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PRODUCTS OF SPACES OF
 

COUNTABLE TIGHTNESS
 

Yoshio Tanaka 

Introduction 
2

As is well known, the product X of a space X of 

countable tightness need not have countable tightness. 

2Also if X is a CW-complex, x is not always a CW-complex. 

In this paper, in the first section, we consider the 

products of spaces of countable tightness and k-spaces. In 

the second section, we consider the products and the metriza

bility of CW-complexes. 

1.	 Products of k-Spaces and Spaces of Countable Tightness 

All spaces are assumed to be regular' and T . We con-
l 

sider cardinals to be initial ordinals, and let c denote the 

cardinality of the continuum. Let N be the set of natural 

numbers. 

We need the following well known example. This example 

will play an important role in the products. 

Let a be an infinite cardinal number. Let S be the 
a 

space obtained from the disjoint union of a convergent 

sequences by identifying all the limit points. S is 
w 

especially called the sequential fan. 

We now recall some basic definitions. 

Let X be a space, and let J = {F
y

: y E r} be a closed 

covering of X. Then X has the weak topology with respect 

to J, if F c X is closed whenever F n F y 
is closed in X 

for each y E r. 
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A space X is a k-space (resp. sequential space), if X 

has the weak topology with respect to the collection of all 

compact subsets (resp. compact metric subsets) of X. 

A space X is a kw-space [11], if it has the weak 

topology with respect to a countable covering of compact 

subsets of X. 

A space X has countable tightness, t(X) ; W, if x E A 

in X, then x E C for some countable C c A. It is known that 

every sequential space has countable tightness. 

Proposition 1.1. (1) If X x Sc is a k-space, then each 

closed, separable subset of X is locally countably compact. 

(2) If X x Sc has countable tightness, then each 

k -subspace of X is locally compact.
w 

Proof. (1) Suppose that there exists a closed, separa

ble subset S of X which is not locally countably compact. 

Since S is regular and T as is well known, the weight of 

S is equal or less than c. Hence some X E S has a local 

l , 

o 

base {Ua: a < m} in S, w < m < c, such that each U is not 
a 

countably compact. 

We now use the idea of E. Michael [10; Theorem 2.1]. 

For a < m, since U is not countably compact, there is a 
a 

decreasing sequence {F ; n E N} of non-empty closed subsets 
an 

of U with nF =~. Let T = U{F x n ; n EN}, where a an a an a 

n denotes the n-th term of the a-th sequence in 8 , and 
a m

let T UTa. Then for each compact subset K of S x Sm' 
a<m 

T n K is closed in S x Sm' because K meets only finitely 

many Tats and each K n T is a finite union of closed sub
a 

sets of S x S. But T is not closed in S x S. This m m 
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implies that S x Sm is not a k-space. Since S x S is a 
m 

closed subset of X x Sc' X x Sc is not a k-space. This is 

a contradiction. 

(2) If a space has countable tightness, so does every 

subspace. Thus we may assume that X is a kw-space. Since 

t(X x Sc) ~ w, X x Sc has the weak topology with respect to 

the covering of all closed separable subsets of X x Sc. 

Since each subset S of X x S is contained in X x TI(S),c 

where TI: X x Sc ~ Sc is the projection, X x Sc has the weak 

topology with respect to a closed covering {X x F; F is a 

closed separable subset of Sc}. Since we can assume that 

each F is contained in some Sa' a < ' F is a kw-space.wl 

By [11; (7.5)], each X x F is a k-space. Thus X x S is a c 

k-space. Hence, by (1) each closed, separable subset of 

X is locally countably compact. 

We now show that X is locally compact. Let X have the 

weak topology with respect to a countable covering of compact 

subsets Xi with Xi c Xi +l . For some X E X, supposeo 

X E X - Xi for each i. Since t(x) ~ w, there are countable o
 

Let C = U~ lC,. Then
 
1= 1 

X E C n (X - Xi) for each i. Since the closed separableo 

subset C of X is locally countably compact, there exists a 

countably compact subset K of C such that X E K n (X - Xi)o 

for each i. Since K is countably compact in X, it is easy 

to see that K is contained in some X. . But 
1 o 

x E K n (X - X. ) = ~. This is a contradiction. Thus o 1 
0 

each point of X is contained in some int Xi. Hence X is 

locally compact. 
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A space X is strongly Frechet [14], i.e. countably 

bi-sequential due to E. Michael [12], if x E X- with 
n 

A +l ~ An then there exist x E An such that x ~ x. Ifn n n 

the An are all the same set, then such a space X is Frechet. 

Lemma 1.2. (cf. [15; 16 (b) and p. 35]). Every 

Frechet space which is not strongly Frechet contains a copy 

Recall that a space X is symmetric if there is a real 

valued, non-negative function d defined on X x X satisfying 

the conditions: 

(1) d(x,y) = a whenever x = y; (2) d(x,y) d (y, x) ; 

and (3) A c X is closed in X whenever d(x,A) > 0 for any 

x E X-A. If we replace the condition (3) by the follow

ing: For A ~ X, x E X if and only if d(x,A) = 0, then such a 

space is called semi-metric. 

Corollary 1.3. Suppose X x Sc has countable tight

ness. 

(I) If X is Frechet, then X is strongly Frechet. 

(2) [CH]. If X is symmetric, then X is semi-metric. 

When X is paracompact, [CH] can be omitted. 

Proof. (1) This follows from Proposition 1.1(2) and 

Lemma 1.2. 

(2) Let X be a symmetric space. Every Frechet and 

symmetric space is first-countable ([1; p. 129]), hence is 

semi-metric. So, we prove that X is Frechet. To prove 

this, since t(X) ~ w, it is sufficient to show that every 

closed, separable subset S of X is first countable. Since 
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S is regular and T each point of S has a local base ofl , 

cardinality 2 c in S. Then, under CH each point of S is a 

G8-set in S by [16; Theorem 10]. When X is a paracompact 

space, without [CH], the separable space S is Lindelof. 

Thus, by [13; Theorem 2] S is hereditarily Lindelof. Then 

each point of S is a G8-set in S. Hence, then in any case 

each point of S is a G8-set in S. Thus, by Proposition 

1.1(2) and [8; Lemma 6.11], S is first countable. 

A bi-k-space, according to E. Michael [12], is charac

terized as a bi-quotient image of a paracompact M-space. 

For the intrinsic definition of a bi-k-space, see [12; 

Definition 3.E.l]. 

Corollary 1.4. Suppose f: X ~ y is a closed map with 

t(y) ~ w. Let X be a paracompact bi-k-space (resp. para-

compact locally compact space). Then Y x Sc is a k-space 

(resp. t(y x Sc) < w) if and only if Y is locally compact. 

Proof. Let Y be locally compact. Then.Y x Sc is a 

k-space (resp. t(Y x Sc) ~ w) by [3; 3.2] (resp. [9; Theorem 

4]. So we prove the "only if" part. Suppose Y x Sc is a 

k-space. Then, by Proposition 1.1(1), Y has property (P): 

Every closed separable subset is locally countably compact. 

Then, since t(Y) ~ w, it is easy to see that Y satisfies 

Lemma 9.l(b) in [12]. Indeed, if {F : n E N} is a decreasn 

ing sequence with y E n(F - {y}), then there exist Yn E F n n 

such that {Yn: n E N} is not closed in Y. Then, by [12; 

-1Theorem 9.9], each af (y) is compact. Thus, by [12; Pro

position 3.E.4], Y is a bi-k-space. 
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Next, we prove that Y is locally compact. Suppose not. 

Then there is a point Yo E Y such that Yo E ~ for every
 

compact subset K of Y. Let J = {X - K; K is compact in y}.
 

Then J is a filter base accumulating at the point Yo.
 

Since Y is bi-k, by [12; Lemma 3.E.2] there is a decreasing
 

closed sequence {An: n E N} satisfying the following:
 

(a) C = nAn is compact; 

(b) If V is an open subset of Y with C c V, then 

C c An ~ V for some n; and 

(c) Yo E F n An for all n E N and all F E J. 

To prove some An is compact, suppose not. Since Y is 

paracompact, each An is not c6untably compact. Then there 

are closed discrete subsets D of A with ID I = w. n n n 

Let Y c U U D be a subspace of Y. Then Y is 
o on=l n 

closed in Y. Let Z be a quotient space obtained from Yo by 

identifying the compact subset C. Then, by (a) and (b), Z 

is not locally countably compact. Since Yo satisfies (P) 

and the countable space Z is the perfect image of a closed 

separable subset of Yo' so then Z is locally countably com

pact. This is a contradiction. Hence some A is compact. 
no 

But, by (c~ Yo E F n N =~. This is a contradiction. n o 

Hence Y is locally compact. 

Finally we prove the parenthetical part. Let 

t(y x Sc) ~ wand let T be any closed separable subset of 

Y. Then T is a closed image of a closed separable subset 

S of X. Since X is paracompact, S is Lindelof. Since X 

is locally compact, it is easy to see that S is a kw-space. 
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Thus, since T is a quotient image of S, T is also a kw-space. 

Then, by Proposition 1.1(2), T is locally compact. Hence Y 

has Property (P). Thus, since t(Y) ~ w, Y satisfies 

Lemma 9.l(b) in [12]. So, by [12; Theorem 9.9] each 

df-l(y) is compact. Thus Y is locally compact. 

Let a be an infinite cardinal. Recall that a space X 

is a-compact if every subset of X of cardinality a has an 

accumulation point in X. 

Lemma 1.5. Let f: X ~ Y be a closed map with X col

lectionwise normal and Y sequential. If Y contains no 

closed copy of Sa"' then each df-l(y) is a-compact. 

Proof· Suppose some df-l(y ) is not a-compact. Then 
0 

there exists a closed discrete subset D of df-l(y ) with 
0 

IDI = a. Hence there is a discrete open collection 

{Vd ; d E D} of X with V 3 d. For each d E D, sinced 

Yo E f(V ) - {Yo}' Yo is not isolated in a sequential spacea 

f(Vd ). So then there is a sequence Cd = {Ydn; n E N} such 

that Yan ~ Yo and Cd ~ f(Vd ) - {Yo}· Since {f(Vd ); d E D} 

is hereditarily closure preserving, so is the collection 

( = {Cd U {Yo}; d ED}. Let Yo be the union of (. Then 

Y is closed in Y. Let Z be the disjoint union of [, and o 

let g: Z ~ Yo be the obvious map. Then Z is metric and g 

-1is closed with dg (Yo) not a-compact. Hence, by [7; 

Lemma 2], Yo contains a closed copy of Sa. Thus Y contains 

a closed copy of Sa. This is a contradiction. 

From Proposition 1.1(2) and Lemma 1.5, we have 
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Corollary 1.6. Let f: X ~ Y be a closed map with X 

paracompact sequential. If t(y x Sc) ~ w~ then each 

-1
af (y) is compact. 

By Lemma 1.5, we can generalize all results in this 

section as follows. 

Generalization. Let S be a sequential space which is 

a closed image of a collectionwise normal space under f 

-1
such that some af (s) is not c-compact. Then, for all 

results in this section we can replace "Sc" by "S." 

By this generalization, for example we have the follow

ing: 

Let Y be a Frechet space. Let X be a collectionwise 

normal sequential space, and let F be a closed subset of X. 

Suppose Z is a quotient space obtained from X identifying 

F. Then Y is strongly Frechet or aF is c-compact, if 

t (Y x Z) :2 w. 

2. CW-Complexes 

The concept of CW-complexes due to J. H. C. Whitehead 

[17] is well-known. We recall some basic properties of 

CW-complexes. Let X be a CW-complex; that is, X is a 

complex which is closure finite (i.e. each cell of X is 

contained in a finite subcomplex), and which has the weak 

topology with respect to the closed covering {Lyi Y E f} of 

all finite subcomplexes L of X. Then for any subset f' of 
Y 

f, L' = U L is closed in X and L' has the weak topology 
YEf' y 

with respect to a closed covering {Lyi y E f' }. 
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As a topological complex, C. H. Dowker [4] introduced 

the concept of the Whitehead complex. A space X is a 

Whitehead complex, if it is an affine complex (see [4~ §l]) 

having the weak topology with respect to {eA~ A}. Here 

{eA~ A} is the cells of X. Recall that the closure e A of 

e A coincides with the topological closure in X of e A [4~ 

p. 560], and this also holds in CW-complexes. Every 

Whitehead complex with the cells {eA~ A} is a CW-complex 

with each e A a subcomplex [4~ p. 558]. 

We need the canonical example S2 due to S. P. Franklin 

[5~ Example 5.1]. That is, S2 = (N x N) U N U {oJ with 

each point of N x N is an isolated point. A basis of 

neighborhoods of n E N consists of all sets of the form 

{n} U {(m,n)~ m ~ mOl. And U is a neighborhood of 0 if and 

only if 0 E U and U is a neighborhood of all but finitely 

many n E N. 

Lemma 2.1. Suppose that X has the weak topology with 

respect to a point-countable closed covering {C ~ a} of x. 
a 

(1) Let each C be Frechet. Then X is Frechet if and a 

only if X contains no copy of 52. 

(2) Let each C be metric. Then X is metric if and a 

only if X is a paracompact~ strongly Frechet space. 

Proof. (1) Since S2 is not Frechet, the "only if" 

part follows from that every subset of a Frechet space is 

Frechet. 

We prove the "if" part. Suppose X is not Frechet. 

Since X is sequential, by [5~ Proposition 7.3] X contains 
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a subspace M = (N x N) U N U {oJ which, with the sequential 

closure topology, is a copy of 52' The countable space M 

intersects at most countably many Ca's, say C , .....
 
a l
n 

Let X U C and let C be a compact subset of M. Thenn i=l a i 

C has the weak topology with respect to a countable closed 

covering {X n C; n E N} of C. Hence C is contained in n 

some X n c. Thus each convergent sequence in M is conn 

tained in some X. We also remark that each X is Frechet,
n n 

hence contains no copy of M. 

We now use the method of proof of S. P. Franklin and 

B. V. Smith Thomas [6; Proposition 1). Since N U {OJ is a 

convergent sequence in M, there is X with N U {OJ ~ X 
no no 

Let C = {n} x N U {n} for each n. Since C is a conver
n l 

gent sequence, there is X (n > no) with C ~ X 
n l l nl l 

Since X is closed and Frechet, we can choose C (n > 1)
n 2n 2l 

and X (n > n ) such that C n X is at most finite and 
n 3 2 n n l3 2 

C c X So, we can assume that C c X - X In 
n n n n n l2 3 2 3 

this way, we can choose C and X (nk + l > n > n _ l )k kn k n k +l 
00 

Let M' = U C U {nk ; kEN} U{O}. 
k=l n k 

Then, for each a E A, M' n C is closed in X. Thus M' is 
a 

a closed subset of X. Then M' is sequential, hence M' has 

the sequential closure topology. Thus M' is a copy of 52' 

Hence X contains a copy of 52' This is a contradiction. 

(2) We prove only the "if" part. For x E X let 

n 
{ C ; C 3 x} be {C C ••• } • Put X U C Suppose

a a Ci a n
l 2 i=l a i 
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x E X - X for each n. Since X is strongly Frechet, there n 

exist x ¢ X such that x ~ x. n n n 

Let C {x i n E N} U {x}. Then the compact subset C n 

has the weak topology with respect to a countable covering 

{C n C i C n C 1 .0} of C. Then C is contained in some 
ex. ex. 

finite union of C Thus some C must contain infinitelya a 
0 

many xn's, hence C :3 x. Then C is contained in some a a 
0 0 

X But this is a contradiction, for X -::h X for n ~ n 
n -? n - 0no 

Thus x ¢ X - X for some n, hence x E int X. This implies 

o 

n n 

that X is locally metrizable. Hence X is metrizable, for 

X is paracompact. 

Lemma 2.2. Let X be a CW-complex with the cells {e y }. 

If X contains no closed copy of Sa~ then for each x E X the 

cardinality of r = {Yi e y 3 x} is less than a. x 

Proof. For some X E X, suppose Ifx I ~ a. Since o o 

e E x for Y E r , there exist x such that x ~ x and 
Y 0 x yn yn 0 

0 

x E e Let C = {x · n E N} U {x } and let S = U{Cyiyn y y yn' 0 

y E r } . Suppose L is any finite subcomplex of X. Then x 
0 

S n L is closed in x. Thus S is closed in x. Moreover S 

has the weak topology with respect to {C i Y E r }. Indeed,y X o 

for F c S, let F n c be closed in S for each y E f Then y X o 

F n L {F n c i eeL and y E r }. Thus F n L is closed 
y y X o 

in S. Hence, F is closed in S. This implies that X con

tains a closed copy of Sa. This is a contradiction. 

In [6], S. P. Franklin and B. V. Smith Thomas proved 

that a kw-space with metrizable "pieces" is metrizable if 
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and only if it contains no copy of 8 and no sequential fan
2 

8 • 
w 

Analogously to this result, we have 

Proposition 2.3. Let X be (a) a CW-complex (resp. 

Whitehead complex)~ or (b) a paracompact space having the 

weak topology with respect to a point-countable closed 

covering of metric spaces. Then the following are equiva

lent. 

(1) X is metrizable. 

(2) X contains no copy of S2 and no Sw (resp. no copy 

of 8 ).
2

(3) t(X x 8 ) ~ w. 
c 

Proof· (1) ~ (2) is easy. We have (3) ~ (2) from 

Proposition 1.1. (2) . (1) ~ (3) follows from [2; Corollary 

4] • 

(2) ~ (1). In case of (b), we have this implication 

from Lemmas 1.2 and 2.1. 

So, we suppose X is a CW-complex. First we prove that 

X is Frechet. To see this, since t(X) ~ w, it is sufficient 

to show that every closed separable subset S = IT with D 

countable, is Frechet. Clearly, D is contained in some 

countable union L of finite subcomplexes Ln. Since L is 

closed in X, S is a closed subset of L. Thus S has the weak 

topology with respect to a countable covering of compact 

metric subsets L n S of S. Since S contains no copy of S2' n 

by Lemma 2.1(1), S is Frechet. Then X is Frechet. Second 

we prove that X is metrizable. Since X contains no copy of 

Sw' by Lemma 2.2, X has the cells {e.:\} such that 
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{e }, e = cl e , is point finite. For x E X, let 
A A A

£ 
Put 'E = U e

A 
· 

i=l i 

Suppose x E x-=-E. Since X is Frechet, there is a convergent 

sequence {x ; n E N} such that x + x and x ~ E. Since the 
n n n 

convergent sequence is contained in a finite union of cells 

e , some eA. must contain an infinitely many xn's. Hence
A

1 0 

x E eA. Thus e = eA. for some i O ~ £. But this is aA 
1 o 

contradiction, because xn ~ e 
A 

for all n. Then x ~ x-=-E, 

which implies x E int E. Since E is compact metric, X is 

locally metrizable. Then X is metrizable, for X is paracom

pact. Since a point-finite Whitehead complex is locally 

finite, the parenthetic part is proved similarly. 

Let I be the space obtained from disjoint union of 
a 

a closed unit intervals [0,1] by identifying all zero 

points. Then each I is a Whitehead complex. C. H. Dowker 
a 

[4] showed that I x I is not a Whitehead complex.
w c 

From Proposition 2.3 and Lemma 2.2, we have the fol

lowing generalization o~ the Dowker's example. 

Corollary 2.4. Let X x Y be a CW-complex and {e ; A}
A

be the cells of Y. Then X is metrizable~ or each cardinality 

of {A; e 3 y} is less than c.A 

Proposition 2.5. Suppose that Xl and X are CW-complexes2 

(resp. Whitehead complexes). Then the following are equiva

lent. 

(1) t(X x X ) < w.
l 2 

(2) Xl x X is a k-spaoe.2 
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(3) Xl x X2 is a CW-complex (resp. Whitehead complex). 

Proof· (1) ~ (2). Since t(X x X ) ~ w, Xl x X hasl 2 2 

the weak topology with respect to the closed covering of all 

closed, separable subsets of Xl x X Each subset S of
2

. 

Xl x X2 is clearly contained in ITl(S) x IT (S), where
2 

IT i : Xl x X2 ~ Xi (i = 1,2) are projections. Thus Xl x X2 

has the weak topology with respect to a covering {F x F ;
l 2 

Fi is a closed separable subset of Xi}. As is seen in the 

proof of Proposition 2.3, (2) ~ (1), each F is a kw-space.i 

Hence, by [11; (7.5)] each Fl x F is a k-space. This2 

implies Xl x X is a k-space.2 

(2) ~ (3). Let {e }; {e } be the cells of Xl; X
y 8 2 

respectively. Since Xl and X are complexes; affine com2 

plexes, Xl x X is a complex; affine complex with cells2 

{e x e } respectively. Moreover, if Xl and X are 
y 8 2 

CW-complexes, then Xl x X is closure finite. Thus, to2 

prove that Xl x X rs a CW-complex (also, a Whitehead com2 

plex), we only show that Xl x X has the weak topology with2 

respect to a collection {ey x eo}. Each compact subset 

of Xl x X is contained in a compact subset of Xl x X2 with2 

type A x B. Then, each compact subset of Xl x X is con2 

tained in a finite union of e x e8 • Since Xl x X is a y 2 

k-space, this implies that Xl x X has the weak topology2 

with respect to the collection {e x eo}.
y 

We have (3) ~ (1) from that every CW-complex is 

sequential, hence t(X x X2 ) ~ w.l 

Let X be a CW-complex with the cells {e}. Then we y 

shall call X point-finite; point-countable; locally 
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countable, if the covering{e } of X is so respectively.
Y 

Lemma 2.6. Let X be a Frechet CW-complex or a White

head complex. If X is a point-countable~ then it is locally 

countable. 

Proof. Since every point-countable Whitehead complex 

is locally countable, then we suppose that X is a Frechet 

CW-complex. Let {e } be the cells of X such that {e } is 
Y y 

point-countable. For x E X, let {e · e 3 x} be {~ ,y' Y Yl 
- ... } .e , Put E U e Since X is Frechet, by the 

Y2 i=l 
y.

1 

proof of Proposition 2.3, (2) ~ (1), we have x ¢ x-=-E. 

This implies x E int E. Since each e is compact, by the 
Yi 

proof of [17; (D)], each e meets at most finitely many
Yi 

ey's, so that int E meets at most countably many e IS. . Y 

This implies that X is locally countable. The parenthetic 

part	 is proved similarly. 

Proposition 2.7. Let X be a Frechet CW-complex (resp. 

a Whitehead complex). Then the following are equivalent. 

(1) X is point-countable. 

(2)	 X is locally countable.
 

2

(3) x is a CW-complex (resp. Whitehead complex). 

Proof· (1) ~ (2) follows from Lemma 2.6. 

(2) ~ (3). Every locally countable CW-complex is a 

kw-space, and every product of two locally kw-spaces is a 

k-space. Thus (2) ~ (3) follows from Proposition 2.5. 

(3) ~ (1). Suppose that X is not point-countable. 

Then, by Lemma 2.2, X contains a closed copy of S 
wl 
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2
Thus X is a k-space which contains a closed copy of s2 . 

wI 

Hence S2 is a k-space. However, by [7; Lemma 5], 8 2 is 
wI WI 

not a k-space. This is a contradiction. 

In terms of a set-theoretic axiom BF(w ) below, we
2 

shall consider the product X x Y of CW-complexes X and Y. 

BF(w 2 ): If F ={f; f: N + N is a function} has car

dinality less than w ' then there is a function g: N + N2 

such that {n E N; f(n) > g(n)} is finite for all f E F. 

Hence CH implies BF(W ) is false.
2 

In [7], Gary Gruenhage proved the following result (*): 

(*) S x 8 is a k-space if and only if BF(W ) holds. 
W WI 2 

From this result (*), if the assertion of Proposition 

1.1 by replacing "S " by "s "holds, then BF(W2 ) is false. 
c WI 

Lemma 2.8. I x I is a Whitehead complex if and only
W WI 

if BF(W ) holds.2 

Proof. "If." Since BF(W ) holds, by the proof of2 

[7; Lemma 1] it turns out that I x I is sequential.
W WI 

Hence I x I is a Whitehead complex by Proposition 2.5. 
W WI
 

W x
"Only if." I I is a k-space and it contains a closed 
WI 

copy of Sw x 8 , so that 8 x 8 is a k-space. Thus by
WI W WI 

the result (*), BF(W ) holds.
2 

Proposition 2.9. If X and Yare Frechet CW-complexes 

(resp. Whitehead complexes)~ then the following are equiva

lent. 

(1) X x Y is a CW-complex (resp. Whitehead complex) 
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if and only if X or Y is locally finite, otherwise X and Y 

are locally countable. 

(2) BF(W ) is false.2
 

Proof· (1) ~ (2) follows from Lemma 2.8.
 

(2) ~ (1). The "if" part of (1) does not use (2). 

Suppose that X or Y is a locally finite CW-complex. Then 

X or Y is locally compact. Thus X x Y is a k-space. Sup

pose that X and Yare locally countable. Then they are 

locally kw-sRaces,hence X x Y is a k-space. In any case, 

X x Y is a k-space. Hence X x Y is a CW-complex by Propo

sition 2.5. The parenthetic part is proved similarly. 

Next we prove the "only if" part. Suppose that Y is not 

locally countable. Then by Lemma 2.6, Y is not a point-

countable CW-complex. Then by Lemma 2.2, Y contains a 

closed copy of S . To show X is point-finite, suppose not. w
l 

Then X contains a closed copy of Sw by Lemma 2.2. Thus 

X x Y contains a closed copy of S x S . Since BF(W )w w	 2
l 

is false, Sw x S is not a k-space	 by the result (*).w
l 

But, since X x Y is a CW-complex, Sw x S is a k-space.w
l 

This is a contradiction. Thus X is point-finite, hence is 

locally finite by Lemma 2.6. Similarly, Y is locally finite 

if X is not locally countable. This finishes the proof. 

The following questions (a) and (b) remain, the latter 

is related to Proposition 2.7. 

Questions. (a) For every CW-complexes X and Y, does 

(1)	 # (2) of the previous proposition hold? 

2
(b) Is X locally countable if x is a CW-complex? 
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Supplement 

Quite recently, through Zhou Hao-xuan, the author 

learned of the following result due to Liu Ying-ming erA 

necessary and sufficient condition for the product of 

CW-comp1exes," Acta Mathematica Sinica, 21 (1978), 171-175 

(Chinese) . 

[CH] Let X and Y be CW-complexes. Then X x Y is a 

CW-complex if and only if either X or Y is locally finite, 

or X	 and Yare locally countable. 

Referring to the above paper and G. Gruenhage [7], we 

can prove that the answers to the questions (a) and (b) 

are affirmative. 

The author wishes to thank Zhou Hao-xuan for his trans

1ation of Liuls paper. 
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