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WELL PARTIALLY ORDERED
 

SETS AND LOCAL BASES
 

Gary Grabner 

A collection of subsets of a set X is said to be 

Noetherian (of subinfinite rank) provided that every sub­

collection well ordered by c (with incomparable members) 

is finite. The concepts of a base of subinfinite rank and 

a Noetherian base of subinfinite rank were introduced in 

[G,N] and studied further in [F ,G], [G], [L,N], [N ], [N ],l 2

[N ] among others. An important result from [F,G] proved
3

by Ortwin Forster is that every T space having a base ofl 

subinfinite rank is hereditarily metacompact. 

A collection of subsets of a set X is said to be well 

ranked provided that it is the countable union of Noetherian 

collections of subinfinite rank. The concept of a well 

ranked base was introduced in [G,N] where it is shown, 

for example, that a compact T2-space having a well ranked 

base is metrizable. In [G,N] it is also shown that the 

property that every point of a topological space has a 

well ranked base is preserved by countable products. A 

topological space in which every point has a well ranked 

local base is called a wrb-space. 

A topological space in which every point has a local 

base linearly ordered by set inclusion is called a Zob­

space. The class of lob-spaces, introduced by S. Davis in 

[Da], contains the class of first countable spaces. The 

class of globular spaces (defined in section 2), introduced 
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by B. Scott in [Sc] contain~ the class of lob-spaces which, 

unlike the class of lob-spaces, is closed under finite 

products. Many of the interesting properties of lob-spaces 

and globular-spaces are given in [N ].3

In section 1, we discuss the properties of partially 

ordered sets satisfying the finite antichain condition (the 

natural partially ordered set analog of subinfinite rank). 

Using the results of this section we characterize globular 

spaces as those in which every point has a local base of 

subinfinite rank. Thus the class of wrb-spaces contains 

the class of globular spaces. In section 2, we study the 

properties of wrb-spaces and, in particular, show that 

various properties of globular spaces and lob-spaces are 

possessed by wrb-spaces. 

Suppose X is a topological space. Let 1(X) = {V ~ Xi 

V is open}. If mis a collection of subsets of X and if 

x E X then let (m) = {H E m: x E H}. If Y c X then the x 

topology of Y will be the usual subspace topology. 

We will use Greek letters to denote ordinals and for 

convenience we will not distinguish between the cardinal K 

and the first ordinal having cardinality K. The first 

infinite cardinal will be denoted by w. For any set A the 

cardinality of A will be denoted by IAI. Our set theoretic 

usage will be, in general, that of [M]. We also use some 

results of [J]. 

We now state several definitions which will be used 

in section 2. 

Let X be a topological space. The space X is weakZy 

first countabZe provided that at each point x E X there is 
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a decreasing sequence (B(n,x): nEw) of subsets of X such 

that U E T(X) if and only if for each x E U there is an 

n(x,U) E w such that B(n(x,U),x) ~ ~ [A]. The space X is 

sequential provided that each of its sequentially closed 

subsets is closed, [F]. The tigh~ness of X, denoted t(X), 

is	 the smallest infinite cardinal K such that if A c X and 

x E cl (A) then there is a set C ~ A with Icl < K and 

x E cl (C), [J]. If x E X then the character of x in X, 

denoted X(x,X), is the smallest infinite cardinal K such 

that x has a local base with cardinality less than or equal 

to K, [J]. The character of X, denoted X(X), is sup {(x,X): 

x E X}, [J]. 

1.	 Partially Ordered Sets Satisfying the Finite Antichain 
C-endition and Well Partially Ordered Sets 

Let (P,~) be a partially ordered set and n an infinite 

cardinal. If a,b E P such that a i band b i a then a and 

b are said to be incomparable, written as a inc b. A sub­

set Q of P is called incomparable provided that every two 

elements of Q are incomparable. A subset Q of P is said 

to be cofinal in P (with respect to <) provided that for 

every a E P there is abE Q such that a < b. Let 

cf (P,~) = min{IQI: Q is cofinal in p}. The poset (P,~) 

is said to 

(l) satisfy the finite antichain condition (abbreviated 

f.a.c.) provided that every incomparable subset of P is 

finite. 

(2) be Noetherian (n-Noetherian) provided that every 

subset of P well ordered by < is finite (has cardinality at 

most n). 



48 Grabner 

(3) be well partially ordered (abbreviated w.p.o.) 

provided that every nonempty subset has at least one, but 

no more than a finite number of minimal elements [K]. 

(4) be direated provided that for every p,q E P there 

is an x E P such that p .:. x and q .:. x. 

The finite antichain condition is the natural partially 

ordered set analog of subinfinite rank. Indeed, a collec­

tion of sets with nonempty intersection and having sub-

infinite rank when partially ordered by e satisfies the 

finite antichain condition. By this observation the follow­

ing characterization of base of subinfinite rank is easily 

established. 

Theorem 1.1. A base 8 for a topologiaal spaae X is 

a base of subinfinite rank if and only if for eaah x E X 

the partially ordered set ((8) ,e) satisfies the finite 
x ­

antiahain aondition. 

The concept of a well partial ordering was introduced 

around 1950 (see [K]) and is a generalization of a well 

ordering. The finite antichain condition is the correspond­

ing generalization of a linear (total) ordering. The fol­

lowing is easily proved. 

Theorem 1.2. (1) A poset (P,~) is well partially 

ordered if and only if it satisfies the f.a.c. and (P,~) is 

Noetherian. (2) Every pose t (P,~) satisfying the f. a. c. has 

a aofinal subset well partially ordered by ~. 

Corollary 1.3. A base B for a topological space X is 

a Noetherian base of subinfinite rank if and only if for 
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every x E X the partially ordered set «8) ,~) is well 
x -

partially ordered. 

As in [D,M] the dimension of the partially ordered 

set (P,<) is the smallest cardinal n such that < is the 

intersection of n linear orders on P. Equivalently, the 

dimension of (P,<) is the smallest cardinal n such that 

(P,<) can be isomorphically embedded in the product of n 

linearly ordered sets. (See [0].) The following theorem 

Theorem 1.4. Let (P'2) be a partially ordered set of 

finite dimension. Then (P'2) is well partially ordered if 

and only if (P,<) is isomorphic to a subset of the product 

of a finite number of well ordered sets. 

The following theorem is found in [0]. 

Theorem 1.5. If (P,~) is a partially ordered set and 

k E w is such that every incomparable subset of P has at 

most k elements then P can be expressed as the union of at 

most k subsets of P totally ordered by 2. 

In the case of partially ordered sets satisfying the 

finite antichain condition there is no such characteriza­

tion. In fact, for any infinite cardinal n there exists 

a well partially ordered set which cannot be expressed as 

the union of less than n totally ordered subsets [WI]. The 

next theorem (proved in [P]) is, however, a natural analog 

to Theorem 1.4 for partially ordered sets satisfying the 

f.a.c. 
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Theorem 1.6. Suppose (P'2) is a partially ordered set 

satisfying the finite antichain condition 

(1) P is the union of a finite number of directed 

subsets. 

(2) If P is directed, then it contains a cofinal 

subset which is order isomorphic to the product of a finite 

number of distinct regular cardinals. 

Corollary 1.7. If (P'2) is a poset satisfying the 

finite antichain condition then cf (P'2) is regular. 

Corollary 1.8. Suppose (P'2) is a poset satisfying th€ 

finite antichain condition. If Ipi = n > w then there is a 

cofinal subset of P which is the union of less than n sets 

well ordered by 2. 

Corollary 1.7 and Corollary 1.8 are from [M,P]. The 

following result is from [W ].
2

Lemma 1.9. Any infinite well partially ordered set 

(P,~) contains a well ordered subset C with Ici = Ipl. 
Hence, for every infinite cardinal n, every n-Noetherian 

well partially ordered set has cardinality at most n. 

2. Space. Having Well Partially Ordered Local Base. 

Let ~ be a finite set of infinite regular cardinals, 

X a topological space and x E X. A local base B at x is 

called an ~-generalized linearly ordered base (~-glob) at 

x provided that (B,~) is order isomorphic to (IT~'2) where 

< is the usual product partial ordering. If ~ = ~ then 

let rr~ =~. A topological space in which each point x, 
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for some finite set of infinite regular cardinals ~x, has 

an ~x-generalized linear ordered base is said to be 

globular. The class of globular spaces was introduced by 

Brian Scott as a generalization of lob-spaces which is 

closed under finite products (see [Sc]). 

As a direct consequence of Theorem 1.4 and Theorem 1.6 

we have the following characterization of globular spaces. 

Theorem 2.1. A topological space is globular if and 

only if every point has a local base with subinfinite rank. 

Corollary 2.2. Every topological space with a base 

of subinfinite rank is globular. 

The following result also follows from Theorem 1.4 

and Theorem 1.6. 

Thereom 2.3. A topological space X is a wrb-space if 

and only if for each x € X and for each nEw there is a 

collection B(n,x) of neighborhoods of x and a finite set of 

infinite regular cardinals ~(x,n) such that (B(n,x) '~) is 

order isomorphic to (IT~(n,x),~) where ~ is the usual 

product partial ordering and such that u{B(n,x): nEw} is 

a local base at x. 

The following theorem is from [Da]. 

Theorem 2.4. If X is a T lob-space, then the follow­1 

ing are equivalent: 

(a) X is first countable. 

(b) X is weakly first countable. 



52 Grabner 

(c) X is sequentia l. 

(d) X has countable tightness. 

(e) If x E X then {x} is a Go-set. 

(f) If x E X and { x} is not open, then there is a 

countable set C c X - {x} with x E cl (C). 

Example 2.5. Let X = [(wl+l) x w] U {(wl,w)}. We 

topologize X by letting points of (wl+l) x W be isolated 

and giving (wl,w) a local base as in the product topology 

of (wl+l) x (w+l). The space X is easily seen to be globu­

lar. However, {(wl,w)} is a Go-set and (wl,w) E cl{ (wl,n): 

n < w}. Thus X meets conditions (f) and (e) of Theorem 

2.4 but is clearly not first countable. This example is 

due to Brian Scott. 

Theorem 2.6. If X is a wrb-space and for each x E x, 

B(x) is a well-ranked local base at x then the following 

are equivalent: 

(a) X is first countable. 

(b) X is weakZy first countabZe. 

(c) X is sequential. 

(d) X has countable tightness. 

(e) The union of any collection of closed subsets of 

X totally ordered by c with uncountable cofinality is 

closed. 

(f) For all x E X and ~ ~ B(x) such that ~ is totally 

ordered by ~ and has uncountable cofinality with respect 

to ~, x E int -(n~). 

Proof. clearly for every topological space (a) ~ (b) ~ 
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(c)	 - (d) - (e) - (f). We will prove that for wrb-spaces 

(f)	 • (a). 

Let x E X and for every infinite cardinal K let [K] be 

the	 statement 

For every ~~ B(x) with I~I ~ K there is a countable 

set m ~ B(x) such that for each G E ~ there is an 

HEm with H c G. 

Clearly [w] holds. Suppose A is an uncountable cardinal 

and for every infinite cardinal K < A [K] holds. Also sup­

pose ~ ~ B(x) with I~I = A. Since ~ is well ranked, let 

~ = u{K(n) = <w} where for each n < w the collection K(n) 

has subinfinite rank. 

Suppose that A is a singlular cardinal. Since, by 

Corollary 1.7, for all n < w, cf (K(n),~) is regular, for 

each n < w, there is a regular cardinal y(n) < A and a 

cofinal (w.r.t.~) subset H(n) of K(n) with IH(n) I = y(n). 

For each n < w, by [y(n)], there is a countable set 

~(n) ~ B(x) such that for each H E H(n) there exists an 

M E m(n) with M ~ H. Since U{m(n): n < w} is cofinal in 

~, the countable set U{m(n): n < w} has the desired property. 

Suppose that A is an uncountable regular cardinal. By 

Corollary 1.8, for each n < w there is a cardinal y(n) < A 

such that for each a < y(n) there is an m(a,n) c K(n) 

totally ordered by ~ and such that U{~(a,n): a < y(n)} is 

a cofinal (w.r.t.~) subset of K(n). For each n < w, let 

S(n) = {a < y(n): cf (~(a,n) ,~) = w} and for each a E S(n) 

let S(a,n) be counta~le cofinal (w.r.t.~) subset of m(a,n). 

For each n < wand each a E y(n)/S(n), since x E int n 

~(a,n), let H(a,n) E B(x) such that H(a,n) c int n m(a,n) 
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and let 5(a., n) = {H(a,n)}. Let N = u{5(a,n): n < wand 

a < y (n)} and notice that for each G E Y there is an N E N 

with NeG. Since A is an uncountable regular cardinal, 

INI ~ sup({y (n): n < w} U {w}) < A. By [INj] there is a 

countable set H c B(x) such that for each N E N there is 

an M E H with MeN. Thus H is a countable subset of B(x) 

having the desired property. 

Hence [A] holds and so [K] holds for every infinite 

cardinal K. By [IB(x) I], let mbe a countable cofinal 

(w.r.t.~) subset of B(x). Clearly mis a countable local 

base at x. Therefore we have established that X is first 

countable. 

The following result due to M. Ismial follows from 

Theor'em 2. 5 • 

Corollary 2.7. Every compact T space having a base2 

of subinfinite rank is first countable. 

Proof. In a compact space the union of a collection 

of closed (compact) sets totally ordered by c with uncounta­

ble cofinality is countably compact. Since a T spaceI 

having a base of subinfinite rank is hereditarily metacom­

pact, a countably compact subset of a compact T space2 

having a base of subinfinite rank is compact and hence 

closed. The corollary follows from Theorem 2.6(f). 

Theorem 2.8. If X is a T wrb-space then X(X) < c (X).3 ­

Proof· Let x E X and B a well ranked base at x. Since 

X is T3 , the collection B* {int (cl (B)) : B E B} is a base 

at x. It is straightforward to verify that B* is well 
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ranked and that (B*,~) is c(X)-Noetherian. Hence, by 

Lemma 1.9, IB*I < c(X) and so X(x,X) ~ IB*I < c(X). 

Corollary 2.9. Every T wrb-space sqtisfying the3 

countable chain condition (c(X) = w) is first countable. 

Both the class of first countable spaces and the 

class of wrb-spaces are closed under countable products. 

However no point in the product of uncountably many non­

trivial Tl-spaces has a countable local base. In the next 

theorem we strengthen this well known result. 

Theorem 2.10. Suppose X is the produce of uncountably 

many T spaces having at least 2 points. Then no point ofl 

X has a well ranked local base. 

Proof· If x E X has a well ranked base then x has a 

well ranked base in every subspace of X in which it is con­

tained. Thus without loss of generality we may assume that 

X is the product of uncountably many two point discrete 

spaces. If so, then X satisfies the countable chain condi­

tion but no point X has a countable local base. Thus by 

the proof of Theorem 2.7 no point of X has a well ranked 

local base. 

The following theorem was proved for globular spaces 

in [Sc]. 

Theorem 2.11. Suppose X is a T wpob-space. Then Xl 

is countably compact if and only if it is sequentially 

compact. 

Proof. Assume X is countably compact and show that it 
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is sequentially compact. (The other implication is obvious.) 

Let <x (n): n < w) be a sequence in x, y a cluster point of 

a set A = {x(n): nEw}, and B a well ranked base at y. 

Since A is countable ({B n A: B E B},~) is w-Noetherian. 

Hence, by Lemma 1.9, !{B n A: B E B}! ~ w. Let y be a 

countable subset of B such that {G n A: G E y} = {B n A: 

B E B} and let y {G (n): n < w}. 

Let n(o) = O. Suppose k < wand for every m ~ k, 

n(m) < w has been chosen such that if j < m < k then 

n(j) < n(m) and such that for all m < k, x(n(m» E n{G(j): 

j < m}. Since y is a cluster point of A there is an m < w 

such that n(k) < m and x(m) is in the open set n{G(j): 

j < m + l}. Let n(k+l) = m. 

Let V be an open neighborhood of y. There is aBE B 

such that B c V and a k E w such that G(k) n A c B n A. 

Since for all m < w, x (n (m» E n{G (j): j < m}, {x (n (m» : 

k < m < w} ~ G(k) n A c B n A c B c V. Thus the subsequence 

<x(n(j»: j < w) converges to y. 

If X is a globular space then, for every x E X, X(x,X) 

is a regular cardinal and X(X) = t(X), [Sc]. If X is a 

wrb-space and x E X then, although x(x,X) need not be 

regular, by Corollary 1.7, we can conclude that X(x,X) is 

either a regular cardinal or has cofinality w. 

Question 2.12. Suppose X is a wrb-space. Does 

X (X) = t (X)? 

The following characterizations of paracompactness in 

lob-spaces are from [Dal. 
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Theorem 2.13. Suppose X is a regular lob-space. Then 

the following are equivalent 

(1) X is paracompac t. 

(2) X is irreducible and K-preparacompact. 

(3) X is 8-refinable and K-preparacompact. 

Question 2.14. Does Theorem 2.13 hold for regular 

wrb-spaces? 
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