
Volume 6, 1981

Pages 219–226

http://topology.auburn.edu/tp/

AANR’S and ARI Maps

by

Laurence Boxer

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



219 TOPOLOGY PROCEEDINGS Volume 6 1981 

AANR'S and ARI Maps 

Laurence Boxer 

1.	 Introduction 

We use results of Carin to examine shape properties of 

refinable and approximately right invertible maps. Relations 

between certain function spaces and hyperspaces are also 

examined. 

2. Preliminaries 

A compaotum X is called an approximate absolute neigh

borhood retract in the sense of Noguch~ (AAN~) if whenever 

X is embedded in an ANR M, there is a neighborhood U of X 

in M such that for every E > 0, there is an E-retraction of 

U to X, i.e., a continuous function f: U ~ X such that fix 

is an E-push (moves no point by more than E). If it may 

always be assumed that fiX is a surjection, then X is called 

a surjective approximate absolute neighborhood retract in 

the sense of Noguchi (SAAN~). 

If in the above, U may be taken to be M, we say X is 

an approximate absolute retract (AAR) or a surjective 

approximate absolute retract (SAAR), respectively. 

If for every E > 0 there exists a neighborhood U of 

X in M such that there is an E-retraction g: U ~ X, then 

X is called an approximate absolute neighborhood retract 

in the sense of Clapp (AANRC). If it may always be assumed 

that glx is a surjection, then X is called a surjective 

approximate absolute neighborhood retract in the sense of 

Clapp (SAANRC). 
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The definitions above are from [N], [Cl]~ and [PI]. 

A continuous surjection r: X ~ Y is called refinable 

[F-R] if for every s > 0, there is an s-map f: X ~ Y (i.e., 

diam f-l(y) < s for all y E Y) that is s-close to r. 

A map f: X ~ Y between comp~cta is approximately right 

invertible (ARI) [G] if for every s > 0 there is a map 

gs: Y ~ X such that fg is s-close to lye If also there s 

exists G : X ~ Y such that gsG is s-close to lx' then f is s s 

approximately invertible (AI) [Ce3]. 

A compactum X is calm [Cell if whenever X c~ME ANR, 

there is a neighborhood V of X in M ~uch that for every 

neighborhoodU of X in M there is a neighborhood W of X in 

M, W c U, such that if f,g: Y ~ U with f ~ g in V, then 

f ~ g in U for all Y E ANR. We have: 

(2.1) Theorem [Ce-S]. A compactum X is an FANR if and 

onZy if X is caZm and movabZe. 

Let 2Y be the set of all nonempty compact subsets of 

a metric space Y. The metric of continuity d is defined c 

in [Bkl] qS follows: dc(A,B) = s if s is the infimum of 

those nonnegative t such that there are t-pushes f: A ~ ,B 

and g: B ~ A. 

If A,B E 2Y and there are continuous surjections 

f: A ~ Band g: B ~ A, then the metric of continuous sur

jection de is defined (see [Ce2]) by: dc(A,B) = s if s is 

the infimum of those nonnegative t such that there are sur

jective t-pushes f: A ~ Band g: B ~ A. 

The Hilbert cube is denoted by Q. 
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3.	 Shape Properties of Certain Maps 

Let X and Y be compacta in AR-spaces M and N, respec

tively. Let us recall the definitions of quasi-domination 

and quasi-equivalence [Bk2]: X quasi-dominates Y (X > Y)
-q
 

if for every neighborhood U of Y in N there exists a
 

neighborhood V of Y in N, V c U, and fundamental sequences 

! = {fk,X'Y}M,N' ~ = {gk,y,X}N,M such that for almost all 

k, fkgklv ~ iv,u in U, where iv,u is the inclusion of V 

into u. 

If for every neighborhood (W,U) of (X,Y) in (M,N) 

there exist neighborhoods (Wl,V) of (X,Y) in (M,N) , c W,WI 

V c U, and fundamental sequences !, 9:. as above with 

fkgklv iv,u in U and gkfk1wl i W in W for almost all~	 ~ 

wl' 

k, then X and Yare quasi-equivalent (X ~ Y). These 
q 

notions are in general weaker than shape domination and 

shape equivalence, respectively, but they coincide when Y 

is calm (when X and Yare calm, respectively) [Bx2]. 

(3.1)	 Theorem. Let X and Y be compacta and let 

f: X ~ Y be ARI. Then X > Y. If f is AI, then X ~ Y. -q q 

Proof. There is no loss of generality in assuming 

M = N = Q [Bk2]. Let U be a neighborhood of Y in Q. 

There is a compact ANR neighborhood V~ of Y in Q, v~ c u, 

and an s > 0 such that s-close maps into V~ are homotopic. 

Since	 f is ARI, there exist gE: Y ~ X such that f9£ is an 

s-push. Let~, 9:. be fundament~l s~quences generated by f 

and gE' respectively. There is a neighborhood V of Y in 

Q, V c V~, such that fkgklv is an s-push and fkgk(V) C V~ 

for almost all k. By choice of s, fkgklv ~ iv,u in V~, 
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hence in U, for almost all k. Thus X > Y. -q 

If f is AI, then for a neighborhood (W,U) of (X,Y) in 

(Q,Q) there exist compact ANR neighborhoods W', V' of X and 

Y in Q, respectively, W' c W, V' c U, and an E > 0 such that 

E-close maps into either of W' or.V' are homotopic. Since 

f is AI, there exist gE: Y + X and f E: X + Y such that 

f9E is (E/2)-close to ly' gEfE is a-close to lx' where 

o <	 a < E and d(xl ,x2) < a implies d(f(x ),f(x )) < E/2.l 2

Therefore, for x € X, 

d(f(x),f (x)) < d(f(x) ,fgcf (x)) + d'(fg f c (x),
E - ~ E E ~ 

fE(x)) < (by choice of a) E/2 + E/2 = E. 

Thus f and fare E-close. 
E 

If f, ~, and F are fundamental sequences generated by 

f, gE' and fE' respectively, it follows from our choice of 

E that there is a neighborhood(Wl,V) of (X,Y) in (Q,Q), 
\ 

W C	 W', V c V', such that Fk9klw1 ~ fk9klw1 ~ iw1,w in W',1 

hence in W, and (by our choice of a) such that gkFk 1v ~ iv~u 

in V', hence in U. 

It follows that X Y. 
q 

(3.2) CoroZZary. Let X and Y be aompaata, f: X + Y an 

ARI map. Then 

a) if Y is aaZm, Sh X > Sh Y. 

b) if f is AI and ~ is aaZm, Sh X < Sh Y. 

c) if f is AI and X and Yare both aaZm, Sh X = Sh Y. 

Proof. This follows immediately from (3.1) and 

[Bx2 ,	 (3 . 3) ] . 

The following is suggested by [F-R, 3.4] and gives a 

partial answer to [F-R, Question 5]: 
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(3.3) CoroZZary. Let X E SAANR and Zet r: X ~ Y be
C 

a refinabZe map. 

a) If X E SAAN~, Sh Y > Sh X. 

b) If Y E SAAN~, Sh X > Sh Y. 

c) If X, Y E SAAN~, Sh X = Sh Y. 

P'Poof. We have X E SAAN~ if and only if X E SAANRC 

and X E FANR [Ce2] , X E AANR implies X is movable [Bg,C 

Theorem 6], and (2.1) imply: X E SAAN~ if and only if 

X E SAANRC and X is calm. 

It follows from [Ce3, opening remarks in §5] that f 

is AI. The assertions follow from (3.2). 

We remark that it follows that Y in (3.3) is an 

SAANRC' by [P2, Theorem 2] . 

For the collection of ARI maps that are strongly 

approximately right invertible (SARI) and for the collec

tion of AI maps that are strongly approximately invertible 

(SAl) (see [Ce3] for definitions) we have: 

(3.4) CO'PoZZary. Let f: X ~ Y be a map between com-" 

pacta. 

a) If X E AAN~ and f is SARI, Sh X > Sh Y. 

b) If one of X or y is an AAN~ and f is SAl, 

Sh X = Sh Y. 

Proof. We use the fact that X E AAN~ implies 

X E FANR [Gm], and therefore by (2.1) X is calm. 

a) We have Y E AAN~ [Ce3, (5.2a)], hence Y is calm. 

The assertion follows from (3.2a). 

b) We have both X, Y E AAN~ [Ce3, (5.2b)]. The 

assertion follows from (3.2c). 
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4. Some Function Spsces and Hyperspaces 

In	 this section we assume X is a compactum, Y a metric 

X space, and y is the space of m~ps from X to Y with the 

compact-open (=sup-metric) topology. Suppose {f.}~ c y
X 

1 1=0 

with Ai = fi(X) for all i. What does lim f = f implyi oi-+oo 
about {A.}~ with respect to hyperspaces? It is clear1 1=0 

that lim A. = A in the topology of the Hausdorff metric.
i-+oo 1 0 

Borsuk's example [Bl] of arcs converging to sl ~n the 

Hausdorff metric but not d may be used to construct a c 
1 I

convergent sequence fl' -+ f in (S) such that A ~ lim A. o o i -+00 1 

in d • The approach of [Bxl], that by restricting X or byc 

considering appropriate subspaces of YX we may obtain 

interesting results, is used here. 

Let us define R(X,Y) and ARI(X,Y) to be the subspaces 

Y .. h h fo f X cons1st1ng otf ose maps f suc t hat : X -+ f( X) 

Sis refinable or ARI, respectively. Let d be the sup

Xmetric	 for y . 

(4.1) Theorem. Let X~ Y~ {fi}:=o~ {Ai}:=o be as 

above. Suppose X E SAANRC and f E R(X,Y) for i > O. Ifi 

f E R(X,Y) then lim d- (A .,A ) = o. 
o	 i-+oo c 1 o
 

Proof. Suppose f E R(X,Y). Let E > o. Since
 o 

X E SAANR ' there are [P2, Theorem 1] continuous surjecC 

tions gi: Ai -+ X such that fig i : Ai -+ Ai is an (E/2)-push 

for all i. 

Fix i such that dS(f.,f ) < E/2.
1 0 

Consider the continuous surjections Fi = fog i : Ai -+ A ' o 
s s

G. fig : A -+ Ai· We have d (Fi,lA.) 2 d (fogi,figi ) +
1	 o o 

1 

d 
5 

(figi,lA.) < E/2 + E/2 = E, and d
5 

(Gi,lA ) < 
1	 0 
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sdS(f.g ,f g ) + d (fogo,lA ) < s/2 + s/2 s. 
1 0 0 0 

0 

It follows that lim d-(A.,A ) o. 
i-+oo c 1 0 

(4.2)	 Theorem. Suppose lim f. = f in y X with 
i-+oo 1 0 

f. E ARI(X,Y) for i > o. Then f E ARI(X,Y) if and only
1	 0 

if lim d (A.,A ) = o.
i-+oo c 1 0 

Proof. Suppose f E ARI(X,Y). Let s > O. Fix i such o
 

that dS(fi,f ) < s/2. There exist maps hi: Ai -+ X,
o
 

ho: A -+ X such that fih i and foh are (s/2)-pushes.
o o
 

Consider F f.h: A -+A ..
 
100 1
 

We have
 

s/2 + s/2 = sand 

dS(G,lA ) < dS(f.h ,f h ) + dS(f h ,1A ) < 
o - 1 0 0 0 000 

s/2 + s/2 = s. 

It follows that lim dc(Ai,A ) = O. oi-+oo 

Conversely, if lim d (A.,A ) = 0, fix € > 0 and i
i-+oo c 1 0
 

such that dc(Ai,A ) < s/3 and dS(fi,f ) < s/3. There
 o o
 

exist maps gi: A -+ Ai' hi: Ai -+ X such that gi and fih i
o
 

are ( €/3)-pushes. Consider h = higi : A -+ X. We have
 o
 
s s s s


d (f h,lA ) < d (fohigi,fihigi) + d (fihigi,gi) + d (gi,lA )o o 0 

< € /3 + s/3 + s/3 = s. 

It follows that f E ARI(X,Y).o 
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