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PRODUCTS OF SPACES OF
COUNTABLE TIGHTNESS

Yoshio Tanaka

Introduction

As is well known, the product x2 of a space X of
countable tightness need not have countable tightness.
Also if X is a CW-complex, X2 is not always a CW-complex.
In this paper, in the first section, we consider the
products of spaces of countable tightness and k-spaces. 1In
the second section, we consider the products and the metriza-

bility of CW-complexes.

1. Products of k-Spaces and Spaces of Countable Tightness

All spaces are assumed to be regular and T We con-

1-
sider cardinals to be initial ordinals, and let ¢ denote the
cardinality of the continuum. Let N be the set of natural
numbers.

We need the following well known example. This example
will play an important role in the products.

| Let o be an infinite cardinal number. Let Sa be the

space obtained from the disjoint union of a convergent
sequences by identifying all the limit points. Sw is
especially called the sequential fan.

We now recall some basic definitions.

Let X be a space, and let 7 = {FY: vy € T} be a closed
covering of X. Then X has the weak topology with respect

to 7, if F ¢ X is closed whenever F N FY is closed in X

for each y € T.
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A space X is a k-space (resp. sequentiol space), if X
has the weak topology with respect to the collection of all
compact subsets (resp. compact metric subsets) of X.

A space X is a kw—space [11], if it has the weak
topology with respect to a countable covering of compact
subsets of X.

Sw, if x € A

A space X has countable tightness, t(X)
in X, then x € € for some countable C ¢ A. It is known that

every sequential space has countable tightness.

Proposition 1.1. (1) If X % Sc 13 a k-space, then each
closed, separable subset of X is locally countably compact.

(2) If X x Sc has countable tightness, then each
kw—subspace of X 28 locally eompact.

Proof. (1) Suppose that there exists a closed, separa-
ble subset S of X which is not locally countably compact.
Since S is regular and T,, as is well known, the weight of
S is equal or less than c. Hence some X € S has a local
base {U : a < m} in S, w < m < ¢, such that each ﬁ& is not
countably compact.

We now use the idea of E. Michael [{10; Theorem 2.1].
For a < m, since ﬁa is not countably compact, there is a
decreasing sequence {Fan; n € N} of non-empty closed subsets
of Ua with nF = #. Let T = U{F  xn ; n €N}, where

na denotes the n-th term of the a-th sequence in Sm’ and

let T = U Ta' Then for each compact subset K of S x Sm,
a<m

T N K is closed in S x S because K meets only finitely
many Ta’s and each K n Ta is a finite union of closed sub-

sets of S x Sm. But T is not closed in S x Sm. This
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implies that S x Sm is not a k-space. Since S x Sm is a
closed subset of X x Sc' X x SC is not a k-space. This is
a contradiction.

(2) If a space has countable tightness, so does every
subspace. Thus we may assume that X is a kw—space. Since
t(X x Sc) < w, X x Sc has the weak topology with respect to
the covering of all closed separable subsets of X x Sc.

Since each subset S of X x SC is contained in X x 7(S),
where m: X x Sc > SC is the projection, X x Sc has the weak
topology with respect to a closed covering {X x F; F is a
closed separable subset of SC}. Since we can assume that
each F is contained in some Sa' o < wyy F is a kw—space.

By [11; (7.5)], each X x F is a k-space. Thus X x Sc is a
k-space. Hence, by (1) each closed, separable subset of

X is locally countably compact.

We now show that X is locally compact. Let X have the
weak topology with respect to a countable covering of compact
subsets Xi with Xi c X,

i+l”

X € X - Xi for each i. Since t(x) £ w, there are countable

For some x_ € X, suppose

oo

subsets C, ¢« X - X, with x_€ C.. Let C = U, .C.. Then
i = i o i i=1"1

x, € E_H_Ti_:_YIT for each i. Since the closed separable
subset C of X is locally countably compact, there exists a
countably compact subset K of C such that x, € R_ﬁ—TY_:_YIT
for each i. Since K is countably ccmpact in X, it is easy

to see that K is contained in some Xi . But
o

X, € RN (X - Xi ) = #. This is a contradiction. Thus
o

each point of X is contained in some int Xi' Hence X is

locally compact.
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A space X is strongly Fréchet [14], i.e. countably
bi-sequential due to E. Michael [12], if x ¢ X; with
An+l < An then there exist X, € An such that X, X, I1f

the An are all the same set, then such a space X is Fréchet.

Lemma 1.2. (cf. [15; 16(b) and p. 35]). Every

Fréchet space which is not strongly Fréchet contains a copy

of Sw'

Recall that a space X is symmetric if there is a real
valued, non-negative function d defined on X x X satisfying

the conditions:

(1) d(x,y) = 0 whenever x = y; (2) d(x,y) d(y,x);

and (3) A € X is closed in X whenever d(x,A) > 0 for any

x € X - A. If we replace the condition (3) by the follow-
ing: For A < X, x € A if and only if d(x,A) = 0, then such a

space is called semi-metric.

Corollary 1.3. Suppose X X Sc has countable tight-
ness.

(1) If X is Fréchet, thenm X is strongly Fréchet.

(2) [CH]. If X is symmetric, then X is semi-metric.
When X is paracompact, [CH] can be omitted.

Proof. (1) This follows from Proposition 1.1(2) and
Lemma 1.2.

(2) Let X be a symmetric space. Every Fréchet and
symmetric space is first-countable ([l; p. 129]), hence is
semi-metric. So, we prove that X is Fréchet. To prove
this, since t(X) £ w, it is sufficient to show that every

closed, separable subset S of X is first countable. Since
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S is regular and T each point of S has a local base of

1’
cardinality £ ¢ in S. Then, under CH each point of S is a
Gd-set in S by [16; Theorem 10]. When X is a paracompact
space, without [CH], the separable space S is Lindelof.

Thus, by [13; Theorem 2] S is hereditarily Lindelof. Then
each point of S is a Gg-set in S. Hence, then in any case

each point of S is a Gg-set in S. Thus, by Proposition

1.1(2) and [(8; Lemma 6.11}, S is first countable.

A bi-k-space, according to E. Michael [12], is charac-
terized as a bi-quotient image of a paracompact M-space.
For the intrinsic definition of a bi-k-space, see [12;

Definition 3.E.1]}.

Corollary 1.4. Suppose f: X » Y is a closed map with
t(Y) £ w. Let X be a paracompact bi-k-space (resp. para-
compact locally compact space). Then Y X sc 18 a k-space
(resp. t(Yy x Sc) S w) if and only if Y is locally compact.

Proof. Let Y be locally compact. Then .Y X Sc is a
k-space (resp. t(Y x Sc) 2 w) by [3; 3.2] (resp. [9; Theorem
4]. So we prove the "only if" part. Suppose Y X Sc is a
k-space. Then, by Proposition 1.1(1), Y has property (P):
Every closed separable subset is locally countably compact.
Then, since t(Y) £ w, it is easy to see that Y satisfies
Lemma 9.1(b) in [12]. 1Indeed, if {Fn: n € N} is a decreas-
ing sequence with y € ﬂ(?;_:_T§T), then there exist y € F_
such that {yn: n € N} is not closed in Y. Then, by [12;
Theorem 9.9], each af—l(y) is compact. Thus, by [12; Pro-

position 3.E.4], Y is a bi-k-space.



120 Tanaka

Next, we prove that Y is locally compact. Suppose not.
Then there is a point y € Y such that y_ € Y - K for every
compact subset K of Y. Let 7= {X - K; K is compact in Y}.
Then 7 is a filter base accumulating at the point Yoo
Since Y is bi-k, by [12; Lemma 3.E.2] there is a decreasing
closed sequence {An: n € N} satisfying the following:

(a) C = na_ is compact;

(b) If V is an open subset of Y with C < V, then
C E.An c V for some n; and

(c) y € F_E—K; for all n € N and all F € 7.

To prove some An is compact, suppose not. Since Y is
paracompact, each An is not countably compact. Then there

are closed discrete subsets D of A with ]Dn| = w.

[eo]
Let Y =CU U D_ be a subspace of Y. Then Y _ is
o] n=1 n o]

closed in Y. Let Z be a quotient space obtained from Yo by
identifying the compact subset C. Then, by (a) and (b), Z
is not locally countably compact. Since Y, satisfies (P)
and the countable space Z is the perfect image of a closed
separable subset of Yo’ so then Z is locally countably com-

pact. This is a contradiction. Hence some An is compact.
(e}

But, by (c), Yo €EFN Nn = @#. This is a contradiction.
o

Hence Y is locally compact.

Finally we prove the parenthetical part. Let
t(Y x Sc) 2 w and let T be any closed separable subset of
Y. Then T is a closed image of a closed separable subset
S of X. Since X is paracompact, S is Lindeldf. Since X

is locally compact, it is easy to see that S is a kw-space.
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Thus, since T is a quotient image of 5, T is also a kw—space.
Then, by Proposition 1.1(2), T is locally compact. Hence Y
has Property (P). Thus, since t(Y) £ w, Y satisfies

Lemma 9.1(b) in [12]. So, by [12; Theorem 9.9] each

-1

3f “(y) is compact. Thus Y is locally compact.

Let o be an infinite cardinal. Recall that a space X
is a-compact if every subset of X of cardinality o has an

accumulation point in X.

Lemma 1.5. Let f£f: X = Y be a closed map with X col-
lectionwise normal and Y sequential. If Y contains no
closed copy of S , then each afnl(y) 18 G-compact.

Proof. Suppose some af-l(yo) is not a-compact. Then

1

there exists a closed discrete subset D of 3f (yo) with

|[b| = a. Hence there is a discrete open collection
{Vd; d € D} of X with V4 > d. For each d € D, since

vy, € £(V)) - {yo}, Y, is not isolated in a sequential space

(o]

£(Vg). So then there is a sequence C {ydn; n € N} such

d=

that y >y and Cg < £(Vy) - {yo}. Since {f(Vd); d € D}

d
is hereditarily closure preserving, so is the collection

¢ = {Cd u {yo}; d € D}. Let Yo be the union of ((. Then

Y, is closed in Y. Let % be the disjoint union of (, and
let g: Z ~» Y, be the obvious map. Then Z is metric and g
is closed with Bg_l(yo) not a-compact. Hence, by [7;

Lemma 2], Yo contains a closed copy of Sa' Thus Y contains

a closed copy of S . This is a contradiction.

From Proposition 1.1(2) and Lemma 1.5, we have
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Corollary 1.6. Let f: X +~ Y be a closed map with X
paracompact sequential. If t(Y x Sc) 2 w, then each

Bf_l(y) 18 compact.

By Lemma 1.5, we can generalize all results in this

section as follows.

Generalization. Let S be a sequential space which is
a closed image of a collectionwise normal space under f
such that some Bf-l(s) is not c-compact. Then, for all
results in this section we can replace "Sc" by "S."

By this generalization, for example we have the follow-
ing:

Let Y be a Fréchet space. Let X be a collectionwise
normal sequential space, and let F be a closed subset of X.
Suppose Z is a quotient space obtained from X identifying
F. Then Y is strongly Fréchet or JF is c-compact, if

t(Y x 2) 2 w.

2. CW-Complexes
The concept of CW-complexes due to J. H. C. Whitehead

[17] is well-known. We recall some basic properties of
CW-complexes. Let X be a CW-complex; that is, X is a
complex which is closure finite (i.e. each cell of X is
contained in a finite subcomplex), and which has the weak
topology with respect to the closed covering {LY; Yy € T} of
all finite subcomplexes LY of X. Then for any subset I' of

I, L' = U L_ is closed in X and L' has the weak topology
YET!'

with respect to a closed covering {LY; Y € T' 1
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As a topological complex, C. H. Dowker [4] introduced
the concept of the Whitehead complex. A space X is a
Whitehead complex, if it is an affine complex (see [4; §11])
having the weak topology with respect to {5;; A}. Here
{e;; A} is the cells of X. Recall that the closure E; of
e, coincides with the topological closure in X of e, [4;
P. 560]; and this also holds in CW-complexes. Every

Whitehead complex with the cells {ex; A} is a CW-complex

with each e, a subcomplex [4; p. 558].

We need the canonical example 82 due to S. P. Franklin
[5; Example 5.1]1. That is, S, = (N x N) U NU {0} with
each point of N X N is an isolated point. A basis of
neighborhoods of n € N consists of all sets of the form
{n} v {(m,n); m2 mo}. And U is a neighborhood of 0 if and
only if 0 € U and U is a neighborhood of all but finitely

many n € N.

Lemma 2.1. Suppose that X has the weak topology with
respect to a point-countable closed covering {Ca; al of X.

(1) Let each C_ be Fréchet. Then X is Fréchet if and
only 1f X contains no copy of S2'

(2) Let each Ca be metric. Then X is metric 1f and
only 1f X is a paracompact, strongly Fréchet space.

Proof. (1) Since S, is not Fréchet, the "only if"

2
part follows from that every subset of a Fréchet space is
Fréchet.

We prove the "if" part. Suppose X is not Fréchet.

Since X is sequential, by [5; Proposition 7.3] X contains
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a subspace M = (N x N) U N U {0} which, with the sequential
closure topology, is a copy of Sz. The countable space M
intersects at most countably many C 's, say C , C sees,
o o ay a,
Let Xn = uUcC and let C be a compact subset of M. Then
i=1 i
C has the weak topology with respect to a countable closed
covering {Xn N C; n € N} of C. Hence C is contained in
some Xn n C. Thus each convergent sequence in M is con-
tained in some Xn. We also remark that each xn is Fréchet,
hence contains no copy of M.
We now use the method of proof of S. P. Franklin and
B. V. Smith Thomas [6; Proposition 1]. Since N U {0} is a
convergent sequence in M, there is X with N U {0} c Xn .

o o]

Let Cn = {n} *x N U {n} for each n. Since C, is a conver-

il
gent sequence, there is xnl (ny > n)) with €, ¢ an.
Since xn is closed and Fréchet, we can choose Cn (n2 > 1)
1 2

> n,) such that C n x is at most finite and
2 n, ny

3

C c X . So, we can assume that C c X - X . In
na 13 N n3 iy

this way, we can choose an and xnk+l (e, > 0 > Ny q)

with C_ < X - X . Let M' = U C_ U ({ng; k€N}u{0].
Ny e+l Np-1 k=1 "k

Then, for each a € A, M' N Ca is closed in X. Thus M' is

and Xn (n3

a closed subset of X. Then M' is sequential, hence M' has
the sequential closure topology. Thus M' is a copy of 52.
Hence X contains a copy of 32. This is a contradiction.

(2) We prove only the "if" part. For x € X let

n

{c.; ¢ 32 x) be{C ,C , «ss}. Put X = y C . Suppose
a e A1 %3 B im1 9y
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X € X - X for each n. Since X is strongly Fréchet, there

exist x_ ¢ X _ such that x_ - x.
n n n

Let C = {xn; n € N} U {x}. Then the compact subset C
has the weak topology with respect to a countable covering
{Cn Ca; cn Cu # @} of C. Then C is contained in some
finite union of Ca’ Thus some Ca must contain infinitely

o]

many xn's, hence Ca ) x. Then Ca is contained in some
o o

Xn . But this is a contradiction, for Xn $ X for n 2 no.
o o}

Thus x ¢ X - Xn for some n, hence x € int Xn. This implies
that X is locally metrizable. Hence X is metrizable, for

X is paracompact.

Lemma 2.2. Let X be a CW-complex with the cells {eY}.
If X contains no closed copy of Sa, then for each x € X the

eardinality of Fx = {vy; EY 3 x} is less than o.

Proof. For some x_ € X, suppose |FX | 2 a. Since
o
e € x for y € T_ , there exist x__ such that x. + x_ and
Y o X Yn Yn o
X € e . Let C = {x _; n€N}U {x } and let § = v{C ;
yn Y Y yn [¢] Y

Y € TX }. Suppose L is any finite subcomplex of X. Then
(o] .

S N L is closed in X. Thus S is closed in X. Moreover S
has the weak topology with respect to {CY; Y € Fx }. Indeed,
fe)

for F < S, let F n CY be closed in § for each y € Fx . Then
(o]

FNL

{Fn Cy; eY < L and Y € FX }. Thus F N L is closed
o

in S. Hence, F is closed in S. This implies that X con-
tains a closed copy of Sa. This is a contradiction.
In [6], S. P. Franklin and B. V. Smith Thomas proved

that a kw-space with metrizable "pieces" is metrizable if
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and only if it contains no copy of S, and no sequential fan

2

S .
w

Analogously to this result, we have

Proposition 2.3. Let X be (a) a CW-complex (resp.
Whitehead complex), or (b) a paracompact space having the
weak topology with respect to a point-countable closed
covering of metric spaces. Then the following are equiva-
lent.

(1) X ©s metrizable.

(2) X contains no copy of S2 and no Sw (resp. no copy

of 52)'

(3) t(X xs)) £ w.

Proof. (1) = (2) is easy. We have (3) = (2) from
Proposition 1.1.(2). (1) = (3) follows from [2; Corollary
4].

(2) = (1). In case of (b), we have this implication
from Lemmas 1.2 and 2.1.

So, we suppose X is a CW-complex. First we prove that
X is Fréchet. To see this, since t(X) 2 w, it is sufficient
to show that every closed separable subset S = D with D
countable, is Fréchet. Clearly, D is contained in some
countable union L of finite subcomplexes Ln' Since L is
closed in X, S is a closed subset of L. Thus S has the weak
topology with respect to a countable covering of compact
metric subsets Ln N S of S. Since S contains no copy of Sz,
by Lemma 2.1(1), S is Fréchet. Then X is Fréchet. Second
we prove that X is metrizable. Since X contains no copy of

Sw’ by Lemma 2.2, X has the cells {ek} such that
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{EA}’ EA =cle, is point finite. For x € X, let

{e.; e, 3 x} be {e, , e , +++, € }. Put E =
AT MU Ay i=1 M
Suppose x € X - E, Since X is Fréchet, there is a convergent
sequence {xn; n € N} such that X, > X and X ¢ E. Since the
convergent sequence is contained in a finite union of cells

e , some EA must contain an infinitely many x 's. Hence

A .

1o
e e. = e i £ gq. is i

3 Thus ey e>\i for some i, = 3 But this is a
o

contradiction, because X ¢ E& for all n. Then x € X - E,
which implies x € int E. Since E is compact metric, X is
locally metrizable. Then X is metrizable, for X is paracom-
pact. Since a point-finite Whitehead complex is locally

finite, the parenthetic part is proved similarly.

Let Ia be the space obtained from disjoint union of
a closed unit intervals [0,1] by identifying all zero
points. Then each Ia is a Whitehead complex. C. H. Dowker
[4]1 showed that Iw X Ic is not a Whitehead complex.

From Proposition 2.3 and Lemma 2.2, we have the fol-

lowing generalization of the Dowker's example.

Corollary 2.4. Let X x Y be a CW-complex and {ek; A}
be the cells of Y. Then X is metrizable, or each cardinality

of {x; e, 3 y} is less than c.

A

Proposttion 2.5. Suppose that Xy and X, are CW-complexes
(resp. Whitehead complexes). Then the following are equiva-

lent,

A

(1) t(X; x X,)

(2) Xl X X2 s a k-space.
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(3) Xl X X2 is a CW-complex (resp. Whitehead complex) .

Proof. (1) - (2). Since t(xl X X2) S w, Xl x X2 has

the weak topology with respect to the closed covering of all

closed, separable subsets of Xl X x2. Each subset S of

Xl X X2 is clearly contained in Hl(S) b H2(S), where

I Xl x Xy > Xi(i = 1,2) are projections. Thus X, * X,

has the weak topology with respect to a covering {Fl X Foi

F. is a closed separable subset of Xi}. As 1s seen in the

proof of Proposition 2.3, (2) »+ (1), each Fi is a kw-space.
Hence, by [11; (7.5)] each F1 X F2 is a k-space. This

implies Xl X x2 is a k-space.

(2) + (3). Let {eY}; {es} be the cells of X,; X,
respectively. Since Xl and x2 are complexes; affine com-

plexes, xl x X, is a complex; affine complex with cells

2
{eY X es} respectively. Moreover, if Xl and x2 are

CW-complexes, then Xl x x2 is closure finite. Thus, to

prove that Xl X X2 s a CW-complex (also, a Whitehead com-

plex), we only show that Xl X X2 has the weak topology with

respect to a collection {EY X 56}. Each compact subset

of Xl x X2 is contained in a compact subset of Xl X X2 with
type A x B. Then, each compact subset of Xl X X2 is con-
tained in a finite union of EY x 56. Since X; x X, is a
k-space, this implies that Xl X X2 has the weak topology
with respect.to the collection {EY x esl.

We have (3) + (1) from that every CW-complex is

sequential, hence t(X; x X,) 2 w.

Let X be a CW-complex with the cells {eY}. Then we

shall call X point-finite; point-countable; locally
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countable, if the covering{é&} of X is so respectively.

Lemma 2.6. Let X be a Fréchet CW-complex or a White-
head complex. If X is a point-countable, then it is locally
countable.

Proof. Since every point-countable Whitehead complex
is locally countable, then we suppose that X is a Fréchet
CW-complex. Let {eY} be the cells of X such that {EY} is

point-countable. For x € X, let {EY; e, 3 x} be {EY '
. 1
+¢}., Put E= U e_ . Since X is Fréchet, by the
i=1 'i
proof of Proposition 2.3, (2) » (1), we have x ¢ X - E.

e, .,
Y2

This implies x € int E. Since each EY is compact, by the
i
proof of [17;(D)], each EY meets at most finitely many
i
eY's, so that int E meets at most countably many EY'S.
This implies that X is locally countable. The parenthetic

part is proved similarly.

Proposition 2.7. Let X be a Fréchet CW-complex (resp.
a Whitehead complex). Then the following are equivalent.

(1) X Zs point-countable.

(2) X is locally countable.

(3) X2 ig8 a CW-complex (resp. Whitehead complex).

Proof. (1) » (2) follows from Lemma 2.6.

(2) » (3). Every locally countable CW-complex is a
kw—space, and every product of two locally kw—spaces is a
k~space. Thus (2) » (3) follows from Proposition 2.5.

(3) » (1). Suppose that X is not point-countable.

Then, by Lemma 2.2, X contains a closed copy of Sw .
1
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2, . .
Thus X" is a k-space which contains a closed copy of 52 .
w
1
Hence ﬁf is a k-space. However, by [7; Lemma 5], Sj is
1 1

not a k-space. This is a contradiction.

In terms of a set-theoretic axiom BF(mz) below, we
shall consider the product X x Y of CW-complexes X and Y.

BF(w,): If F ¢ {f; £: N > N is a functionl} has car-
dinality less than Wys then there is a function g: N = N
such that {n € N; £(n) > g(n)} is finite for all £ € F.
Hence CH implies BF(wz) is false.

In [7], Gary Gruenhage proved the following result (*):

(*) S, * Sw1 is a k-space if and only if BF(wz) holds.

From this result (*), if the assertion of Proposition

1.1 by replacing "Sc" by "Sw " holds, then BF(wz) is false.
1

Lemma 2.8. Iw X Iw 18 a Whitehead complex 1f and only
1
if BF(wz) holds.
Proof. "If." Since BF(mz) holds, by the proof of

[7; Lemma 1] it turns out that Iw X Iw is sequential.
1
Hence I ~x I is a Whitehead complex by Proposition 2.5.
1
"Only if." I, >x1I, is a k-space and it contains a closed
1

copy of Sw X Sw , SO that Suj X Sm is a k-space. Thus by

1 1
the result (*), BF(wz) holds.

Proposition 2.9. If X and Y are Fréchet CW-complexes
(resp. Whitehead complexes), then the following are equiva-
lent.

(1) X x Y 28 a CW-complex (resp. Whitehead complex)
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tf and only if X or Y is locally finite, otherwise X and Y
are locally countable.

(2) BF(wz) is false.

Proof. (1) » (2) follows from Lemma 2.8.

(2) » (1). The "if" part of (1) does not use (2).
Suppose that X or Y is a locally finite CW-complex. Then
X or Y is locally compact. Thus X x Y is a k-space. Sup-
pose that X and Y are locally countable. Then they are
locally kw—spaces,hence X X Y is a k-space. In any case,
X X Y is a k-space. Hence X X Y is a CW-complex by Propo-
sition 2.5. The parenthetic part is proved similarly.
Next we prove the "only if" part. Suppose that Y is not
locally countable. Then by Lemma 2.6, Y is not a point-
countable CW-complex. Then by Lemma 2.2, Y contains a
closed copy of Swl. To show X is point-finite, suppose not.
Then X contains a closed copy of Sw by Lemma 2.2. Thus

X X Y contains a closed copy of S, X 8, - Since BF(mz)
1

is false, Sw x Sw is not a k-space by the result (*).
1

But, since X X Y is a CW-complex, S, Sw is a k-space.
1
This is a contradiction. Thus X is point-finite, hence is

locally finite by Lemma 2.6. Similarly, Y is locally finite

if X is not locally countable. This finishes the proof.

The following questions (a) and (b) remain, the latter

is related to Proposition 2.7.

Questions. (a) For every CW-complexes X and Y, does
(1) ® (2) of the previous proposition hold?

{(b) Is X locally countable if X2 is a CW-complex?
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Supplement

Quite recently, through Zhou Hao-xuan, the author
learned of the following result due to Liu Ying-ming "A
necessary and sufficient condition for the product of
CW~complexes," Acta Mathematica Sinica, 21 (1978), 171-175
(Chinese) .

[CH] Let X and Y be CW-complexes. Then X x Y is a
CW~complex if and only if either X or Y is locally finite,
or X and Y are locally countable.

Referring to the above paper and G. Gruenhage [7], we
can prove that the answers to the questions (a) and (b)
are affirmative.

The author wishes to thank Zhou Hao-xuan for his trans-

lation of Liu's paper.
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