TOPOLOGY PROCEEDINGS

Volume 6, 1981

Pages 207-217

http://topology.auburn.edu/tp/

CELL-LIKE MAPS ON APPROXIMATE ANR'S

by

Fredric D. Ancel and Stuart Anderson

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

CELL-LIKE MAPS ON APPROXIMATE ANR'S

Fredric D. Ancel and Stuart Anderson

1. Introduction

All spaces mentioned in this article are metrizable. Suppose X is an ANR, let $f \colon X \to Y$ be a (proper onto) cell-like map, and consider the following four statements.

- (1) Y is an ANR.
- (2) Y is countable dimensional.
- (3) f is approximately invertible.
- (4) f is a hereditary shape equivalence.

A by-now-classical theorem of Kozlowski [K] says that (1) and (4) are equivalent. The fact that (2) implies (4) was established for compact X in [K] and for general X in [A1]. The equivalence of (3) and (4) was verified for compact X in unpublished work of Kozlowski, and has recently been extended to a large class of non-locally compact X by [A2]. This article explores the extent to which these implications are valid if we assume that X is an approximate ANR.

To state our theorems efficiently, we introduce the following terminology. For functions f,g: X + Y and a collection ℓ of subsets of Y, we say that f is within ℓ of g if $\{\{f(x),g(x)\}: x \in X\}$ refines ℓ . Let ℓ be a class of spaces; we say that a space X is an approximate element of ℓ or is approximately of class ℓ if for every open cover ℓ of X, there is a Y \in ℓ and maps α : X + Y and β : Y + X such that $\beta \circ \alpha$ is within ℓ of 1|X. We will use this notion in two different instances: approximate ANR's, and

approximately countable dimensional spaces.*

When X is an approximate ANR, we say that an onto map $f: X \to Y$ is approximately invertible if for every open cover ℓ of Y, there is a map $g: Y \to X$ such that $g \circ f$ is within $f^{-1}\ell = \{f^{-1}(L): L \in \ell\}$ of 1|X. Observe that $g \circ f$ is within $f^{-1}\ell$ of 1|X if and only if $f \circ g$ is within ℓ of 1|Y. (The implication in one direction relies on the fact that f is onto.)

Recall that a map $f: X \to Y$ is *cell-like* if it is proper and onto and $f^{-1}(y)$ is a cell-like space for each $y \in Y$.

We now state our theorems.

Theorem 1. Let X be an approximate ANR, let $f\colon X\to Y$ be a cell-like map, and consider the following four statements.

- (1) Y is an approximate ANR.
- (2) Y is approximately countable dimensional.
- (3) f is approximately invertible.
- (4) f is a hereditary shape equivalence.

 Statements (1), (2) and (3) are equivalent and are implied by statement (4).

Theorem 2. There is a cell-like map between approximate ANR's which is not a hereditary shape equivalence.

2. The Proof of Theorem 1

Proof that (1) implies (2). Suppose Y is an approximate ANR. Let \angle be an open cover of Y. Then \angle is

^{*}A space is countable dimensional if it is the union of countably many finite dimensional subspaces.

^{**}A space Z is cell-like if Z is compact and if every map of Z into an ANR is homotopic to a constant map.

star-refined by an open cover m of Y. By hypothesis, there is an ANR W and maps $\alpha: Y \to W$ and $\beta: W \to Y$ such that $\beta \circ \alpha$ is within m of $1 \mid Y$.

 $\beta^{-1}M$ is an open cover W. One of the fundamental properties of ANR's (Theorem 6.1 of [H]) provides a simplicial complex K and maps $\gamma\colon W\to |K|$ and $\delta\colon |K|\to W$ such that $\delta\circ\gamma$ is within $\beta^{-1}M$ of 1|W, where |K| denotes the polyhedron underlying K. In the theorem just cited it is intended that |K| be endowed with the Whitehead topology (p. 99 of [H]). However, since the Whitehead topology on |K| may not be metrizable, and since we wish to work within the category of metrizable spaces, we endow |K| with the metric topology (p. 100 of [H]) instead. The theorem cited above remains valid if |K| is assigned the metric topology. The outline of the proof is unchanged; however certain details require additional care to insure the continuity of $\delta\colon |K|\to W$.

Since $|K| = U_{n=1}^{\infty} |K^n|$ where K^n is the n-skeleton of K, and $\dim |K^n| = n$ for each $n \geq 0$, then |K| is countable dimensional. The maps $\gamma \circ \alpha \colon \Upsilon \to |K|$ and $\beta \circ \delta \colon |K| \to \Upsilon$ have the property that their composition $(\beta \circ \delta) \circ (\gamma \circ \alpha)$ is within M of $\beta \circ \alpha$. Hence $(\beta \circ \delta) \circ (\gamma \circ \alpha)$ is within L of 1|Y. This shows that Υ is approximately countable dimensional.

proof that (2) implies (3). Since our proof relies
on the Main Theorem of [Al], we must explain some of the

^{*//} star-refines $\mathcal L$ if for every $M \in \mathcal M$ there is an $L \in \mathcal L$ such that $U\{M' \in \mathcal M \colon M \cap M' \neq \emptyset\} \subset L$.

terminology occurring in [A1]. If $R \subset X \times Y$, we call R a relation from X to Y and we write $R: X \to Y$. If $R: X \to Y$ is a relation, then the inverse of R, denoted $R^{-1}: Y \to X$, is defined by $R^{-1} = \{(y,x) \in Y \times X: (x,y) \in R\}$. If $R: X \to Y$ and $S: Y \to Z$ are relations, then the composition of R and S, denoted $S \circ R: X \to Z$, is defined by $S \circ R = \{(x,z) \in X \times Z: (x,y) \in R \text{ and } (y,z) \in S \text{ for some } y \in Y\}$. Suppose $R: X \to Y$ is a relation; for each $X \in X$, define $R(X) = \{y \in Y: (x,y) \in R\}$, and for each $A \subset X$, define $R(A) = \bigcup \{R(X): X \in A\}$. Thus, if $R: X \to Y$ is a relation, then $R^{-1}(y) = \{x \in X: (x,y) \in R\}$ for each $Y \in Y$, and $Y \in Y$ is continuous if for every closed subset $Y \in Y$ is a closed subset of $Y \in Y$. A relation $Y \in Y$ is a closed subset of $Y \in Y$. A relation $Y \in Y$ is a closed subset of $Y \in Y$. A relation $Y \in Y$ is a closed subset of $Y \in Y$. A relation $Y \in Y$ is a closed subset of $Y \in Y$. A relation $Y \in Y$ is a closed subset of $Y \in Y$. A relation $Y \in Y$ is continuous and if $Y \in Y$ is cell-like for each $Y \in Y$.

One of the fundamental concepts in [Al] is that of a slice-trivial relation. For our purposes it is not necessary to state the full definition of slice-triviality. Instead, it suffices to know that each slice-trivial relation can be arbitrarily closely approximated by maps. More precisely:

Proposition 3. Every slice-trivial relation R: X + Y has the following property. For every collection L of open subsets of Y which is refined by $\{R(x): x \in X\}$, there is a map $f: R^{-1}(Y) \to Y$ which is within L of R; i.e., $\{R(x) \cup \{f(x)\}: x \in R^{-1}(Y)\}$ refines L.

We now state the special case of the Main Theorem of [Al] which we shall need here.

Theorem 4. If $R: X \to Y$ is a cell-like relation from a countable dimensional space X to an ANR Y, then R is slice-trivial.

We also need the following.

Lemma 5. Every approximate ANR X has the following property. If i: $X \to W$ is a closed embedding of X into a metric space W, then for every open cover L of X, there is an open neighborhood O of i(X) in W and a map ψ : O \to X such that $\psi \circ i$ is within L of $1 \mid X$.

Proof. Let \mathcal{L} be an open cover of X. Then there is an ANR Z and maps $\alpha\colon X\to Z$ and $\beta\colon Z\to X$ such that $\beta\circ\alpha$ is within \mathcal{L} of 1|X. If i: $X\to W$ is a closed embedding into a metric space W, then there is an open neighborhood O of i(X) in W and a map $\gamma\colon O\to Z$ such that $\gamma\circ i=\alpha$. Define the map $\psi\colon O\to X$ by $\psi=\beta\circ\gamma$. Then $\gamma\circ i=\beta\circ\alpha$.

We now prove that (2) implies (3). Assume Y is approximately countable dimensional. Let ℓ be an open cover of Y. We shall produce a map g: Y + X such that g \circ f is within $f^{-1}\ell$ of 1|X.

There are open covers M and N of Y such that M starrefines L and N starrefines M. There is a countable dimensional space Z and maps α : Y + Z and β : Z + Y such that $\beta \circ \alpha$ is within M of $1 \mid Y$. Let i: X + W be a closed embedding of X in an ANR W. Then Lemma 5 provides an open neighborhood O of i(X) in W and a map ψ : O + X such that $\psi \circ$ i is within $f^{-1}N$ of $1 \mid X$. It follows that for each $y \in Y$, if $f^{-1}(y) \subset (f \circ \psi)^{-1}(\cup \{N \in N: y \in N\})$. Therefore, $\{if^{-1}(y): y \in Y\}$

refines $(f \circ \psi)^{-1}(\hbar)$.

Theorem 4 implies that the cell-like relation $i \circ f^{-1} \circ \beta \colon Z \to O$ is slice-trivial. Since $\{i \circ f^{-1} \circ \beta(z) \colon z \in Z\}$ refines $(f \circ \psi)^{-1}(m)$, then Proposition 3 provides a map $\phi \colon Z \to O$ which is within $(f \circ \psi)^{-1}(m)$ of $i \circ f^{-1} \circ \beta$. Define the map $g \colon Y \to X$ by $g = \psi \circ \phi \circ \alpha$.

It remains to verify that $g \circ f$ is within $f^{-1} \not \subset f \mid X$. Let $x \in X$. There is an $M' \in \mathcal{N}$ such that $(f \circ \psi)^{-1}(M')$ contains $\phi(\alpha \circ f(x))$ and $i \circ f^{-1} \circ \beta(\alpha \circ f(x))$. Hence, $f^{-1}(M')$ contains $g \circ f(x)$ and $\psi \circ i \circ f^{-1} \circ \beta \circ \alpha \circ f(x)$. Let $x' \in f^{-1} \circ \beta \circ \alpha \circ f(x)$. Then $\psi \circ i(x') \in f^{-1}(M')$. There is an $M \in \mathcal{N}$ such that $f^{-1}(M)$ contains x' and $\psi \circ i(x')$. Then $\beta \circ \alpha \circ f(x) = f(x') \in M$ and $f \circ \psi \circ i(x') \in M \cap M'$. Finally there is an M'' which contains both f(x) and $\beta \circ \alpha \circ f(x)$. Thus, $x \in f^{-1}(M'')$ and $\beta \circ \alpha \circ f(x) \in M \cap M''$. Since $M \cap M' \neq 0$ and $M \cap M'' \neq 0$, then $M \cup M' \cup M'' \subseteq L$ for some $L \in \mathcal{L}$. Since $g \circ f(x) \in f^{-1}(M'')$ and $x \in f^{-1}(M''')$, then $\{x, g \circ f(x)\} \subset f^{-1}(L)$.

Proof that (3) implies (1). Assume that $f\colon X\to Y$ is approximately invertible. Let ℓ be an open cover of Y. Then there is an open cover ℓ of Y which star-refines ℓ . By hypothesis, there is an ANR W and maps $\alpha\colon X\to W$ and $\beta\colon W\to X$ such that $\beta\circ\alpha$ is within $f^{-1}/\!\!/$ of $1/\!\!/ X$. Also there is a map $g\colon Y\to X$ such that $g\circ f$ is within $f^{-1}/\!\!/$ of $1/\!\!/ X$. It is easy to verify that the maps $\alpha\circ g\colon Y\to W$ and

f \circ β : W \rightarrow Y have the property that their composition $(f \circ \beta) \circ (\alpha \circ g)$ is within % of $f \circ g$. It is also easy to see that $f \circ g$ is within % of 1|Y. Hence, $(f \circ \beta) \circ (\alpha \circ g)$ is within % of 1|Y. This proves that Y is an approximate ANR.

Proof that (4) implies (3). The original definition of "hereditary shape equivalence" is presented in [K] in a form which can't be used directly here. So rather than stating it, we shall describe one of its more useful implications. Lemmas 5 and 6 of [K] entail the following.

Proposition 6. If a proper onto map $f: X \to Y$ is a hereditary shape equivalence, then it has the following property. If $\alpha: X \to W$ is a map of X into an ANR W, and if 0 is a collection of open subsets of W which is refined by $\{\alpha(f^{-1}(y)): y \in Y\}$, then there is a map $\gamma: Y \to W$ such that $\gamma \circ f$ is within 0 of a.

Now assume that $f\colon X\to Y$ is a hereditary shape equivalence. Let L be an open cover of Y. Select open covers M and N of Y such that M star-refines L and N star-refines M. By hypothesis there is an ANR W and maps $\alpha\colon X\to W$ and $\beta\colon W\to X$ such that $\beta\circ\alpha$ is within $f^{-1}N$ of 1|X. It follows that for each $y\in Y$, $\alpha(f^{-1}(y))\subset (f\circ\beta)^{-1}(U\{N\in N\colon y\in N\})$. Therefore, $\{\alpha(f^{-1}(y))\colon y\in Y\}$ refines $(f\circ\beta)^{-1}(M)$. Proposition 6 now provides a map $\gamma\colon Y\to W$ such that $\gamma\circ f$ is within $(f\circ\beta)^{-1}(M)$ of α . Define the map $g\colon Y\to X$ by $g=\beta\circ\gamma$. It follows easily that $g\circ f$ is within $f^{-1}M$ of $\beta\circ\alpha$. Since $\beta\circ\alpha$ is within $f^{-1}M$ of $\beta\circ\alpha$. Since $\beta\circ\alpha$ is within $f^{-1}M$ of $\beta\circ\alpha$.

that $g \circ f$ is within $f^{-1}L$ of 1|X. This proves that $f: X \to Y$ is approximately invertible.

3. The Proof of Theorem 2

We shall construct a cell-like map $f\colon X\to Y$ which is not a hereditary shape equivalence, but where both X and Y are approximate ANR's. J. Segal has called to the authors' attention the similarity between this example and the construction on page 223 of [KS]. Also see [DK]. At the heart of our example is Taylor's remarkable cell-like map $\tau\colon T\to \mathbf{Q}$ which is not a shape equivalence, where \mathbf{Q} is the Hilbert cube and T is a compact metric space which is not cell-like [T]. Results from [A2] show that T is not an approximate ANR. (See the remark following this proof.)

We begin by embedding T in an approximate ANR which is in some sense a minimal enlargement of T. We assert that there is a compact approximate ANR X which is the disjoint union of T and a countable collection of compact polyhedra $\{P_i\}$, such that for each neighborhood U of T in X, there is an $n \geq 1$ such that $\bigcup_{i=n+1}^{\infty} P_i \subset U$. (The construction of X described below can be carried out with any compact metric space in place of T.)

According to [F], T is homeomorphic to the inverse limit of an inverse sequence $\{P_i,f_{i,j}\}$ where each P_i is a compact polyhedron. Hence, there is a homeomorphism e_{∞} from T onto the subset

 $\{(p_i) \in \Pi_{i=1}^{\infty} P_i \colon f_{i,j}(p_i) = p_j \text{ for } i \leq j \leq i\} \times \{0\}$ of $(\Pi_{i=1}^{\infty} P_i) \times [0,1]$. We construct X in $(\Pi_{i=1}^{\infty} P_i) \times [0,1]$. Fix a point (q_i) of $\Pi_{i=1}^{\infty} P_i$. For each $n \geq 1$, define the

embedding $e_n\colon P_n\to (\Pi_{i=1}^\infty P_i)\times [0,1]$ by $e_n(p)=(f_{n,1}(p),\cdots,f_{n,n-1}(p),p,q_{n+1},q_{n+2},\cdots)\times (1/n)$ for $p\in P_n$. Let $X=e_\infty(T)\cup (\cup_{i=1}^\infty e_i(P_i))$. It is easy to verify that if U is a neighborhood of $e_\infty(T)$ in X, then $\cup_{i=n+1}^\infty e_i(P_i)\subset U$ for some $n\geq 1$. To show that X is an appropriate ANR, we define for each $n\geq 1$ a map $r_n\colon (\Pi_{i=1}^\infty P_i)\times [0,1]\to (\Pi_{i=1}^\infty P_i)\times [0,1]$ by $r_n((p_i)\times t)=(p_1,\cdots,p_n,q_{n+1},q_{n+2},\cdots)\times \max\{t,1/n\}$ for $(p_i)\times t\in (\Pi_{i=1}^\infty P_i)\times [0,1]$. Then for each $n\geq 1$, $r_n|X$ is a retraction of X onto the ANR $\cup_{i=1}^n e_i(P_i)$; and $(q_i)=(q_i)=(q_i)$ and $(q_i)=(q_i)=(q_i)=(q_i)$ and $(q_i)=(q_i)=(q_i)=(q_i)$ and the inclusion of $(q_i)=(q_i)=(q_i)=(q_i)=(q_i)$ in X is within $(q_i)=(q$

Let Y be the space obtained by attaching X to \mathbf{Q} via the map $\tau\colon \mathbf{T}\to\mathbf{Q}$; i.e., Y = X $\cup_{\tau}\mathbf{Q}$. Then $\tau\colon \mathbf{T}\to\mathbf{Q}$ extends naturally to a cell-like map $f\colon X\to Y$ such that $f|\cup_{i=1}^{\infty}P_i$ is a homeomorphism of X - T onto Y - \mathbf{Q} .

Y is a compact metric space which is the disjoint union of ${\bf Q}$ and the countable collection of compact polyhedra $\{f(P_i)\}$. Furthermore, for each neighborhood U of ${\bf Q}$ in Y, there is an $n \geq 1$ such that $\bigcup_{i=n+1}^{\infty} f(P_i) \subset U$. To see that Y is an approximate ANR, let ℓ be an open cover of Y. Since ${\bf Q}$ is an absolute retract, there is a retraction $r\colon Y \to {\bf Q}$. ${\bf Q}$ has a neighborhood U in Y such that $\Big\{\{y,r(y)\}\colon y\in U\Big\}$ refines ℓ . Choose $n \geq 1$ so that $\bigcup_{i=n+1}^{\infty} f(P_i) \subset U$. Then a retraction ρ of Y onto the ANR ${\bf Q} \cup \bigcup_{i=1}^{n} f(P_i)$ is defined by

$$\rho\left(y\right) \; = \; \begin{cases} r\left(y\right) \; \; \text{if} \; \; y \; \in \; \boldsymbol{0} \; \; \cup \; \; \left(\cup_{i=n+1}^{\infty} f\left(P_{i}\right)\right) \\ y \; \; \; \text{if} \; \; y \; \in \; \cup_{i=1}^{n} f\left(P_{i}\right) \end{cases}$$

for $y \in Y$. Furthermore, the composition of ρ and the inclusion of $\mathbf{0}$ U ($\cup_{i=1}^n f(P_i)$) into Y is within ℓ of 1|Y.

The cell-like map $f: X \to Y$ is not a hereditary shape equivalence because $f|T = \tau$ is not a shape equivalence. Indeed, according to the definition of hereditary shape equivalence in [K], $f: X \to Y$ is a hereditary shape equivalence if and only if $f|f^{-1}(C): f^{-1}(C) \to C$ is a shape equivalence for each closed subset C of Y.

One might wonder whether an example of this type can be constructed in which one of X and Y is an ANR and the other is an approximate ANR. Results of [A2] rule out this possibility: if $f: X \rightarrow Y$ is a cell-like map where one of X and Y is an ANR and the other is an approximate ANR, then f is a hereditary shape equivalence.

References

- [A1] F. D. Ancel, The role of countable dimensionality in the theory of cell-like relations (in preparation).
- [A2] _____, Approximate countable dimensionality and cell-like maps (in preparation).
- [DK] J. Draper and J. Keesling, An example concerning the Whitehead theorem in shape theory, Fund. Math. 92 (1976), 255-259.
- [F] H. Freudenthal, Entwicklungen von Räumen and ihren Gruppen, Compositio Math. 4 (1937), 145-234.
- [H] S. T. Hu, Theory of retracts, Wayne State University Press, 1965.
- [K] G. Kozlowski, Images of ANR's, Trans. Amer. Math. Soc. (to appear).
- [KS] _____ and J. Segal, Local behavior and the Vietoris

and Whitehead theorems in shape theory, Fund. Math. 99 (1978), 213-225.

[T] J. L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc. 81 (1975), 629-632.

University of Oklahoma

Norman, OK 73069

and

East Texas State University

Commerce, TX 75428