TOPOLOGY PROCEEDINGS

Volume 5, 1980

Pages 247-252

Research Announcement:

DECOMPOSITIONS OF S^3 WHICH ARE WEAKLY DEFINABLE BY CRUMPLED CUBES

by

EDYTHE P. WOODRUFF

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

DECOMPOSITIONS OF S³ WHICH ARE WEAKLY DEFINABLE BY CRUMPLED CUBES

Edythe P. Woodruff¹

The results summarized here will be proved in "Decomposition spaces having arbitrarily small neighborhoods with 2-sphere boundaries II" [W3]. In the Conference talk and in this announcement (but not as presented in [W3]) the weakly definable concept is used.

Let G be an usc decomposition of S^3 , H be the collection of nondegenerate elements of G, and P be the natural projection of S^3 onto S^3/G . A set $A \subset S^3$ is saturated if A is the union of elements of G. For a set $T \subset S^3$, let Sat T denote $\{p \in S^3 : p \text{ is a point in some } g \in G \text{ which intersects } T\}$. A crumpled cube is the closure of either component of the complement of a (possibly wild) 2-sphere in S^3 .

In the standard terminology, a sequence of manifolds with boundary $\{{\bf M_i}\}_{i\in\omega}$ in ${\bf S}^3$ is called a $\it defining$ $\it sequence$ if

- (1) $M_{i+1} \subset Int M_i$, and
- (2) the set H = the set of components of $\bigcap\limits_{\mathbf{i}\in\omega}\mathbf{M}_{\mathbf{i}}$. These conditions imply that each Bd M_i misses Cl H* (where H* is the union of the nondegenerate elements).

If each component of M_1 is a 3-cell, then the decomposition is definable by 3-cells. Harrold [H] proved

¹Partially supported by NSF Grant MCS-7909542.

248 Woodruff

that if a decomposition G of S^3 is definable by 3-cells, then S^3/G is homeomorphic to S^3 .

Notice that a decomposition is definable by crumpled cubes if and only if it is definable by 3-cells. This follows from the fact that each Bd $\rm M_{\dot 1}$ is disjoint from Cl H*.

In this announcement we call a decomposition G of S 3 to cally definable by K if for each g $_{\in}$ H there is a sequence $\{\kappa_i^g\}_{i\in\omega}$ of sets such that

- (1) K is a compact set in S³,
- (2) K_i^g is homeomorphic to K,
- (3) $K_{i+1}^g \subset Int K_i^g$,
- (4) $g = \bigcap_{i \in \omega} K_i^g$, and
- (5) Bd K_i^g misses H^* .

Locally definable by 3-cells and by crumpled cubes are not equivalent. Price [P] proved that if G is locally definable by 3-cells, then S^3/G is homeomorphic to S^3 . Woodruff [W1] proved that if G is locally definable by crumpled cubes, then S^3/G is homeomorphic to S^3 .

The present work is a further extension of these results.

We weaken the locally definable definition by replacing Bd $C_{\hat{i}}$ misses H* by Bd $C_{\hat{i}}$ is saturated, and obtain:

Definition. A decomposition G of S^3 is called weakly definable by crumpled cubes if for each g \in H there is a sequence $\{K_{\bf i}^g\}_{{\bf i}\in\omega}$ of crumpled cubes such that

(1)
$$K_{i+1}^g \subset Int K_i^g$$
,

- (2) $g = \bigcap_{i \in \omega} K_i^g$, and
- (3) Bd K_i^g is saturated.

We call $\{K_i^g\}_{i\in\omega}$ a weak defining sequence at g.

Conjecture. If a decomposition G is weakly definable by crumpled cubes, then S^3/G is homeomorphic to S^3 .

The following special cases of this conjecture are proved in [W3].

Theorem 1. If G is weakly definable by crumpled cubes and at each $g \in G$ each element of the weak defining sequence is bounded by a 2-sphere which is not wild on both sides, then S^3/G is homeomorphic to S^3 .

Theorem 2. Suppose G is weakly definable by crumpled cubes; and at each g \in G each element F_i^g of the weak defining sequence is bounded by a 2-shpere S_i^g which contains disjoint 0-dimensional F_σ -sets F_1 and F_2 such that F_1 U Int S_i^g and F_2 U Ext S_i^g are each 1-ULC, and $P(F_1)$ and $P(F_2)$ are disjoint 0-dimensional sets in S^3/G . Then S^3/G is homeomorphic to S^3 .

Recall that an usc decomposition is called compact 0-dimensional if P(CL H*) is a compact 0-dimensional set.

Corollary. Let G be a compact 0-dimensional use decomposition of S^3 . Suppose G is weakly definable by crumpled cubes; and at each $g \in G$, F_i^g of the weak defining sequence is bounded by a 2-sphere S_i^g which contains disjoint 0-dimensional F_σ -sets F_1 and F_2 such that

250 Woodruff

 F_1 U Int S_i^g and F_2 U Ext S_i^g are each 1-ULC, and $P(F_1)$ and $P(F_2)$ are disjoint. Then S^3/G is homeomorphic to S^3 .

The proofs are extensions of methods in [W1].

Somewhat different hypotheses from those in the conjecture are used in the following theorem and corollaries.

Theorem 3. Let G be an use decomposition of S³. Assume that for each g \in H and open set U containing g there is an open set X such that g \subset X \subset U; the set P(X) is a 2-sphere; and for the new use decomposition $G_g = \{g \in G: g \subset Sat \ Bd \ X\} \cup \{p \in S^3: p \not\in Sat \ Bd \ X\} \ of \ S^3$, the decomposition space S³/ G_g is homeomorphic to S³. Then S³/G is homeomorphic to S³.

Notice that the hypotheses do not require that Bd ${\tt X}$ be a 2-sphere.

Corollary 3A. Let G be an use decomposition of S^3 . Assume that for each $g \in H$ and open U containing g there is an open set X such that $g \in X \subset U$; the set $P(Bd \ X)$ is a 2-sphere; each element of Sat Bd X is tame, and there are only countably many nondegenerate elements in Bd X. Then S^3/G is homeomorphic to S^3 .

 $\mathit{Proof}.$ This is immediate from the Starbird-Woodruff result [S,W].

Corollary 3B. Let G be an use decomposition of S^3 . Assume that each $g \in H$ is a tame polyhedron and that H contains at most a countable number of arcs (but any

number of other polyhedra). Also assume that for each $g \in H$ and open set U containing g there is a crumpled cube X such that $g \subseteq Int \ X \subseteq U$ and $Bd \ X$ is saturated. Then S^3/G is homeomorphic to S^3 .

Proof. This follows from Corollary 3A, since the conditions here imply that $\mathbf{H}_{\mathbf{A}}$ is countable.

Remark. In Corollaries 3A and 3B the tameness condition can be replaced by assuming that each $g \in H$ has a mapping cylinder neighborhood in S^3 . This follows from Theorem 2 in [W2].

Added in proof: Steve Armentrout has recently given a counterexample to the full conjecture.

References

- [H] O. G. Harrold, Jr., A sufficient condition that a monotone image of the three-sphere be a topological three-sphere, Proc. Amer. Math. Soc. 9 (1958), 846-850.
- [P] T. M. Price, A necessary condition that a cellular upper semi-continuous decomposition of Eⁿ yield Eⁿ,
 Trans. Amer. Math. Soc. 122 (1966), 427-435.
- [S,W] M. Starbird and E. P. Woodruff, Decompositions of E³ with countably many non-degenerate elements, Geometric Topology, edited by J. C. Cantrell, Academic Press, 1979, 239-252.
- [W1] E. P. Woodruff, Decomposition spaces having arbitrarily small neighborhoods with 2-sphere boundaries, Trans. Amer. Math. Soc. 232 (1977), 195-204.
- [W2] _____, Decompositions of E³ into cellular sets, Geometric Topology, edited by J. C. Cantrell, Academic Press, 1979, 253-257.
- [W3] _____, Decomposition spaces having arbitrarily small neighborhoods with 2-sphere boundaries II, (to appear).

252 Woodruff

The Institute for Advanced Study
Princeton, New Jersey 08540
and
Trenton State College
Trenton, New Jersey 08625