M and let U*(M) denote the set of bounded members of U(M). If X is a subset of M, then X is U-embedded [respectively U*-embedded] in M if every element of U(X) [respectively U*(X)] is the restriction to X of an element of U(M). The following theorem of Katětov answers all questions about U*-embedding.

Theorem. (Katětov) If M is a metric space, every subset of M is U*-embedded in M.

The question of which subsets of a metric space are U-embedded is much more difficult. Not every subset of an arbitrary metric space is U-embedded--the set N of natural numbers is not U-embedded in the space **R** of real numbers because the uniformly continuous function f: N \rightarrow **R** given by f(n) = n² does not extend to a uniformly continuous function on **R**. This example provides the key to characterizing the U-embedded subsets of **R**.

Theorem 1. X is U-embedded in \mathbf{R} if and only if X is not the union of an infinite uniformly discrete family of non-empty subsets.

Unlike the case of ${\bf R}$, the U-embedded subsets of ${\bf R}^2$ have not been characterized. The next theorem gives a

class of subsets which are not U-embedded in \mathbf{R}^2 , as well as a class of subsets which are U-embedded in \mathbf{R}^2 .

Theorem 2. Suppose M is a normed linear space and $X \, \subseteq \, M.$

a) If X is the union of an infinite uniformly discrete family of subsets, then X is not U-embedded in M.

b) If X is convex, then X is U-embedded in M.

Since the convex subsets of \mathbf{R}^2 are U-embedded, it is natural to ask which starlike regions of \mathbf{R}^2 are U-embedded. The answer to even this question is not known. The following examples indicate the types of problems which can arise. Let $(a_n)_{n=1}^{\infty}$ be an unbounded increasing sequence of numbers and let $X = \bigcup_{k=0}^{\infty} L_k$, where L_0 is the nonnegative x-axis and for $k = 1, 2, \dots, L_k$ is the segment joining the origin to $(a_k, 1)$. The sequences $a_n = n$ and $a_n = 2^n$ define the spaces X_1 and X_2 in Figure 1. Then X_1 is U-embedded in \mathbf{R}^2 , but X_2 is not U-embedded in \mathbf{R}^2 . The proof that X_1 is U-embedded combines the following facts: (i) L_0 is U-embedded in \mathbf{R}^2 . (Theorem 2b.) (ii) X_1 is U*-embedded in R² (Katětov's theorem). (iii) If $f \in U(X_1)$ and the restriction of f to L_0 is bounded, then $f \in U^*(X_1)$. The fact that X_2 is not U-embedded is established by showing that the function f: $X_2 \rightarrow \mathbf{R}$ defined by

$$f(x,y) = \begin{cases} 0 \text{ if } y \leq 1/2 \\ a_n \text{ if } (x,y) = (a_n,1) \\ 1 \text{ linear between } (a_n/2,1/2) \text{ and } (a_n,1) \end{cases}$$

is uniformly continuous. (See Figure 2.) By condition

(iii) above, f cannot be extended to an element of $U(X_1)$, so f certainly cannot be extended to an element of $U(R^2)$. By generalizing these arguments, one can establish the following.

Theorem 3. If X is the star-like region defined above by the sequence (a_n) , then X is U-embedded in \mathbf{R}^2 if and only if $\lim_{n \to \infty} a_n/a_{n+1}$ (exists and) = 1.

References

- M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91.
- R. Levy and M. D. Rice, The approximation of uniformly continuous mappings by Lipschitz and Hölder mappings (submitted manuscript).

, The extension of uniformly continuous mappings defined on subsets of metric spaces (submitted manuscript).

George Mason University Fairfax, Virginia 22030

x₂

Graph of f: $X_2 \rightarrow \mathbf{R}$

