TOPOLOGY PROCEEDINGS Volume 6, 1981

Pages 267–278

http://topology.auburn.edu/tp/

RELATIONS BETWEEN HOMOLOGY AND HOMOTOPY PRO-GROUPS OF CONTINUA

by

Jerzy Dydak

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

RELATIONS BETWEEN HOMOLOGY AND HOMOTOPY PRO-GROUPS OF CONTINUA

Jerzy Dydak¹

All basic notions of shape theory and pro-categories used in this paper can be found in [D-S].

In the recent paper [F] S. Ferry has characterized continua having the shape of an LC^n -space (n ≥ 0 , the case n = 0 is due to J Krasinkiewicz [K₂]) as those possessing the following property:

(*) for some point $x \in X$ the k-th homotopy pro-group pro- $\pi_k(X,x)$ is stable for $k \leq n$ and satisfies the Mittag-Leffler condition for k = n + 1.

Also the author proved in $[D_3]$ that a continuum X is an LC^{n+1} -divisor (n \geq 0) iff X is nearly 1-movable and satisfies the following condition:

(**) the k-th homology pro-group $pro-H_k(X)$ is stable for $k \leq n$ and satisfies the Mittag-Leffler condition for k = n + 1.

The interplay between conditions (*) and (**) was investigated in $[D_2]$. Here is the main result of $[D_2]$.

Theorem 1. Let $\underline{X} = (X_m, p_m^{m+1})$ be an inverse sequence of pointed connected CW complexes and let $n \ge 0$. If $pro-\pi_k(\underline{X})$ is stable for $k \le n$ and satisfies the Mittag-Leffler condition for k = n + 1, then $pro-H_k(\underline{X})$ is stable for $k \le n$ and satisfies the Mittag-Leffler condition for

¹Presented at the Alabama Topology Conference, March 1980. Paper not proofread by author.

Dydak

k = n + 1. Also if $pro-\pi_1(\underline{X})$ is isomorphic to the trivial group, then the converse holds true.

Condition (**) can be expressed with the use of Čech cohomology groups in the following way (see $[D_1]$):

Theorem 2. Let X be a continuum. Then the following conditions are equivalent for n > 0:

a. $pro-H_k(X)$ is stable for $k \leq n$ and satisfies the Mittag-Leffler condition for k = n + 1,

b. $\check{H}^{k}(X)$ is finitely generated for $k \leq n$, $\check{H}^{n+1}(X) / Tor \check{H}^{n+1}(X)$ is a free Abelian group and Tor $\check{H}^{n+1}(X)$ is finite.

Theorems 1 and 2 were used in [D₂] to give a simple proof of the following result due to Geoghegan and Lacher [G-L].

Theorem 3. A 1-shape connected continuum X has the shape of a finite complex if the deformation dimension of X is finite and all Čech cohomology groups $\check{H}^{n}(X)$ are finitely generated.

In this paper we provide some further applications of Theorem 1.

The main tool in proving Theorem 1 was (see [D₂])

Lemma 4. Suppose

 $p_n^{k-1,k}: \ G_n^k \to \ G_n^{k-1} \ \text{and} \ q_{n,n+1}^k: \ G_{n+1}^k \to \ G_n^k$ are homomorphisms of groups $(n \ge 1 \text{ and } 1 \le k \le 5 \text{ is an}$ integer) such that

$$p_n^{k-1,k} \cdot q_{n,n+1}^k = q_{n,n+1}^{k-1} \cdot p_{n+1}^{k-1,k}$$

for $n \ge 1$ and $2 \le k \le 5$, each sequence $\underline{G}_n = (G_n^k, p_n^{k-1,k})$ is exact and $\underline{G}^k = (G_n^k, q_{n,n+1}^k)$.

If G^1 is stable and G^i satisfies the Mittag-Leffler condition for i = 2, 4, then G^3 satisfies the Mittag-Leffler condition.

We need the following supplement to Lemma 4.

Lemma 5. Under the hypotheses of Lemma 4 if \underline{G}^{k} is stable for k = 1, 2, 4 and satisfies the Mittag-Leffler condition for k = 5, then \underline{G}^{3} is stable.

Proof. By Lemma 4 the pro-group \underline{G}^3 satisfies the Mittag-Leffler condition.

Recall that the fact that a pro-group (A_n, p_n^m) satisfies the Mittag-Leffler condition (is stable) can be formulated in the following way:

there is an increasing sequence $n_1 < n_2 < \cdots$ of positive integers such that

$$\mathbf{p}_{\mathbf{n}_{k}}^{\mathbf{n}_{k+1}} \left| \mathbf{i} \mathbf{m} (\mathbf{p}_{\mathbf{n}_{k+1}}^{\mathbf{n}_{k+2}}) : \mathbf{i} \mathbf{m} (\mathbf{p}_{\mathbf{n}_{k+1}}^{\mathbf{n}_{k+2}}) \rightarrow \mathbf{i} \mathbf{m} (\mathbf{p}_{\mathbf{n}_{k}}^{\mathbf{n}_{k+1}}) \right|$$

is an epimorphism (isomorphism).

Therefore without loss of generality we may assume that

$$\begin{array}{c|c} q_{n,n+1}^{k} & |\operatorname{im}(q_{n+1,n+2}^{k}): \operatorname{im}(q_{n+1,n+2}^{k}) \rightarrow \operatorname{im}(q_{n,n+1}^{k}) \\ \text{is an isomorphism (epimorphism) for all } n \geq 1 \text{ and} \\ \text{k} = 1, 2, 4 \quad (\text{k} = 3, 5). \quad \text{We are going to prove that} \\ & q_{n,n+1}^{3} & |\operatorname{im}(q_{n+1,n+2}^{3}): \operatorname{im}(q_{n+1,n+2}^{3}) \rightarrow \operatorname{im}(q_{n,n+1}^{3}) \\ \text{is a monomorphism. So suppose} \\ & x_{n+1}^{3} \in \operatorname{im}(q_{n+1,n+2}^{3}) \cap \ker(q_{n,n+1}^{3}). \end{array}$$

Take $x_{n+3}^3 \in im(q_{n+3,n+4}^3)$ such that $x_{n+1}^3 = q_{n+1,n+3}^3(x_{n+3}^3)$ (by $q_{m,n}^k$ we denote the composition of corresponding $q_{p-1,p}^k$). Then $p_{n+3}^{2,3}(x_{n+3}^3) \in im(q_{n+3,n+4}^2)$ and $q_{n,n+3}^2 \cdot p_{n+3}^{2,3}(x_{n+3}^3) = 1$. Therefore $p_{n+3}^{2,3}(x_{n+3}^3) = 1$ and there exists $x_{n+3}^4 \in G_{n+3}^4$ with $x_{n+3}^3 = p_{n+3}^{3,4}(x_{n+3}^4)$. Since $p_n^{3,4} \cdot q_{n,n+3}^4(x_{n+3}^4) = 1$ there is $x_n^5 \in G_n^5$ with $p_n^{4,5}(x_n^5) = q_{n,n+3}^4(x_{n+3}^4)$. Take $x_{n+3}^5 \in G_{n+3}^5$ with $q_{n-1,n+3}^5(x_{n+3}^5) = q_{n-1,n}^5(x_n^5)$.

Then

$$\begin{aligned} q_{n-1,n+2}^{4} & \cdot p_{n+2}^{4,5} \cdot q_{n+2,n+3}^{5}(x_{n+3}^{5}) &= \\ &= p_{n-1}^{4,5} \cdot q_{n-1,n+3}^{5}(x_{n+3}^{5}) &= p_{n-1}^{4,5} \cdot q_{n-1,n}^{5}(x_{n}^{5}) &= \\ &= q_{n-1,n}^{4} \cdot p_{n}^{4,5}(x_{n}^{5}) &= q_{n-1,n}^{4} \cdot q_{n,n+3}^{4}(x_{n+3}^{4}) &= \\ &= q_{n-1,n+2}^{4} \cdot q_{n+2,n+3}^{4}(x_{n+3}^{4}) . \end{aligned}$$

Hence

$$q_{n+2,n+3}^4(x_{n+3}^4) = p_{n+2}^{4,5} \cdot q_{n+2,n+3}^5(x_{n+3}^5)$$

and therefore

$$\begin{aligned} \mathbf{x}_{n+1}^{3} &= \mathbf{q}_{n+1,n+3}^{3} (\mathbf{x}_{n+3}^{3}) = \mathbf{q}_{n+1,n+3}^{3} \cdot \mathbf{p}_{n+3}^{3,4} (\mathbf{x}_{n+3}^{4}) = \\ &= \mathbf{p}_{n+1}^{3,4} \cdot \mathbf{q}_{n+1,n+3}^{4} (\mathbf{x}_{n+3}^{4}) = \\ &= \mathbf{p}_{n+1}^{3,4} \cdot \mathbf{q}_{n+1,n+2}^{4} \cdot \mathbf{p}_{n+2}^{4,5} \cdot \mathbf{q}_{n+2,n+3}^{5} (\mathbf{x}_{n+3}^{5}) = \\ &= \mathbf{q}_{n+1,n+2}^{3} \cdot \mathbf{p}_{n+2}^{3,4} \cdot \mathbf{p}_{n+2}^{4,5} \cdot \mathbf{q}_{n+2,n+3}^{5} (\mathbf{x}_{n+3}^{5}) = 1. \end{aligned}$$

Thus \underline{G}^3 is stable.

The main result of this paper is the following:

Theorem 6. Suppose X_1 and S_2 are continua such that $X_1 \cap X_2 \neq \emptyset$ and $X_1 \cup X_2$ have the shape of some LC^m -spaces

 $(m \ge 1)$. If X_1 is pointed 1-movable and the natural homomorphism of first Čech homotopy groups

 $\check{\pi}_1(\mathsf{x}_1,\mathsf{x}_0) \twoheadrightarrow \check{\pi}_1(\mathsf{x}_1 \ \cup \ \mathsf{x}_2,\mathsf{x}_0)$

is a monomorphism for some point $x_0 \in X_1 \cap X_2$, then X_1 has the shape of an LC^m -space.

Proof. Since $\text{pro}-\pi_1(X_1 \cup X_2, X_0)$ is stable, we get that $\check{\pi}_1(X_1 \cup X_2, X_0)$ is countable and therefore $\check{\pi}_1(X_1, X_0)$ is countable. Now Corollary 6.1.9 in [D-S] (p. 81) says that $\text{pro}-\pi_1(X_1, X_0)$ is stable. First consider the case where $X_1 \cap X_2$ is connected.

Take an inverse system (Z_n, q_n^{n+1}) of finite connected CW complexes such that for some connected subcomplexes $X_{1,n}, X_{0,n}$ and $X_{2,n}$ of Z_n there is a. $X_{0,n} = X_{1,n} \cap X_{2,n}$ and $X_{1,n} \cup X_{2,n} = Z_n$, b. $X_1 \cup X_2 = \lim_{\leftarrow} (Z_n, q_n^{n+1})$, c. $X_1 = \lim_{\leftarrow} (X_{1,n}, q_n^{n+1})$ d. $X_2 = \lim_{\leftarrow} (X_{2,n}, q_n^{n+1})$

e.
$$X_0 = X_1 \cap X_2 = \lim_{\leftarrow} (X_{0,n}, q_n^{n+1})$$
.
Without loss of generality we assume each q_n^{n+1} is

cellular.

Moreover we may assume that each q_n^{n+1} induces isomorphisms of $\pi_1(X_{1,n+1}, x_{n+1})$ onto $\pi_1(X_{1,n}, x_n)$ (here $x_0 = (x_n)$) and of $\pi_1(X_{0,n+1}, x_{n+1})$ onto $\pi_1(X_{0,n}, x_n)$ (see $[K_1]$, Theorem 3.1 on p. 151, or [F]). Also we assume that each $\pi_1(Z_n, x_n)$ contains $G = \check{\pi}_1(X_1 \cup X_2, x_0)$ such that $\pi_1(q_n^{n+1})$ maps G identically onto itself. We identify each group $\pi_1(X_{0,n}, x_n)$ with $G_0 = \check{\pi}_1(X_0, x_0)$ and each $\pi_1(X_{1,n}, x_n)$ with $G_1 = \check{\pi}_1(X_1, x_0)$ in such a way that q_n^{n+1} induces the identity

on G_0 and G_1 when restricted to $X_{0,n+1}$ and $X_{1,n+1}$ respectively. For each n take the universal covering space \widetilde{Z}_n of Z_n and let $p_n: \widetilde{Z}_n \neq Z_n$ be the covering projection. Let $\overline{X}_{i,n} = p_n^{-1}(X_{i,n})$ for i = 0, 1, 2, and choose a base point $\widetilde{X}_n \in p_n^{-1}(x_n)$ for each n. Take maps $\widetilde{q}_n^{n+1}: (\widetilde{Z}_{n+1}, \widetilde{X}_{n+1}) \neq (\widetilde{Z}_n, \widetilde{X}_n)$

such that

 $\mathbf{p}_n \cdot \widetilde{\mathbf{q}}_n^{n+1} = \mathbf{q}_n^{n+1} \cdot \mathbf{p}_{n+1}.$

Since each p_n induces isomorphisms of all k-homotopy groups for $k \ge 2$ and $\operatorname{pro} \pi_k(X_1 \cup X_2, X_0)$ is stable for $k \le m$ and satisfies the Mittag-Leffler condition for k = m + 1, we infer that $(\pi_k(\widetilde{Z}_n, \widetilde{X}_n), \pi_k(\widetilde{q}_n^{n+1}))$ is stable for $k \le m$ and satisfies the Mittag-Leffler condition for k = m + 1. By Theorem 1 the pro-group $(H_k(\widetilde{Z}_n), H_k(\widetilde{q}_n^{n+1}))$ is stable for $k \le m$ and satisfies the Mittag-Leffler condition for k = m + 1.

For each n consider the component $\hat{x}_{0\,,\,n}$ of $\overline{x}_{0\,,\,n}$ containing $\widetilde{x}_{n}^{}.$

Then $\overline{p}_n = p_n | \hat{x}_{0,n} : \hat{x}_{0,n} \to x_{0,n}$ is a covering projection such that $im[\pi_1(\overline{p}_n)]$ is equal to the kernel of the natural homomorphism from $G_0 = \pi_1(x_0, x_0)$ to $G = \pi_1(x_1 \cup x_2, x_0)$. Therefore

 $\overline{q}_n^{n+1} = \widetilde{q}_n^{n+1} \quad (\hat{x}_{0,n+1}, \widetilde{x}_{n+1}): \quad (\hat{x}_{0,n+1}, \widetilde{x}_{n+1}) \rightarrow (\hat{x}_{0,n}, \widetilde{x}_n)$ induces isomorphisms on π_1 . Similarly as before we get that $(H_k(\hat{x}_{0,n}), H_k(\overline{q}_n^{n+1}))$ is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for k = m + 1. Now observe that \widetilde{q}_n^{n+1} induces a bijection between components of $\overline{x}_{0,n+1}(\overline{x}_{1,n+1})$ and $\overline{x}_{0,n}(\overline{x}_{1,n})$. Moreover each component of

 $\overline{x}_{0.n}(\overline{x}_{1.n})$ is the image of $\hat{x}_{0.n}(\hat{x}_{1.n})$ which is the component of $\overline{X}_{1,n}$ containing \widetilde{X}_n) under an element of g \in G, where G is interpreted as a subgroup of $\pi_1(\mathbf{Z}_n, \mathbf{x}_n)$ which acts on $\mathbf{\widetilde{Z}}_n$ (see [Co], p. 12). Since the action of fundamental groups is functorial in the sense of 3.16 in [Co] (p. 12), one easily gets that $(H_k(\overline{X}_{0,n}), H_k(\widetilde{q}_n^{n+1} | \overline{X}_{0,n+1}))$ is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for k = m + 1.

Now for each n we have the functorial Mayer-Vietoris exact sequence

$$\overset{\leftarrow}{\operatorname{H}}_{k}(\overline{X}_{0,n}) \overset{\leftarrow}{\operatorname{H}}_{k}(\overline{X}_{1,n}) \overset{\oplus}{\operatorname{H}}_{k}(\overline{X}_{2,n}) \overset{\leftarrow}{\operatorname{H}}_{k}(\widetilde{Z}_{n}) \\ \overset{\leftarrow}{\operatorname{H}}_{k-1}(\overline{X}_{0,n}) \overset{\leftarrow}{\operatorname{H}}.$$

Applying Lemma to 4 and 5 we get that

$$(H_{k}(X_{1,n}), H_{k}(q_{n} | X_{1,n+1}))$$

is stable for $k \leq m$ and satisfies the Mittag-Leffler condi-
tion for $k = m + 1$. Since $(\overline{X}_{1,n}, [\widetilde{q}_{n}^{n+1} | \overline{X}_{1,n+1}])$ dominates
 $(\widehat{X}_{1,n}, [\widetilde{q}_{n}^{n+1} | \widehat{X}_{1,n+1}])$ in pro-homotopy, we infer that
 $(H_{k}(\widehat{X}_{1,n}), H_{k}(\widetilde{q}_{n}^{n+1} | \widehat{X}_{1,n+1}))$

is stable for k < m and satisfies the Mittag-Leffler condition for k = m + 1. Recall that the natural homomorphism of G₁ to G is a monomorphism. Therefore each $\hat{X}_{1,n}$ is simply connected and Theorem 1 says that $(\pi_k(X_{1,n}, \tilde{x}_n))$, $\pi_k(\widetilde{q}_n^{n+1}|\hat{x}_{1.n+1}))$ is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for k = m + 1. Consequently $(\pi_{k}(X_{1,n},x_{n}),\pi_{k}(q_{n}^{n+1})) = \text{pro}-\pi_{k}(X_{1},x_{0})$ is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for k = m + 1which completes the proof of Theorem 6 in case $X_1 \cap X_2$ is connected.

/H /V \ H /~n+1 v

If $X_1 \cap X_2$ is not connected it has a finite number of components. Take an abstract arc L intersecting each component of $X_1 \cap X_2$ in exactly one point. Then $X_1' = X_1 \cup L$ and $X_2' = X_2 \cup L$ satisfy the hypotheses of Theorem 6 and $X_1' \cap X_2'$ is connected. Therefore $X_1 \cup L$ has the shape of an LC^n -space. By the main result of $[K_2]$ (see also [D-S], p. 95) there is a sequence $Y_k \supset Y_{k+1} \supset \cdots$ of locally connected continua whose intersection is X_1 such that each Y_{k+1} is a strong deformation retract of Y_k . Then $Y_{k+1} \cup L$ is a strong deformation retract of $Y_k \cup L$ which implies that (X_1, X_0) is shape dominated by $(X_1 \cup L, X_0)$. Therefore X_1 has the shape of some LC^m -space. Thus the proof of Theorem 6 is concluded.

Corollary 7. Suppose X_1 and X_2 are continua such that $X_1 \cap X_2 \neq \emptyset$ and $X_1 \cup X_2$ are pointed ANSR's. If X_1 is a pointed 1-movable continuum of finite deformation dimension and the natural homomorphism $\check{\pi}_1(X_1, x_0) \neq \check{\pi}_1(X_1 \cup X_2, x_0)$ is a monomorphism, then X_1 is a pointed ANSR.

Proof. By Theorem 6 and Ferry's result [F] all homotopy groups of (X_1, x_0) are stable. By [E-G] (Theorem 5.1, see also [D-S], Theorem 9.22 on p. 114) X_1 is a pointed ANSR.

Corollary 8. Suppose X_1 and X_2 are continua of finite deformation dimension such that $X_1 \cap X_2$ and $X_1 \cup X_2$ are pointed ANSR's. If $X_1 \cap X_2$ is 1-shape connected, then X_1 and X_2 are pointed ANSR's.

Proof. First suppose $X_1 \cap X_2$ is connected and take $x_0 \in X_1 \cap X_2$ (the case $X_1 \cap X_2 = \emptyset$ is obvious). Since the projections p: $X_1 \cup X_2 + (X_1 \cup X_2) | (X_1 \cap X_2)$ and $p | X_1 : X_1 + X_1 | (X_1 \cap X_2)$ induce isomorphisms of first shape groups (see $[D_4]$, Theorem 8.6 on p. 41) and clearly the inclusion $X_1 | (X_1 \cap X_2) + (X_1 \cup X_2) | X_1 \cap X_2$ induces monomorphism of first shape groups, we infer that the natural homomorphism from $\check{\pi}_1(X_1, x_0)$ to $\check{\pi}_1(X_1 \cup X_2, x_0)$ is a monomorphism. Then Corollary 7 implies that X_1 is a pointed ANSR.

If $X_1 \cap X_2$ is not connected we take an abstract arc L intersecting each component of $X_1 \cap X_2$ at exactly one point. If $X'_1 = X_1 \cup L$ and $X'_2 = X_2 \cup L$, then the hypotheses of Corollary 8 are satisfied and $X'_1 \cap X'_2$ is connected. Therefore $X_1 \cup L$ is a pointed ANSR. Now Corollary 5.2 in [D-O] implies that X_1 is pointed 1-movable. In the same way as in the proof of Theorem 6 one gets that (X_1, x_0) is shape dominated by $(X_1 \cup L, x_0)$. Consequently X_1 is a pointed ANSR.

Remark. Both Corlllary 7 and 8 relate to the following problem posed by Borsuk [B]:

Is it true that $\rm X_1$ and $\rm X_2$ are ANSR's provided $\rm X_1 \cup \rm X_2$ and $\rm X_1 \cap \rm X_2$ are ANSR's?

A counterexample to this problem was provided by the author in $[D_5]$ and independently by K. Kuperberg (unpublished).

Observe that using our methods one can prove the following

Theorem 9. If compacts X_1 and X_2 have the shape of LC^k spaces $(k \ge 0)$ and $X_1 \cap X_2$ has the shape of an LC^{k-1} -space, then $X_1 \cup X_2$ has the shape of an LC^k -space.

The proof of Theorem 9 is analogous to the proof of Theorem 6 and uses the following

Lemma 10. Suppose X_1 , X_2 and $X_1 \cap X_2$ are continua such that for some point $x_0 \in X_1 \cap X_2$ the pro-groups $pro-\pi_1(X_1, x_0)$ and $pro-\pi_1(X_2, x_0)$ are stable. If $X_1 \cap X_2$ is pointed 1-movable, then $pro-\pi_1(X_1 \cup X_2, x_0)$ is stable.

Proof. Take an inverse sequence (Z_n, q_n^{n+1}) of finite connected CW complexes such that for some connected subcomplexes $X_{1,n}, X_{0,n}$ and $X_{2,n}$ of Z_n there is

a.	$x_{0,n} = x_{1,n} \cap x_{2,n}$ and $z_n = x_{1,n} \cup x_{2,n}$,
b.	$X_1 \cup X_2 = \lim_{\leftarrow} (Z_n, q_n^{n+1}),$
c.	$x_1 = \lim_{n \to \infty} (x_{1,n}, q_n^{n+1})$
d.	$x_{2} = \lim_{i \neq m} (x_{2,n}, q_{n}^{n+1})$
e.	$x_0 = x_1 \cap x_2 = \lim_{\leftarrow} (x_{0,n}, q_n^{n+1}).$

Without loss of generality we may assume each q_n^{n+1} is cellular. Moreover we may assume that each q_n^{n+1} induces isomorphisms of $\pi_1(X_{1,n+1}, x_{n+1})$ onto $\pi_1(X_{1,n}, x_n)$ (here $x_0 = (x_n)$) and of $\pi_1(X_{2,n+1}, x_{n+1})$ onto $\pi_1(X_{2,n}, x_n)$, and an epimorphism of $\pi_1(X_{0,n+1}, x_{n+1})$ onto $\pi_1(X_{0,n}, x_n)$ (see [K], Theorem 3.1 on p. 151, or [F]).

Let us fix n for a moment and consider the kernel A of $\pi_1(q_n^{n+1}): \pi_1(X_{0,n+1}, x_{n+1}) \rightarrow \pi_1(X_{0,n}, x_n).$

Notice that any loop α such that $[\alpha] \in A$ is contractible in

both $X_{1,n+1}$ and $X_{2,n+1}$.

Therefore if we attach a family $\{D_j\}_{j\in J}$ of 2-discs to $x_{0,n+1}$ in order to kill A, the inclusions

 $X_{1,n+1} \rightarrow X_{1,n+1} \cup \bigcup_{j \in J} j$ and $X_{2,n+1} \rightarrow X_{2n+1} \cup \bigcup_{j \in J} j$ induce isomorphisms of fundamental groups, and $X_{1,n+1} \cup X_{2,n+1}$ is a retract of $X_{1,n+1} \cup X_{2,n+1} \cup \bigcup_{j \in J} j$. Hence the inclusion $i_n: X_{1,n+1} \cup X_{2,n+1} \rightarrow X_{1,n+1} \cup X_{2,n+1} \cup \bigcup_{j \in J} j$ induces isomorphism of fundamental groups. Take any extension

$$\overline{q}_{n}^{n+1}: z_{n+1} \cup \bigcup D_{j} \neq z_{n} \text{ of } q_{n}^{n+1} \text{ with}$$

$$\overline{q}_{n}^{n+1}(\bigcup D_{j}) \in X_{0,n}.$$

Then

and

$$\overline{q}_{n}^{n+1} | x_{1,n+1} \cup \bigcup_{j \in J} j; x_{1,n+1} \cup \bigcup_{j \in J} j \neq x_{1,n}$$

$$\overline{q}_{n}^{n+1} | x_{2,n+1} \cup \bigcup_{j \in J} j; x_{2,n+1} \cup \bigcup_{j \in J} j \neq x_{2,n}$$

$$\overline{q}_{n}^{n+1} | x_{0,n+1} \cup \bigcup_{j \in J} j; x_{0,n+1} \cup \bigcup_{j \in J} j \neq x_{0,n}$$

induce isomorphisms of fundamental groups and by van Kampen's Theorem \overline{q}_n^{n+1} induces an isomorphism of fundamental groups. Consequently $q_n^{n+1} = \overline{q}_n^{n+1} \cdot i_n$ induces an isomorphism

of fundamental groups and the proof of Lemma 10 is concluded.

Remark. Theorem 9 can be derived from [Kod] under the weaker assumption that $X_1 \cap X_2$ has the shape of an LC^k -space.

References

[B]	K. Borsuk, Some remarks on perforated spaces (in
	Russian), Usp. Math. Nauk 31 (1976), 49-56.	
[Co]	M. M. Cohen, A course in simple homotopy theor	у,

[D_{1,2}] J. Dydak, On algebraic properties of continua, I and II, Bull. Ac. Pol. Sci. (to appear).

Springer-Verlag, New York, 1973.

Dydak

[D ₃]	, On LC ⁿ -divisors, Topology Proceedings 3	
	(1978), 319-333.	
[D]]	, The Whitehead and Smale Theorems in shape	
4	theory, Dissertationes Mathematicae 156 (1979), 1-50.	
[D ₅]	, Some properties of nearly 1-movable con-	
-	tinua, Bull. Ac. Pol. Sci. 25 (1977), 685-689.	
[D-0]	and M. Orlowski, On the simple n-perforation,	
	Bull. Ac. Pol. Sci. 26 (1978), 163-168.	
[D-S]	J. Dydak and J. Segal, Shape theory: An introduction,	
	Lecture Notes in Math. 688, Springer 1978, 1-150.	
[E-G]	D. Edwards and R. Geoghegan, The stability problem in	
	shape and a Whitehead theorem in pro-homotopy, Trans.	
	Amer. Math. Soc. 214 (1975), 261-273.	
[F]	S. Ferry, A stable converse to the Vietoris-Smale	
	theorem with applications to shape theory (preprint).	
[G-L]	R. Geoghegan and R. L. Lacher, Compacta with the	
	shape of finite complexes, Fund. Math. 92 (1976),	
	25-27.	
[Kod]	Y. Kodama, On fine n-movability, J. Math. Soc.	
	Japan 30 (1978), 101-116.	
[K ₁]	J. Krasinkiewicz, Continuous images of continua and	
	1-movability, Fund. Math. 98 (1978), 141-164.	
[K ₂]	, Local connectedness and pointed 1-movability,	
	Bull. Ac. Pol. Sci. 25 (1977), 1265-1269.	
[S]	E. Spanier, Algebraic topology, McGraw-Hill Book Co.,	
	New York, 1966.	
SUNY at	t Binghamton	
Binghar	nton, New York 13901	
and		
University of Warsaw		

PKiN, 00-901 Warsaw, Poland