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HAUSDORFF TOPOLOGIES ON GROUPS 

P. L. Sharma 

1. Introduction 

This paper concerns the following question raised by 

Markov [21] in 1945: 

Does every infinite group admit a non-discrete 

Hausdorff topology? 

Since the appearance of Markov's paper, there has been sub

stantial research related to this question. For example, 

Kertesz and Szele [19] proved in 1953 that every infinite 

abelian group admits a non-discrete metrizable topology. 

About a decade later, Comfort and Ross [4] discovered a 

natural one-to-one correspondence between the collection of 

admissible totally bounded Hausdorff topologies on an abelian 

group G and the collection of point-separating groups of 

characters on G. The same authors also found an elegant 

generalization of the Kertesz-Szele theorem. More recently, 

Fletcher and Liu [10] have shown that the full homeomorphism 

groups of a large class of topological spaces do admit non

discrete Hausdorff topologies and Taimanov [30] has proved 

that all 'big' subgroups of a permutation group are, indeed, 

non-trivially topologizable. It is also known now that, 

assuming CH, there exist infinite groups which admit no 

topology except the two trivial ones. 

Although our main concern here is to topologize groups, 

not all sections of this paper are directly related to Mar

kov's question. In §2, we give a simple and yet important 
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extension of the Kertesz-Szele theorem. In §3, we extend 

a result of Prodanov [23] by showing that any admissible 

Hausdorff topology on a countable group can be condensed 

into an admissible metrizable topology. In §4, we show 

that under some compatibility conditions, an ideal on a 

given set induces admissible non-discrete Hausdorff topolo

gies on certain groups of permutations of the set. This 

leads to an extension of a result of Taimanov [30]. In §5, 

the method of ideals is applied to define several admissible 

topologies on the full homeomorphism groups of certain 

classes of spaces. For example, we show that if a topologi

cal space X has the property that each of its finite subsets 

is periodic, then the full homeomorphism group of X admits 

a non-trivial topology: this extends a result of Fletcher 

and Liu [10]. In §6, some algebraic properties of the full 

homeomorphism groups of some spaces are studied and a ques

tion of Fletcher and Liu [10] is answered. 

A word of caution is in order. Our terminology often 

differs from that of Fletcher and Liu [10]. For example, 

the weak Galois spaces of [10] are, in our terminology, 

those spaces in which each proper closed subset is periodic. 

2.	 Topologies on Groups with Infinite Centers 

Let (G,·) be a group and let T be a topology on G, 

such that (G,·,T) is a topological group. Then (G,·) is 

said to admit the topology T and T is said to be an admis

sible topology on (G,·). An admissible topology Ton
 

(G,·) is said to be subgroup generated provided the
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neighbourhood filter of the identity element e of (G,-) has 

a filter base each element of which is a subgroup of (G,-). 

2.1. Remark. It is well known [3] that if G is a 

group and if S is a filter base on G satisfying 

(Bl) For each V E S, there exists aWE S such that 

W - W c V 

(B2) For each V E S, there is aWE S such that 

W- l 
C Vi and 

(B3)	 For each g E G and each V E S, there exists a 

-1
W E S such that g - W - g c V 

then there is a unique admissible topology on G for which 

S is a neighbourhood filter base of the identity element 

e of G. The following simple extension of the Kertesz-

Szele theorem is worth recording. 

2.2. Theorem. Every group with infinite center admits 

a non-discrete metrizable topology. 

Proof. Let G be a group such that the center Z(G) of 

G is infinite. In view of the Kertesz-Szele theorem, there 

exists an admissible non-discrete metrizable topology T on 

Z(G). Let S be the collection of all T-neighbourhoods of 

e in Z(G). Since Z(G) is the center, it is clear that 

-1 g - A - g = A for any g E G and any A c Z(G). It is now 

easy to verify that S is a filter base at e for an admissi

ble topology T* on G; and that the topology T*, like T, 

is non-discrete and metrizable. 

2.3. Remark. Shelah [28] has shown that, assuming 

CH, there is a group G of cardinality ~l' such that G 
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admits only the two trivial (the discrete and the indiscrete) 

topologies. Let n be any positive integer and let C be the n 

cyclic group of order n. Note that the group G x C has n 

exactly n elements in its center. It is easy to show that 

G x C admits no non-discrete Hausdorff topology. Hence,n 

given CH and any positive integer n, there is group having 

exactly n elements in its center and admitting no non

discrete Hausdorff topology. 

2.4. Remark. An interesting generalization of the 

Kertesz-Szele theorem discovered by Comfort and Ross [4] 

states that every infinite abelian g~oup is a dense non

discrete subgroup of a locally compact Hausdorff abelian 

group. Whether a similar statement holds for all groups 

with infinite centers is not known. 

2.5. Remark. Another result of Comfort and Ross [4] 

states that, given any abelian group G, there is a natural 

one-to-one correspondence between the collection of admis

sible totally bounded Hausdorff topologies on G and the 

collection of point-separating groups of characters on Gi 

each admissible totally bounded topology on G is the weak 

topology of the group of its continuous characters. Combin

ing this fact with the observation that for each countable 

abelian group G there exists a countable group of characters 

which separates the points of G, one can easily show that 

every countable infinite abelian group has exp(~O) admis

sible totally bounded metrizable topologies. Consequently 

any group with infinite center admits at least exp(~O) 

metrizable topologies. 
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3. Topologies on Countable Groups 

In this section we extend a result of Prodanov [23], 

as promised in the introduction. 

3.1. Theorem. For any admissible Hausdorff topology 

1 on a countable group G~ there exists an admissible 

metrizable topology 1* on G such that 1* C 1. 

Proof. If 1 itself is metrizable (and, in particular 

if G is finite) then by letting 1* = 1, we are done. So 

assume that G is infinite and let G = {x : n < w} with n 

X e, the identity element of G. Fix a sequenceo 

{V n < w} of 1-neighbourhoods of e such that nv = {e}.
n n 

Partition the set N of positive integers into a collection 

{A : n E N} of sets such that each A is infinite. Let 
n n 

f: N ~ G be defined by the rule: f(n) = x. if and only if 
J 

n E A Now choose a sequence {W : n < w} of 1 neighbour
j

. 
n 

-1
hoods of e inductively as follows: Let W Va n Va and a 

suppose W. has already been defined for each j < n. Then, 
J 

we let W to be any 1-neighbourhood of e satisfying the 
n 

following three conditions. 

(i) W w~l 
n
 

(].'].') w2 V n W d
 n C n-l n-l' an 

(iii) [f (n)] -1 • W n Wn-ln· f () C 

Such a choice of W is clearly possible. The decreasing
n 

sequence {W : n < w} is a filter base at e which induces 
n 

an admissible topology T* on G satisfying all of the 

required conditions. 

Let us note some easy consequences of this theorem. 
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3.2. Corollary. (Prodanov [23]). Every countable 

minimal abelian Hausdorff group is metrizable. 

In view of our theorem and the well-known fact that 

any countable dense-in-itself metrizable space is homeo

morphic to the space Q of rational numbers, we have the 

following result: 

3.3. Corollary. If a countable group admits a non

discrete Hausdorff topology then it also admits a topology 

under which it is homeomorphic to the space of rational 

numbers. 

3.4. Corollary. If a cQuntable group admits a totally 

bounded Hausdorff topology then it also admits one which is 

totally bounded and metrizable. 

4. Method of Ideals 

An ideal 9 on a non-empty set X is a non-empty collec

tion of subsets of X such that 

(i) A, B E 9 implies A U B E 9 

(ii) A E ~ and B c A implies B E ~; and 

(iii) X ¢ 9. 

By an ideal on a topological space we shall mean an ideal 

on the underlying set of the space. The group of all 

permutations on a set X is denoted by IT(X). Note that the 

group operation of IT(X) is composition of maps, and that 

the identity element e of IT(X) is the function for which 

e(x) = x for all x E X. For a subset G of IT(X) and a sub

set A of X we define A*(G) = {g E G: g(a) = a for all 

a E A}. 
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4.1. Definition. Let ~ be an ideal on a non-empty set 

X and let G be a subgroup of IT(X). The ideal ~ is said 

to be compatible with the group G provided the following 

conditions are satisfied 

(i) A E ~ and g E G implies g(A) E ~ 

(ii) For each A E ~, A*(G) +{e} ; and 

(iii) For each g E G, g f e, there is some A E ~ such 

that g ¢ A* (G). 

Suppose an ideal ~ on a set X and a subgroup G of IT (X) are 

given. Let ~ be compatible with G and let S {A* (G) : 

A E ~}. It is easily seen that S satisfies conditions (Bl) 

and (B2) of 2.1. Furthermore, from the compatibility condi

tions (ii) and (iii) it follows that {e} ¢ Sand n{A*(G): 

A E ~} = {e}. Also note that each member of 8 is a subgroup 

of G. We claim that S also satisfies condition (B3) of 2.1. 

To verify this claim, take any g E G and any A E ~ and let 

C = A U g(A). Then C E ~ and g-l • C*(G) • g c A*(G). 

These observations lead us to the following result. 

4.2. Theorem. Let ~ be an ideal on a non-empty set 

X and let G be a subgroup of IT(X). If ~ is compatible with 

G~ then it induces an admissible~ subgroup generated~ non-

discrete~ Hausdorff topology on G. 

Now, we will examine one particular ideal which we shall 

later find to be very useful. Before defining the ideal 

and examining its compatibility, we need to introduce some 

terminology. In the remainder of this section, X will 

denote an arbitrary fixed infinite set, Y is a fixed 
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infinite subset of X and G is an arbitrarily fixed subgroup 

of IT (X). Our goal is to find conditions under which the 

ideal ~O{Y), of all finite subsets of Y is compatible with 

G. 

4.3. Definition. The set Y is said to be G-invariant 

provided y E Y and g E G implies g (y) E Y. 

4.4. Definition. The identity element e of G is said 

to be pure with regard to the set Y provided g E G and 

g{y) = y for all y E Y implies g = e (i.e. g{x) = x for 

all x E X). 

4.5. Remark. If the identity element of G is pure 

with regard to Y, then it is clear that for gl,g2 E G, 

the condition gl{y) = g2{y) for all y E Y implies gl = g2· 

The following theorem is merely a reformulation of the com

patibility conditions of 4.1. 

4.6. Theorem. The ideal ~o(Y) of all finite subsets 

of Y is compatible with G if and only if the follo~ing con

ditions are satisfied 

(i) Y is G-invariant 

(ii) A E joey) implies A*{G) + e, and 

(iii) The identity element of G is pure with regard to Y. 

4.7. Corollary. The ideal ~O of all finite subsets 

of X is compatible ~ith G if and only if A E ~O implies 

A*(G) +e. 
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4.8. Lemma. Let Y be G-invariant and let IGI > IYI. 

Then	 for any Y E Y, I {Y} * (G) I > IYI • 

Proof. Let y be an arbitrary (but fixed) element of 

Y. For any t E Y; let P(t) {g E G: g(y) = t}. As Y is 

G-invariant, U{P(t): t E y} G; and therefore, in view of 

I GI > IY! , there is some t E Y such that IP (t l ) I > IYl·l 

Let us fix some h E G such that h(t ) = y. Then the set
l 

H = {hg: g E P (t ) } is such that I HI > IYI. Since H is a
l 

subset of the group {y}*(G), the lemma is proved. 

4.9. Theorem. Let Y be G-invariant and let the 

identity element of G be pure with regard to Y. Then 

IGI > IYI implies that the ideal ~O(Y) is compatible with 

G. 

Proof· Let A = {Yl'Y2'---'Yn} be an arbitrary finite 

subset of Y. Let G = {g E G: g(Yl) Y } and for any
l l 

integer k, 1 < k ~ n, define Gk = {g E G - l : g(yk ) = Yk}.k 

Clearly G A*(G). A repeated use of Lemma 4.8 shows that 
n 

IGn I > IYI· 

The following result is obtained from Theorem 4.9 by letting 

y = x. 

4.10. Corollary. (Taimanov [30]). Let X be an 

infinite set and let G be a subgroup of IT(X) such that 

IGI > Ixi. Then Gadmits a non-discrete, Hausdorff topology. 

The importance of Theorems 4.6 and 4.9 is brought out by 

the following examples. 
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4.11. Example. Let R be the real line with the usual 

topology and let G be the group of all surjective homeo

morphisms on R for which the set Q of rationals is invariant. 

Since Q is dense in R, the identity element of G is pure 

with regard to Q. Applying Theorem 4.6 (or Theorem 4.9) 

we conclude that G admits a non-discrete Hausdorff topology. 

4.12. Example. Let T denote the usual topology on
 

the real line R. Let be the topology on R generated by
T l 

T U {Q}; and let T be the topology on R obtained by expand2
 

ing T by isolating each element of Q. Let G i = 1,2; be

i

,
 

the group of all homeomorphisms of (R,T ) onto itself.
i
 

Note that Q is dense in (R,T ) and therefore the identity

i
 

element of G is pure with regard to Q. Applying either

i
 

Theorem 4.6 or Theorem 4.9 we conclude that each G. admits
 
1 

a non-discrete Hausdorff topology. 

4.13. Example. Let X be the set of all non-zero
 

integers. For each positive integer n, define f as fol
n
 

lows: fn{n) = -n, fn{-n) = nand fn{j) j for all j E X
 

such that Ijl f n. Let G be the subgroup of IT(X) generated
 

by the set {f : n is a positive integer}. It is easy to
 n 

see that the ideal ~O of all finite subsets of X is com

patible with G (apply 4.7) and therefore G admits a non-

discrete Hausdorff topology. Note that G is countable and 

thus Theorem 4.9 does not apply here. 

5. Topologies on Homeomorphism Groups 

The group of all homeomorphisms of a topological
 

space X onto itself is denoted by H(X) and is known as the
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full homeomorphism group of X. Since every group is iso

morphic to the full homeomorphism group of some topological 

space [13], topologizing the full homeomorphism groups of 

large classes of topological spaces could be a fruitful 

approach to Markov's question. Although various kinds of 

topologies on homeomorphism groups have been studied for a 

long time, it is only recently that Fletcher and Liu {10] 

started studying topological properties which guarantee the 

existence of non-discrete Hausdorff topologies on the full 

homeomorphism groups. In this section we use the method 

of ideals to find more general properties than those given 

in [10], which also insure the existence of suitable 

topologies on the homeomorphism groups. 

5.1. Definition. A subset A of a topological space 

X is said to be periodic if there exists h E H(X), h ~ e, 

such that h(a) = a for all a E A. A subset A of X is said 

to be strongly periodic if for each x ¢ A, we can find 

some h E H(X) such that h(a) = a for all a E A and h(x) ~ x. 

5.2. Theorem. If each finite subset of a topological 

space X is periodic then the ideal ~O of all finite subsets 

of X is compatible with H(X); and consequently H(X) admits 

a subgroup generated non-discrete Hausdorff topology. 

Proof. The conclusion of this theorem easily follows 

from Corollary 4.7 by tcking G = H(X). 

5.3. Lemma. The intersection of all the finite dense 

subsets of a TO space X is dense in x. 

Proof. If the collection of finite dense subsets of X 
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is empty then the intersection of the collection is X, and 

so we are done. If there is a finite dense subset F in X, 

then F clearly contains a subset A such that A is dense and 

is minimal among the dense sets. We claim that every finite 

dense subset of X contains A. If possible suppose there is 

a finite dense subset B of X which does not contain A, let 

a E A-B. Since B is finite and dense in X, there is some 

b E B such that a E {b}-. As no proper subset of A is 

dense, b ¢ A. Since X is TO and since a E {b}-, so b ~ {a}-. 

Therefore, there is some a E A, a ~ a, such that b E {a }-.
l l l 

But then a E {a }-; a contradiction to the fact that nol 

proper subset of A is dense in X. 

5.4. Theorem. If each proper cZosed subset of a TO 

spac~ X is periodic~ then so is every finite subset of x. 

Proof. Let F be an arbitrary finite subset of X. If 

F is nQt dense in X, then F is periodic and therefore so is 

F. Let us suppose that F is dense in X. First, note that 

the hypothesis that each proper closed set of X is periodic 

implies that X has no isolated points. This fact and the 

TO axiom together imply that X is infinite. Let A be the 

intersection of all the finite dense subsets of X. Then F 

contains A, and, by Lemma 5.3, A is dense in X. Clearly 

F-A is not dense in X and so there exists a E A such that 

a ¢ F-A. As no proper subset of A is dense in X, a ¢ A=TaT. 
Consequently there is an open set G containing a such 

that G n F = {a}. Now X-G is a proper closed subset of 

X and so there is some f E H{X), f ~ e, such that f{x) = x 

for all x E X-G. If we show that f(a) = a, then the 
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periodicity of F would be established. We note that the 

fact that A is the smallest among the finite dense subsets 

of X implies that h(A) = A for all h E H(X); and therefore, 

in particular, f(A) = A. Since F - {a} c X-G and f(x) = x 

for all x E X-G, it follows that f(a) = a. This completes 

the proof of the theorem. 

5.5. Corollary. (Fletcher and Liu [10]). If each 

proper closed subset ofa TOspace X is periodic, then H(X) 

admits a subgroup generated, non-discrete, Hausdorff 

topology. 

5.6. Remark. Let X be a TO space such that each 

proper closed subset of X is periodic. Then it follows 

from Theorems 5.2 and 5.4 that the ideal ~O of all finite 

subsets of X is compatible with H(X). It is also easy to 

check that if X has a finite dense set and if A is the 

smallest finite dense subset of X, then the ideal of all 

finite subsets of X-A is also compatible with H(X). It 

should be noted that the two ideals are equivalent in the 

sense that both induce the same topology on H(X). 

5.7. Remark. A topological space may be such that 

there may be several different ideals on X compatible with 

H(X). In each of the following examples, we have, besides 

the ideal of finite subsets, some other ideal compatible 

with H(X). 

(i) X is non-compact and each compact subset of X is 

periodic; the ideal generated by compact subsets of X. 

(ii) X is uncountable and each countable subset of X 
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is periodic; the ideal of all countable subsets of X. 

(iii) X is a dense-in-itself (= no isolated points) T
l 

space and each nowhere dense subset of X is periodic; the 

ideal of all nowhere dense subsets of X. 

5.8. Example. Let R be the real line with the usual 

topology and let G be the group of all homeomorphisms of 

R onto R. We will examine the following topologies on G. 

(i) 1 ; the compact open topology.c 

(ii) 1 0 ; the topology induced by the ideal ~O of all 

finite subsets of R. 

(iii) 1 ; the topology induced by the ideal ~n of all n 

bounded nowhere dense subsets of R. 

(iv) 1 N; the topology induced by the ideal ~N of all 

nowhere dense subsets of R. 

(v) 1 k ; the topology induced by the ide~l ~k of all 

subsets of R which have compact closures. 

It is well-known [1] that 1 admissible; the fact that the 
C 

other four topologies are also admissible can be easily 

verified by applying Theorem 4.2. It is also straight

forward to show that these five topologies are all distinct. 

Note that if a and b are any two real numbers such that 

a < b and if we are given some g E G such that g(a) = a 

and g(b) = b then a < h(x) < b for any x in the interval 

(a,b). This observation leads one to prove that 1 C 1 0 . 

It is easy to check that the following inclusion relation

ship holds: 

c 

(a) L C L L C L n 1 and
C O C n k N; 

(b) Neither of 1 k and 1 N contains the other. 
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Note	 that (G,T ) and (G,T ) are both metrizable whereas 
C k
 

the local weight of (G,T ) equals the cardinality of the
O

continuum. It is also easy to show that the local weight 

of (G,T ) equals that of (G,T ). Since R is of second n N


category in itself, the local weight of (G,T ) must be
 n 

uncountable. In Cohen's original models ZFC + 'CH, the 

local weight of these two groups equals the cardinality of 

the continuum. However, we do not know whether ZFC alone 

can imply this result. In this context, it is known that 

if K denotes the ubiquitous cardinal defined by Hechler 

[16], then there is a collection of cardinality at most K, 

of nowhere dense subsets of R which covers R. 

6.	 Algebraic Properties of H (X) 

Fletcher and Liu [10] have proved that if X is a 

Hausdorff space such that each proper closed subset of X 

is periodic, then H(X) is infinite and nonabelian. This 

result lead them to raise the following questions: 

Is every infinite nonabelian group isomorphic to the 

full homeomorphism group of some TO space X satisfying the 

condition that each proper closed subset of X is periodic? 

If so, can X also be taken to be completely regular? 

In this section we will answer these questions in the 

negative. We will also construct an example of TO space X 

such that each proper closed subset of X is periodic and 

yet the full homeomorphism group of X is abelian. 

6.1. Theorem. Let a topological space X be such that 

each finite subset of X is periodic. Then H(X) does not 

satisfy the minimum condition for subgroups. 
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Proof. The conclusion follows easily from the fact 

that H(X) admits a subgroup-generated, non-discrete Haus

dorff topology. 

6.2. Theorem. If each proper closed subset of X is 

periodic and if X contains an infinite collection of pair-

wise disjoint non-empty open sets~ then H(X) does not 

satisfy the maximum condition for subgroups. 

Proof. Let {An: n < w} be a countably infinite col

lection of pairwise disjoint non-empty open subsets of X. 

Let G = {h E H(X): h(x) = x if x ¢ A. for 0 < j < n}. We 
n J -

can easily show that {G : n < w} is an increasing sequencen 

of subgroups of H(X). Using the hypothesis that each 

proper closed subset of X is periodic and the imposed con

ditions on {An: n < w}, it can be easily seen that for each 

n, G is properly contained in G + l . n n 

6.3. Corollary. Let X be a topological space such 

that each proper closed subset of X is periodic. Then the 

following statements hold. 

(i) If X is TO~ then H(X) does not satisfy the minimum 

condition for subgroups. 

(ii) If X is Hausdorff then H(X) does not satisfy the 

maximum condition for subgroups. 

6.4. Theorem. If a topological space X satisfies any 

one of the following conditions~ then the center of the 

group H(X) is trivial. 

(i) For any x,y E X~ there is some h E H(X) such that 

h fixes one of x,y and moves the other. 
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(ii) Each point of X is strongly periodic. 

(iii) X is TO and each proper closed subset of X is 

strongly periodic. 

(iv) X is Hausdorff and each proper closed subset of 

X is periodic. 

Proof. We will only show that if condition (iv) is 

satisfied, then H(X) has a trivial center. The proof of 

the remaining cases is similar. Take some h E H(X), 

h ~ e. Then, there is some x E X such that h(x) ~ x. 

Since X is Hausdorff and h E H(X), we can find disjoint 

open neighbourhoods Land M of x and h(x) such that 

h(L) = M. Since X-L is periodic, there is some f E H(X) 

such that f(z) = z for all z ¢ Land f(p) ~ P for some 

pEL. Clearly fh(p) = h(p) ~ hf(p)i and therefore 

fh ~ hf. 

6.5. E This is an\exarnple of a TO space X 

such that each proper closed ·subset of X is periodic and 

yet H(X) is abelian. Let < be the lexicographic order 

2 2 on the Euclidean plane E and let E be given	 the topology 

2generated by the collection {R(a,b): (a,b) E E }, where 

2R(a,b) = {(x,y) E E : (a,b) < (x,y)}. Let X be the sub

2 space of E defined by: 

X = {(m,n): m and n are integers and m ~ I}. 

The m-th column of X is the set V of all points of X with m 

first coordinate m. Note that X is TO and each element of 

X has a smallest neighbourhood. It is easy to verify that 

h E H(X) if and only if it satisfies the following three 

conditions: (i) h E IT (X), (ii) h (V ) = V for all m > 1,m m 
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and (iii) the restriction of	 h to V is a homeomorphism on m
 

V for all m > 1. Note that each proper closed subset of
m
 

X is periodic. Let H(X) be given the admissible topology
 

induced by the ideal ~O of all finite subsets of X. Let Z
 

be the discrete group of integers and let ZW be given the
 

ZW
product topology. Let A:	 -+ H(X) be defined as follows: 

For a sequence s = (m ) , 1 <	 j < W of integer, if f : X -+ Xj - s
 

is the map fs(p,q) = (p,q+m ) then A (s) = f It is easy
p s 
ZWto see that A is a topological isomorphism between and
 

H(X). In particular, H(X) is abelian.
 

6.6. Example. Let 2 denote the discrete group {O,l}
 

and let 2w be the cartesian product of 2 taken w-times.
 

Here, we will construct a topological space X with every
 

2wfinite set periodic, such that H(X) is isomorphic to .
 

For each positive integer n, let An = {(n,k): k is an inte

ger and 1 < k < n} ; B = { (n,k) : (n,-k) E An} ; A = { (n,k)

- n nj
 

E A k < j } ; = { (n,k) : (n,-k) E A .}; and X { (x,y) :
 
n Bnj nJ
 

(x,y) E A U B for some n > I} . Let X be given the
 
n n
 

topology generated by all sets Anj and Bnj . It is clear
 

that for any h E H(X), the restriction of h to An U B is n
 

either the identity map or it maps An onto B and B onto
 n n
 

An in a unique way. Let H(X) be given the admissible
 

topology induced by the ideal ~O of all finite subsets of
 

X.	 Then we can easily show that there is a topological
 

2w
isomorphism between H(X) and . 

7. Related Results and Problems 

Given a property (e.g. compactness, precompactness etc.) 

of topologies on groups one would like to know which 
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algebriac groups admit a topology having the given property. 

There are numerous results in literature addressing this 

problem. Here, we will list a few results related to 

Markov's question. 

(i) Marshall Hall, Jr. [14] has shown that every free 

group admits a totally bounded Hausdorff topology. Since a 

free group is infinite, such a topology is necessarily non

discrete. Also, the fact that free groups are residually 

nilpotent can be used to show that every free group admits 

a non-discrete metrizable topology. 

(ii) If a group G admits a totally bounded Hausdorff 

topology then it admits a finest such topology [8]. Each 

abelian group G has enough characters to separate points of 

G and therefore by the correspondence theorem of Comfort 

and Ross [4], G admits a totally bounded Hausdorff topology. 

If G is infinite such a topology will necessarily be non

discrete. 

(iii) Not every group admits a totally bounded Hausdorff 

topology (see [6] for references). 

(iv) The class of abelian groups admitting a compact 

Hausdorff topology is easy to describe (see 25.25 of [18]) 

and so is the class of abelian groups admitting at least 

one non-discrete, locally compact, Hausdorff topology. 

Finally, we list some questions, a few of these have 

already been mentioned. 

(1) Does every countably infinite group admit a non

discrete Hausdorff topology? What about infinite solvable 

groups? 
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(2) Which groups admit non-discrete metrizable topolo

gies? 

(3) Can it be shown in ZFCalone that there are infinite 

groups which admit no non-discrete Hausdorff topologies? 
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