

http://topology.auburn.edu/tp/

AN EXAMPLE CONCERNING LOTS WITH $\delta\sigma\text{-}\mathrm{BASES}$

by

HAROLD R. BENNETT

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOON	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

AN EXAMPLE CONCERNING LOTS WI'TH $\delta\theta$ -BASES

Harold R. Bennett

In 1966 Worrell and Wicke [WW] introduced the concept of a θ -base as a generalization of developability. In 1967 Bennett [B₁] introduced another generalization of developable spaces, namely, quasi-developable spaces. In 1971 Bennett and Lutzer [BL] showed that the concept of a θ -base and a quasi-developable space are the same. In 1974 Aull [A] introduced and studied spaces with $\delta\theta$ -bases, an obvious generalization of spaces with θ -bases.

In $[B_2]$ it was shown that a LOTS with a θ -base has a point-countable base and an example was given of a LOTS with a point-countable base that did not have a θ -base. In this note an example of a LOTS with a $\delta\theta$ -base that does not have a point-countable base is given.

Let N, P and Q denote the set of natural numbers, the set of irrational numbers and the set of rational numbers respectively.

Definition 1. A base β for a topological space X is a θ -base ($\delta\theta$ -base) for X if $\beta = \bigcup \{\beta_n \mid n \in N\}$ where if $x \in X$ and U is an open set containing x, then there exists $n(x) \in N$ such that x is in finitely (countably) many members of $\beta_{n(x)}$ and there exists $B \in \beta_{n(x)}$ such that $x \in B \subset U$.

Definition 2. A base p for a topological space X is a point-countable base if, for each $x \in X$, x is in at most

Bennett

countably many members of \mathcal{P} .

It is easy to see that if P is a point-countable base for a topological space X, then P is a $\delta\theta$ -base for X.

Definition 3. A linearly ordered topological space (=LOTS) is a linearly ordered set equipped with the usual open interval topology of the given order. A subset C of a LOTS is *convex* (with respect to the given order \leq) if, whenever p and q are in C, then the closed interval between p and q is contained in C.

Example 1. There is a LOTS X with a $\delta\theta$ -base that does not have a point-countable base.

Let $X = \{ (x_1, x_2, \dots, x_{\lambda}) | \lambda \leq \omega_1, x_{\alpha} \in P \text{ if } \alpha < \lambda, x_{\lambda} \in Q \}$. If x and y are in X and $x \neq y$, then there is a first ordinal γ such that $x_{\gamma} \neq y_{\gamma}$. If $x_{\gamma} \leq y_{\gamma}$ then let $x \leq y$. Equip X with the usual linear topology induced by \leq . If $x = (x_1, \dots, x_{\gamma})$, let $L(x) = \lambda$. We say that y extends x if $L(y) \geq L(x) = \lambda$ and $x_{\alpha} = y_{\alpha}$ for each $\alpha < \lambda$. If $x \in X$, $n \in N$ and $L(x) = \lambda$, let

 $U(n,x) = \{y \in X | y \text{ extends } x, x_{\lambda} - 1/n < y_{\lambda} < x_{\lambda} + 1/n \} \cup \{x\}.$

It is not difficult to see that $\{U(n,x) | n \in N\}$ is a local base at x for each x $\in X$. If x $\in X$ and $L(x) < \omega_1$, then x extends at most countably many elements of X. Thus

 $\mathcal{U} = \{ U(n,x) \mid x \in X, L(x) < \omega_1, n \in N \}$ is a collection of open sets that is point-countable on $\{x \in X \mid L(x) < \omega_1 \}$. Let q_1, q_2, \cdots be a counting of Q and, if $(n,m) \in N^2$ let

2

 $\begin{array}{l} \mathcal{V}(n,m) \ = \ \{ U(n,x) \ | \ L(x) \ = \ \omega_1, x_{\omega_1} \ = \ q_m \} \, . \end{array}$ Notice if $x \neq y$, $L(x) \ = \ L(y) \ = \ \omega_1$ and $x_{\omega_1} \ = \ q_m \ = \ y_{\omega_1}$, then $U(n,y) \ \cap \ U(n,x) \ = \ \emptyset$ for each $n \in \mathbb{N}$. Thus, if $\mathcal{V} \ = \ \cup \{ \mathcal{V}(n,m) \ | \ (n,m) \in \mathbb{N}^2 \}$, it follows that $\mathcal{U} \cup \mathcal{V}$ is a $\delta \theta$ -base for X.

To see that X does not have a point-countable base let β be any base for X. Choose $p_{\alpha} \in P$ $(1 \leq \alpha \leq \omega_1)$, and $x_{\alpha} \in X$, $n_{\alpha} \in N$, and $B_{\alpha} \in \beta(2 \leq \alpha \leq \omega_1)$ so that

(i)
$$_{\alpha} \mathbf{x}_{\alpha} = (\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_{\beta}, \cdots, 1)$$
 with $\mathbf{L}(\mathbf{x}_{\alpha}) = \alpha$;

(ii) $_{\alpha} \mathbf{x}_{\alpha} \in U(\mathbf{n}_{\alpha}, \mathbf{x}_{\alpha}) \subseteq \mathbf{B}_{\alpha} \subseteq U(\mathbf{1}, \mathbf{x}_{\alpha});$ and

(iii) if $2 \leq \beta \leq \alpha$, then $\mathbf{x}_{\alpha} \in U(\mathbf{n}_{\beta}, \mathbf{x}_{\beta})$,

for $2 \leq \alpha \leq \omega_1$. Conditions (i)-(iii) actually describe how the recursion is carried out. Thus, when α is a limit ordinal, (i)_{α} defines x_{α} automatically; (iii)_{α} follows from (iii)_{β} for $\beta < \alpha$; and (ii)_{α} shows how to choose first B_{α} , then n_{α} . And when $\alpha = \gamma + 1$, choose p_{γ} so that x_{α} (as given by (i)_{α}) is an element of $U(n_{\gamma}, x_{\gamma})$; (iii)_{α} is then clearly true, and as before (ii)_{α} guides the choice of B_{α} and n_{α} .

By (iii) ω_1 , $x_{\omega_1} \in \cap \{B_{\alpha}: 2 \leq \alpha \leq \omega_1\}$. But if $2 \leq \beta \leq \alpha \leq \omega_1$, then $x_{\beta} \notin U(1, x_{\alpha}) \supseteq B_{\alpha}$; since $x_{\beta} \in B_{\beta}$, it follows that $B_{\alpha} \neq B_{\beta}$. Thus, β is not point-countable (at x_{ω_1}), and X has no point-countable base.

Bibliography

- [A] C. E. Aull, Quasi-developments and δθ-bases, J. London Math. Soc. 2 (1974), 197-204.
- [B₁] H. R. Bennett, Quasi-developable spaces, Topology Conference, Arizona State University, 1967, Tempe, Arizona, 314-317.

[B2] ____, A note on point-countability in linearly

ordered spaces, Proc. Amer. Math. Soc. 28 (1971), 598-606.

- [BL] and D. J. Lutzer, A note on weak θ -refinability, Gen. Top. and Its Appl. 2 (1972), 49-54.
- [WW] J. M. Worrell and H. H. Wicke, Characterizations of developable spaces, Canad. J. Math. 17 (1965), 820-850.