TOPOLOGY PROCEEDINGS Volume 6, 1981 Pages 207–217

http://topology.auburn.edu/tp/

CELL-LIKE MAPS ON APPROXIMATE ANR'S

by

FREDRIC D. ANCEL AND STUART ANDERSON

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

CELL-LIKE MAPS ON APPROXIMATE ANR'S

Fredric D. Ancel and Stuart Anderson

1. Introduction

All spaces mentioned in this article are metrizable. Suppose X is an ANR, let f: $X \rightarrow Y$ be a (proper onto) cell-like map, and consider the following four statements.

- (1) Y is an ANR.
- (2) Y is countable dimensional.
- (3) f is approximately invertible.
- (4) f is a hereditary shape equivalence.

A by-now-classical theorem of Kozlowski [K] says that (1) and (4) are equivalent. The fact that (2) implies (4) was established for compact X in [K] and for general X in [A1]. The equivalence of (3) and (4) was verified for compact X in unpublished work of Kozlowski, and has recently been extended to a large class of non-locally compact X by [A2]. This article explores the extent to which these implications are valid if we assume that X is an approximate ANR.

To state our theorems efficiently, we introduce the following terminology. For functions f,g: X + Y and a collection ℓ of subsets of Y, we say that f is within ℓ of g if $\{\{f(x),g(x)\}: x \in X\}$ refines ℓ . Let ℓ be a class of spaces; we say that a space X is an approximate element of ℓ or is approximately of class ℓ if for every open cover ℓ of X, there is a Y $\in \ell$ and maps α : X + Y and β : Y + X such that $\beta \circ \alpha$ is within ℓ of 1|X. We will use this notion in two different instances: approximate ANR's, and approximately countable dimensional spaces.

When X is an approximate ANR, we say that an onto map f: X + Y is approximately invertible if for every open cover ℓ of Y, there is a map g: Y + X such that g \circ f is within $f^{-1}\ell = \{f^{-1}(L): L \in \ell\}$ of 1|X. Observe that g \circ f is within $f^{-1}\ell$ of 1|X if and only if f \circ g is within ℓ of 1|Y. (The implication in one direction relies on the fact that f is onto.)

Recall that a map f: $X \rightarrow Y$ is *cell-like* if it is proper and onto and $f^{-1}(y)$ is a cell-like space for each $y \in Y$.^{**}

We now state our theorems.

Theorem 1. Let X be an approximate ANR, let $f: X \rightarrow Y$ be a cell-like map, and consider the following four statements.

(1) Y is an approximate ANR.

(2) Y is approximately countable dimensional.

(3) f is approximately invertible.

(4) f is a hereditary shape equivalence.

Statements (1), (2) and (3) are equivalent and are implied by statement (4).

Theorem 2. There is a cell-like map between approximate ANR's which is not a hereditary shape equivalence.

2. The Proof of Theorem 1

Proof that (1) implies (2). Suppose Y is an approximate ANR. Let l be an open cover of Y. Then l is

208

^{*}A space is *countable dimensional* if it is the union of countably many finite dimensional subspaces.

^{**} A space Z is *cell-like* if Z is compact and if every map of Z into an ANR is homotopic to a constant map.

star-refined^{*} by an open cover /n of Y. By hypothesis, there is an ANR W and maps α : Y \rightarrow W and β : W \rightarrow Y such that β $\circ \alpha$ is within /n of 1|Y.

 $\beta^{-1}M$ is an open cover W. One of the fundamental properties of ANR's (Theorem 6.1 of [H]) provides a simplicial complex K and maps $\gamma: W + |K|$ and $\delta: |K| + W$ such that $\delta \cdot \gamma$ is within $\beta^{-1}M$ of 1|W, where |K| denotes the polyhedron underlying K. In the theorem just cited it is intended that |K| be endowed with the Whitehead topology (p. 99 of [H]). However, since the Whitehead topology on |K| may not be metrizable, and since we wish to work within the category of metrizable spaces, we endow |K| with the metric topology (p. 100 of [H]) instead. The theorem cited above remains valid if |K| is assigned the metric topology. The outline of the proof is unchanged; however certain details require additional care to insure the continuity of $\delta: |K| + W$.

Since $|K| = \bigcup_{n=1}^{\infty} |K^n|$ where K^n is the n-skeleton of K, and dim $|K^n| = n$ for each $n \ge 0$, then |K| is countable dimensional. The maps $\gamma \circ \alpha : \Upsilon + |K|$ and $\beta \circ \delta : |K| \rightarrow \Upsilon$ have the property that their composition ($\beta \circ \delta$) \circ ($\gamma \circ \alpha$) is within /n of $\beta \circ \alpha$. Hence ($\beta \circ \delta$) \circ ($\gamma \circ \alpha$) is within ℓ of 1|Y. This shows that Y is approximately countable dimensional.

Proof that (2) implies (3). Since our proof relies on the Main Theorem of [A1], we must explain some of the

^{*} $M \text{ star-refines } L \text{ if for every } M \in M \text{ there is an } L \in L \text{ such that } U\{M' \in M: M \cap M' \neq \emptyset\} \subset L.$

terminology occurring in [A1]. If $R \subset X \times Y$, we call R a relation from X to Y and we write R: X + Y. If R: X + Yis a relation, then the *inverse* of R, denoted R^{-1} : Y + X, is defined by $R^{-1} = \{(y,x) \in Y \times X: (x,y) \in R\}$. If R: X + Yand S: Y + Z are relations, then the *composition* of R and S, denoted S \circ R: X + Z, is defined by S \circ R = $\{(x,z) \in X \times Z:$ $(x,y) \in R$ and $(y,z) \in S$ for some $y \in Y\}$. Suppose R: X + Yis a relation; for each $x \in X$, define $R(x) = \{y \in Y:$ $(x,y) \in R\}$, and for each $A \subset X$, define $R(A) = \cup \{R(x): x \in A\}$. Thus, if R: X + Y is a relation, then $R^{-1}(y) = \{x \in X:$ $(x,y) \in R\}$ for each $y \in Y$, and $R^{-1}(B) = \cup \{R^{-1}(y): y \in B\}$ for each $B \subset Y$. A relation R: X + Y is *continuous* if for every closed subset C of Y, $R^{-1}(C)$ is a closed subset of X. A relation R: X + Y is *cell-like* if it is continuous and if R(x) is cell-like for each $x \in R^{-1}(Y)$.

One of the fundamental concepts in [A1] is that of a *slice-trivial* relation. For our purposes it is not necessary to state the full definition of slice-triviality. Instead, it suffices to know that each slice-trivial relation can be arbitrarily closely approximated by maps. More precisely:

Proposition 3. Every slice-trivial relation R: X + Yhas the following property. For every collection L of open subsets of Y which is refined by $\{R(x): x \in X\}$, there is a map f: $R^{-1}(Y) + Y$ which is within L of R; i.e., $\{R(x) \cup \{f(x)\}: x \in R^{-1}(Y)\}$ refines L.

We now state the special case of the Main Theorem of [A1] which we shall need here.

Theorem 4. If $R: X \rightarrow Y$ is a cell-like relation from a countable dimensional space X to an ANR Y, then R is slice-trivial.

We also need the following.

Lemma 5. Every approximate ANR X has the following property. If i: $X \rightarrow W$ is a closed embedding of X into a metric space W, then for every open cover \lfloor of X, there is an open neighborhood O of i(X) in W and a map ψ : O \rightarrow X such that $\psi \circ i$ is within \lfloor of $1 \mid X$.

Proof. Let ℓ be an open cover of X. Then there is an ANR Z and maps $\alpha: X \neq Z$ and $\beta: Z \neq X$ such that $\beta \circ \alpha$ is within ℓ of 1|X. If i: $X \neq W$ is a closed embedding into a metric space W, then there is an open neighborhood O of i(X) in W and a map $\gamma: O \neq Z$ such that $\gamma \circ i = \alpha$. Define the map $\psi: O \neq X$ by $\psi = \beta \circ \gamma$. Then $\gamma \circ i = \beta \circ \alpha$.

We now prove that (2) implies (3). Assume Y is approximately countable dimensional. Let / be an open cover of Y. We shall produce a map g: Y \rightarrow X such that g \circ f is within $f^{-1}/$ of 1|X.

There are open covers M and N of Y such that M starrefines L and N star-refines M. There is a countable dimensional space Z and maps $\alpha: Y \rightarrow Z$ and $\beta: Z \rightarrow Y$ such that $\beta \circ \alpha$ is within M of 1|Y. Let i: $X \rightarrow W$ be a closed embedding of X in an ANR W. Then Lemma 5 provides an open neighborhood O of i(X) in W and a map $\psi: O \rightarrow X$ such that $\psi \circ i$ is within $f^{-1}N$ of 1|X. It follows that for each $y \in Y$, $if^{-1}(y) \subset$ $(f \circ \psi)^{-1}(\cup\{N \in N: y \in N\})$. Therefore, $\{if^{-1}(y): y \in Y\}$ refines $(f \circ \psi)^{-1}(\hbar)$.

 $\psi \downarrow \uparrow \mathbf{i} \qquad \alpha \uparrow \downarrow \beta$ $\mathbf{x} \xrightarrow{\mathbf{f}} \mathbf{y}$

Theorem 4 implies that the cell-like relation i $\circ f^{-1} \circ \beta$: Z $\rightarrow 0$ is slice-trivial. Since {i $\circ f^{-1} \circ \beta(z)$: z \in Z} refines (f $\circ \psi$)⁻¹(\hbar), then Proposition 3 provides a map ϕ : Z $\rightarrow 0$ which is within (f $\circ \psi$)⁻¹(\hbar) of i $\circ f^{-1} \circ \beta$. Define the map g: Y \rightarrow X by g = $\psi \circ \phi \circ \alpha$.

It remains to verify that $g \circ f$ is within $f^{-1} / (f \circ f) | X$. Let $x \in X$. There is an $M' \in //$ such that $(f \circ \psi)^{-1} (M')$ contains $\phi(\alpha \circ f(x))$ and $i \circ f^{-1} \circ \beta(\alpha \circ f(x))$. Hence, $f^{-1} (M')$ contains $g \circ f(x)$ and $\psi \circ i \circ f^{-1} \circ \beta \circ \alpha \circ f(x)$. Let $x' \in f^{-1} \circ \beta \circ \alpha \circ f(x)$. Then $\psi \circ i(x') \in f^{-1} (M')$. There is an $M \in //$ such that $f^{-1} (M)$ contains x' and $\psi \circ i(x')$. Then $\beta \circ \alpha \circ f(x) = f(x') \in M$ and $f \circ \psi \circ i(x') \in M \cap M'$. Finally there is an M'' which contains both f(x) and $\beta \circ \alpha \circ f(x)$. Thus, $x \in f^{-1} (M'')$ and $\beta \circ \alpha \circ f(x) \in M \cap M''$. Since $M \cap M' \neq 0$ and $M \cap M'' \neq 0$, then $M \cup M' \cup M'' \subset L$ for some $L \in /$. Since $g \circ f(x) \in f^{-1} (M')$ and $x \in f^{-1} (M'')$,

Proof that (3) implies (1). Assume that f: X + Y is approximately invertible. Let \angle be an open cover of Y. Then there is an open cover / of Y which star-refines \angle . By hypothesis, there is an ANR W and maps α : X + W and β : W + X such that $\beta \circ \alpha$ is within $f^{-1}//$ of 1|X. Also there is a map g: Y + X such that g \circ f is within $f^{-1}//$ of 1|X. It is easy to verify that the maps $\alpha \circ$ g: Y + W and f $\circ \beta$: W + Y have the property that their composition (f $\circ \beta$) $\circ (\alpha \circ g)$ is within $/\!\!/$ of f $\circ g$. It is also easy to see that f $\circ g$ is within $/\!\!/$ of 1|Y. Hence, (f $\circ \beta$) $\circ (\alpha \circ g)$ is within $/\!\!/$ of 1|Y. This proves that Y is an approximate ANR.

Proof that (4) implies (3). The original definition of "hereditary shape equivalence" is presented in [K] in a form which can't be used directly here. So rather than stating it, we shall describe one of its more useful implications. Lemmas 5 and 6 of [K] entail the following.

Proposition 6. If a proper onto map $f: X \rightarrow Y$ is a hereditary shape equivalence, then it has the following property. If $\alpha: X \rightarrow W$ is a map of X into an ANR W, and if O is a collection of open subsets of W which is refined by $\{\alpha(f^{-1}(y)): y \in Y\}$, then there is a map $\gamma: Y \rightarrow W$ such that $\gamma \circ f$ is within O of a.

Now assume that f: X + Y is a hereditary shape equivalence. Let L be an open cover of Y. Select open covers M and N of Y such that M star-refines L and N star-refines M. By hypothesis there is an ANR W and maps α : X + W and β : W + X such that $\beta \circ \alpha$ is within $f^{-1}N$ of 1|X. It follows that for each $y \in Y$, $\alpha(f^{-1}(y)) \subset (f \circ \beta)^{-1}(u\{N \in N; Y \in N\})$. Therefore, $\{\alpha(f^{-1}(y)): y \in Y\}$ refines $(f \circ \beta)^{-1}(M)$. Proposition 6 now provides a map γ : Y + W such that $\gamma \circ f$ is within $(f \circ \beta)^{-1}(M)$ of α . Define the map g: Y + X by $g = \beta \circ \gamma$. It follows easily that $g \circ f$ is within $f^{-1}M$ of $\beta \circ \alpha$. Since $\beta \circ \alpha$ is within $f^{-1}M$ of 1|X, we conclude that $g \circ f$ is within $f^{-1}L$ of 1|X. This proves that f: $X \rightarrow Y$ is approximately invertible.

3. The Proof of Theorem 2

We shall construct a cell-like map f: X + Y which is not a hereditary shape equivalence, but where both X and Y are approximate ANR's. J. Segal has called to the authors' attention the similarity between this example and the construction on page 223 of [KS]. Also see [DK]. At the heart of our example is Taylor's remarkable cell-like map $\tau: T \neq Q$ which is not a shape equivalence, where Q is the Hilbert cube and T is a compact metric space which is not cell-like [T]. Results from [A2] show that T is not an approximate ANR. (See the remark following this proof.)

We begin by embedding T in an approximate ANR which is in some sense a minimal enlargement of T. We assert that there is a compact approximate ANR X which is the disjoint union of T and a countable collection of compact polyhedra $\{P_i\}$, such that for each neighborhood U of T in X, there is an $n \ge 1$ such that $\bigcup_{i=n+1}^{\infty} P_i \subset U$. (The construction of X described below can be carried out with any compact metric space in place of T.)

According to [F], T is homeomorphic to the inverse limit of an inverse sequence $\{P_i, f_{i,j}\}$ where each P_i is a compact polyhedron. Hence, there is a homeomorphism e_{∞} from T onto the subset

 $\{ (\mathbf{p}_i) \in \Pi_{i=1}^{\infty} \mathbf{P}_i \colon f_{i,j}(\mathbf{p}_i) = \mathbf{p}_j \text{ for } i \leq j \leq i \} \times \{ 0 \}$ of $(\Pi_{i=1}^{\infty} \mathbf{P}_i) \times [0,1]$. We construct X in $(\Pi_{i=1}^{\infty} \mathbf{P}_i) \times [0,1]$. Fix a point (\mathbf{q}_i) of $\Pi_{i=1}^{\infty} \mathbf{P}_i$. For each $n \geq 1$, define the embedding $e_n: P_n \neq (\prod_{i=1}^{\infty} P_i) \times [0,1]$ by $e_n(p) = (f_{n,1}(p), \cdots, f_{n,n-1}(p), p, q_{n+1}, q_{n+2}, \cdots) \times (1/n)$ for $p \in P_n$. Let $X = e_{\infty}(T) \cup (\bigcup_{i=1}^{\infty} e_i(P_i))$. It is easy to verify that if U is a neighborhood of $e_{\infty}(T)$ in X, then $\bigcup_{i=n+1}^{\infty} e_i(P_i) \subset U$ for some $n \geq 1$. To show that X is an appropriate ANR, we define for each $n \geq 1$ a map $r_n: (\prod_{i=1}^{\infty} P_i) \times [0,1] + (\prod_{i=1}^{\infty} P_i)$ $\times [0,1]$ by $r_n((P_i) \times t) = (P_1, \cdots, P_n, q_{n+1}, q_{n+2}, \cdots) \times$ max{t,1/n} for $(P_i) \times t \in (\prod_{i=1}^{\infty} P_i) \times [0,1]$. Then for each $n \geq 1$, $r_n | X$ is a retraction of X onto the ANR $\bigcup_{i=1}^{n} e_i(P_i)$; and $\{r_n\}$ converges uniformly to $1 | (\prod_{i=1}^{\infty} P_i) \times [0,1]$. Hence, if ℓ is an open cover of X, there is an $n \geq 1$ such that the composition of $r_n | X: X + \bigcup_{i=1}^{n} e_i(P_i)$ and the inclusion of $\bigcup_{i=1}^{n} e_i(P_i)$ in X is within ℓ of 1 | X. Finally, we identify T with e(T) and P_i with $e_i(P_i)$ for $i \geq 1$, to make X the disjoint union of T and the P_i 's.

Let Y be the space obtained by attaching X to **Q** via the map τ : $T \rightarrow \mathbf{Q}$; i.e., $Y = X \cup_{\tau} \mathbf{Q}$. Then τ : $T \rightarrow \mathbf{Q}$ extends naturally to a cell-like map f: $X \rightarrow Y$ such that $f | \bigcup_{i=1}^{\infty} P_i$ is a homeomorphism of X - T onto Y - **Q**.

Y is a compact metric space which is the disjoint union of **Q** and the countable collection of compact polyhedra $\{f(P_i)\}$. Furthermore, for each neighborhood U of **Q** in Y, there is an $n \ge 1$ such that $\bigcup_{i=n+1}^{\infty} f(P_i) \subset U$. To see that Y is an approximate ANR, let ℓ be an open cover of Y. Since **Q** is an absolute retract, there is a retraction r: Y + **Q**. **Q** has a neighborhood U in Y such that $\{\{y,r(y)\}: y \in U\}$ refines ℓ . Choose $n \ge 1$ so that $\bigcup_{i=n+1}^{\infty} f(P_i) \subset U$. Then a retraction ρ of Y onto the ANR **Q** $\cup (\bigcup_{i=1}^{n} f(P_i))$ is defined by

$$\rho(\mathbf{y}) = \begin{cases} \mathbf{r}(\mathbf{y}) & \text{if } \mathbf{y} \in \mathbf{0} \quad \cup \quad (\mathbf{U}_{i=n+1}^{\infty} \mathbf{f}(\mathbf{P}_{i})) \\ \mathbf{y} & \text{if } \mathbf{y} \in \mathbf{U}_{i=1}^{n} \mathbf{f}(\mathbf{P}_{i}) \end{cases}$$

for $y \in Y$. Furthermore, the composition of ρ and the inclusion of **Q** U $(\bigcup_{i=1}^{n} f(P_i))$ into Y is within \angle of 1|Y.

The cell-like map f: $X \rightarrow Y$ is not a hereditary shape equivalence because $f | T = \tau$ is not a shape equivalence. Indeed, according to the definition of hereditary shape equivalence in [K], f: $X \rightarrow Y$ is a hereditary shape equivalence if and only if $f | f^{-1}(C) : f^{-1}(C) \rightarrow C$ is a shape equivalence for each closed subset C of Y.

One might wonder whether an example of this type can be constructed in which one of X and Y is an ANR and the other is an approximate ANR. Results of [A2] rule out this possibility: if f: $X \rightarrow Y$ is a cell-like map where one of X and Y is an ANR and the other is an approximate ANR, then f is a hereditary shape equivalence.

References

- [A1] F. D. Ancel, The role of countable dimensionality in the theory of cell-like relations (in preparation).
- [A2] ____, Approximate countable dimensionality and cell-like maps (in preparation).
- [DK] J. Draper and J. Keesling, An example concerning the Whitehead theorem in shape theory, Fund. Math. 92 (1976), 255-259.
- [F] H. Freudenthal, Entwicklungen von R\u00e4umen and ihren Gruppen, Compositio Math. 4 (1937), 145-234.
- [H] S. T. Hu, Theory of retracts, Wayne State University Press, 1965.
- [K] G. Kozlowski, Images of ANR's, Trans. Amer. Math. Soc. (to appear).
- [KS] and J. Segal, Local behavior and the Vietoris

and Whitehead theorems in shape theory, Fund. Math. 99 (1978), 213-225.

[T] J. L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc. 81 (1975), 629-632.

University of Oklahoma

Norman, OK 73069

and

East Texas State University

Commerce, TX 75428