TOPOLOGY PROCEEDINGS

Volume 6, 1981
Pages 267-278
http://topology.auburn.edu/tp/

RELATIONS BETWEEN HOMOLOGY AND HOMOTOPY PRO-GROUPS OF CONTINUA

by
Jerzy Dydak

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

RELATIONS BETWEEN HOMOLOGY AND HOMOTOPY PRO-GROUPS OF CONTINUA

Jerzy Dydak ${ }^{1}$

All basic notions of shape theory and pro-categories used in this paper can be found in [D-S].

In the recent paper [F] S. Ferry has characterized continua having the shape of an $L C^{n}$-space ($n \geq 0$, the case $n=0$ is due to J Krasinkiewicz $\left[K_{2}\right]$) as those possessing the following property:
(*) for some point $x \in X$ the k-th homotopy pro-group pro $^{-\pi}{ }_{k}(X, x)$ is stable for $k \leq n$ and satisfies the Mittag-Leffler condition for $k=n+1$.

Also the author proved in $\left[D_{3}\right]$ that a continuum x is an $L C^{n+1}$-divisor ($n \geq 0$) iff X is nearly l-movable and satisfies the following condition:
(**) the k-th homology pro-group pro- $H_{k}(X)$ is stable for
$k \leq n$ and satisfies the Mittag-Leffler condition for
$k=n+1$.
The interplay between conditions (*) and (**) was investigated in $\left[D_{2}\right]$. Here is the main result of $\left[D_{2}\right]$.

Theorem 1. Let $\underline{\mathrm{X}}=\left(\mathrm{X}_{\mathrm{m}}, \mathrm{P}_{\mathrm{m}}^{\mathrm{m}+1}\right)$ be an inverse sequence of pointed connected CW complexes and let $\mathrm{n} \geq 0$. If pro $-\pi_{k}(\underline{X})$ is stable for $k \leq n$ and satisfies the MittagLeffler condition for $\mathrm{k}=\mathrm{n}+1$, then $\mathrm{pro}_{\mathrm{H}}^{\mathrm{k}} \mathrm{X}^{(\mathrm{X})}$ is stable for $k \leq n$ and satisfies the Mittag-Leffler condition for

[^0]$\mathbf{k}=\mathrm{n}+1$. Also if pro- $\mathrm{I}_{1}(\underline{\mathrm{X}}$) is isomorphic to the trivial group, then the converse holds true.

Condition (**) can be expressed with the use of Čech cohomology groups in the following way (see $\left[D_{1}\right]$):

Theorem 2. Let X be a continuum. Then the following conditions are equivalent for $n \geq 0$:
a. $\mathrm{pro}_{\mathrm{H}} \mathrm{H}_{\mathbf{k}}(\mathrm{X})$ is stable for $\mathbf{k} \leq \mathrm{n}$ and satisfies the Mittag-Leffler condition for $\mathbf{k}=\mathrm{n}+1$,
b. $\dot{H}^{k}(\mathrm{X})$ is finitely generated for $\mathrm{k} \leq \mathrm{n}, \mathrm{H}^{\mathrm{n}+1}(\mathrm{X}) /$ Tor $\stackrel{\vee \mathrm{H}}{ }_{\mathrm{n}+1}^{(\mathrm{X})}$ is a free Abelian group and Tor $\stackrel{\vee}{\mathrm{H}}^{\mathrm{n}+1}(\mathrm{X})$ is finite.

Theorems 1 and 2 were used in $\left[D_{2}\right]$ to give a simple proof of the following result due to Geoghegan and Lacher [G-L].

Theorem 3. A 1-shape connected continuum X has the shape of a finite complex if the deformation dimension of x is finite and alZ Cech cohomology groups $\stackrel{\vee}{\mathrm{H}}^{\mathrm{n}}(\mathrm{X})$ are finitely generated.

In this paper we provide some further applications of Theorem 1.

The main tool in proving Theorem 1 was (see [$\left.\mathrm{D}_{2}\right]$)

Lemma 4. Suppose

$$
p_{n}^{k-1, k}: G_{n}^{k} \rightarrow G_{n}^{k-1} \text { and } q_{n, n+1}^{k}: G_{n+1}^{k} \rightarrow G_{n}^{k}
$$

are homomorphisms of groups ($n \geq 1$ and $1 \leq k \leq 5$ is an integer) such that

$$
p_{n}^{k-1, k} \cdot q_{n, n+1}^{k}=q_{n, n+1}^{k-1} \cdot p_{n+1}^{k-1, k}
$$

for $\mathrm{n} \geq 1$ and $2 \leq \mathrm{k} \leq 5$, each sequence $G_{\mathrm{n}}=\left(\mathrm{G}_{\mathrm{n}}^{\mathrm{k}}, \mathrm{p}_{\mathrm{n}}^{\mathrm{k}-1, k}\right)$ is exact and $G^{k}=\left(G_{n}^{k}, q_{n, n+1}^{k}\right)$.

If G^{1} is stable and G^{i} satisfies the Mittag-Leffler condition for $\mathbf{i}=2,4$, then G^{3} satisfies the Mittag-Leffler condition.

We need the following supplement to Lemma 4.

Lemma 5. Under the hypotheses of Lemma 4 if G^{k} is stable for $k=1,2,4$ and satisfies the Mittag-Leffler condition for $\mathbf{k}=5$, then G^{3} is stable.

Proof. By Lemma 4 the pro-group \underline{G}^{3} satisfies the Mittag-Leffler condition.

Recall that the fact that a pro-group (A_{n}, p_{n}^{m}) satisfies the Mittag-Leffler condition (is stable) can be formulated in the following way:
there is an increasing sequence $n_{1}<n_{2}<\cdots$ of positive integers such that

$$
p_{n_{k}}^{n_{k+1}} \mid i m\left(p_{n_{k+1}}^{n_{k+2}}\right): \quad i m\left(p_{n_{k+1}}^{n_{k+2}}\right) \quad \rightarrow i m\left(p_{n_{k}}^{n_{k+1}}\right)
$$

is an epimorphism (isomorphism).
Therefore without loss of generality we may assume that

$$
q_{n, n+1}^{k} \mid \operatorname{im}\left(q_{n+1, n+2}^{k}\right): \operatorname{im}\left(q_{n+1, n+2}^{k}\right) \rightarrow \operatorname{im}\left(q_{n, n+1}^{k}\right)
$$

is an isomorphism (epimorphism) for all $n \geq 1$ and $k=1,2,4(k=3,5)$. We are going to prove that

$$
q_{n, n+1}^{3} \mid \operatorname{im}\left(q_{n+1, n+2}^{3}\right): \operatorname{im}\left(q_{n+1, n+2}^{3}\right) \rightarrow \operatorname{im}\left(q_{n, n+1}^{3}\right)
$$

is a monomorphism. So suppose

$$
x_{n+1}^{3} \in \operatorname{im}\left(q_{n+1, n+2}^{3}\right) \cap \operatorname{ker}\left(q_{n, n+1}^{3}\right)
$$

Take $x_{n+3}^{3} \in \operatorname{im}\left(q_{n+3, n+4}^{3}\right)$ such that

$$
x_{n+1}^{3}=q_{n+1, n+3}^{3}\left(x_{n+3}^{3}\right)
$$

(by $q_{m, n}^{k}$ we denote the composition of corresponding $q_{p-1, p}^{k}$).
Then $p_{n+3}^{2,3}\left(x_{n+3}^{3}\right) \in \operatorname{im}\left(q_{n+3, n+4}^{2}\right)$ and $q_{n, n+3}^{2} \cdot p_{n+3}^{2,3}\left(x_{n+3}^{3}\right)=1$.
Therefore $p_{n+3}^{2,3}\left(x_{n+3}^{3}\right)=1$ and there exists $x_{n+3}^{4} \in G_{n+3}^{4}$ with $x_{n+3}^{3}=p_{n+3}^{3,4}\left(x_{n+3}^{4}\right)$. since $p_{n}^{3,4} \cdot q_{n, n+3}^{4}\left(x_{n+3}^{4}\right)=1$ there is $x_{n}^{5} \in G_{n}^{5}$ with $p_{n}^{4,5}\left(x_{n}^{5}\right)=q_{n, n+3}^{4}\left(x_{n+3}^{4}\right)$. Take $x_{n+3}^{5} \in G_{n+3}^{5}$ with

$$
q_{n-1, n+3}^{5}\left(x_{n+3}^{5}\right)=q_{n-1, n}^{5}\left(x_{n}^{5}\right)
$$

Then

$$
\begin{aligned}
& q_{n-1, n+2}^{4} \cdot p_{n+2}^{4,5} \cdot q_{n+2, n+3}^{5}\left(x_{n+3}^{5}\right)= \\
& \quad=p_{n-1}^{4,5} \cdot q_{n-1, n+3}^{5}\left(x_{n+3}^{5}\right)=p_{n-1}^{4,5} \cdot q_{n-1, n}^{5}\left(x_{n}^{5}\right)= \\
& \quad=q_{n-1, n}^{4} \cdot p_{n}^{4,5}\left(x_{n}^{5}\right)=q_{n-1, n}^{4} \cdot q_{n, n+3}^{4}\left(x_{n+3}^{4}\right)= \\
& \quad=q_{n-1, n+2}^{4} \cdot q_{n+2, n+3}^{4}\left(x_{n+3}^{4}\right) .
\end{aligned}
$$

Hence

$$
q_{n+2, n+3}^{4}\left(x_{n+3}^{4}\right)=p_{n+2}^{4,5} \cdot q_{n+2, n+3}^{5}\left(x_{n+3}^{5}\right)
$$

and therefore

$$
\begin{aligned}
x_{n+1}^{3} & =q_{n+1, n+3}^{3}\left(x_{n+3}^{3}\right)=q_{n+1, n+3}^{3} \cdot p_{n+3}^{3,4}\left(x_{n+3}^{4}\right)= \\
& =p_{n+1}^{3,4} \cdot q_{n+1, n+3}^{4}\left(x_{n+3}^{4}\right)= \\
& =p_{n+1}^{3,4} \cdot q_{n+1, n+2}^{4} \cdot p_{n+2}^{4,5} \cdot q_{n+2, n+3}^{5}\left(x_{n+3}^{5}\right)= \\
& =q_{n+1, n+2}^{3} \cdot p_{n+2}^{3,4} \cdot p_{n+2}^{4,5} \cdot q_{n+2, n+3}^{5}\left(x_{n+3}^{5}\right)=1 .
\end{aligned}
$$

Thus G^{3} is stable.

The main result of this paper is the following:

Theorem 6. Suppose X_{1} and S_{2} are continua such that $\mathrm{X}_{1} \cap \mathrm{X}_{2} \neq \varnothing$ and $\mathrm{X}_{1} \cup \mathrm{X}_{2}$ have the shape of some $\mathrm{LC} \mathrm{C}^{\mathrm{m}}$-spaces
($\mathrm{m} \geq 1$). If X_{1} is pointed l-movable and the natural homomorphism of first $\stackrel{\text { Cech homotopy groups }}{ }$

$$
\ddot{\pi}_{1}\left(x_{1}, x_{0}\right) \rightarrow \check{\pi}_{1}\left(x_{1} \cup x_{2}, x_{0}\right)
$$

is a monomorphism for some point $\mathrm{x}_{0} \in \mathrm{X}_{1} \cap \mathrm{X}_{2}$, then X_{1} has the shape of an LC^{m}-space.

Proof. Since pro- $\pi_{1}\left(\mathrm{X}_{1} \cup \mathrm{X}_{2}, \mathrm{x}_{0}\right)$ is stable, we get that $\check{N}_{1}\left(X_{1} \cup X_{2}, x_{0}\right)$ is countable and therefore $\check{r}_{1}\left(X_{1}, x_{0}\right)$ is countable. Now Corollary 6.1.9 in [D-S] (p. 81) says that pro $-\pi_{1}\left(X_{1}, x_{0}\right)$ is stable. First consider the case where $\mathrm{X}_{1} \cap \mathrm{X}_{2}$ is connected.

Take an inverse system ($\mathrm{Z}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}}^{\mathrm{n}+1}$) of finite connected CW complexes such that for some connected subcomplexes $\mathrm{X}_{1, \mathrm{n}}, \mathrm{x}_{0, \mathrm{n}}$ and $\mathrm{X}_{2, \mathrm{n}}$ of Z_{n} there is
a. $\mathrm{X}_{0, \mathrm{n}}=\mathrm{X}_{1, \mathrm{n}} \cap \mathrm{X}_{2, \mathrm{n}}$ and $\mathrm{X}_{1, \mathrm{n}} \cup \mathrm{X}_{2, \mathrm{n}}=\mathrm{z}_{\mathrm{n}}$,
b. $x_{1} \cup x_{2}=\lim \left(z_{n}, q_{n}^{n+1}\right)$,
c. $x_{1}=\lim _{\neq}\left(x_{1, n}, q_{n}^{n+1}\right)$
d. $x_{2}=\lim _{\leftarrow}\left(x_{2, n}, q^{n+1}\right)$
e. $x_{0}=x_{1} \cap x_{2}=\lim \left(x_{0, n}, q_{n}^{n+1}\right)$.

Without loss of generality we assume each q_{n}^{n+1} is cellular.

Moreover we may assume that each q_{n}^{n+1} induces isomorphisms of $\pi_{1}\left(x_{1, n+1}, x_{n+1}\right)$ onto $\pi_{1}\left(x_{1, n}, x_{n}\right)$ (here $x_{0}=$ $\left(x_{n}\right)$) and of $\pi_{1}\left(x_{0, n+1}, x_{n+1}\right)$ onto $\pi_{1}\left(x_{0, n}, x_{n}\right)$ (see $\left[K_{1}\right]$, Theorem 3.1 on p. 151, or [F]). Also we assume that each $\pi_{1}\left(Z_{n}, x_{n}\right)$ contains $G=\stackrel{V}{\pi}_{1}\left(X_{1} \cup X_{2}, x_{0}\right)$ such that $\pi_{1}\left(q_{n}^{n+1}\right)$ maps G identically onto itself. We identify each group $\pi_{1}\left(X_{0, n}, x_{n}\right)$ with $G_{0}=\dddot{\pi}_{1}\left(x_{0}, x_{0}\right)$ and each $\pi_{1}\left(X_{1, n}, x_{n}\right)$ with $G_{1}=\check{\pi}_{1}\left(X_{1}, x_{0}\right)$ in such a way that q_{n}^{n+1} induces the identity
on G_{0} and G_{1} when restricted to $X_{0, n+1}$ and $X_{1, n+1}$ respectively. For each n take the universal covering space \widetilde{z}_{n} of Z_{n} and let $P_{n}: \tilde{Z}_{n} \rightarrow Z_{n}$ be the covering projection. Let $\bar{x}_{i, n}=p_{n}^{-1}\left(X_{i, n}\right)$ for $i=0,1,2$, and choose a base point $\tilde{x}_{n} \in p_{n}^{-1}\left(x_{n}\right)$ for each n. Take maps

$$
\tilde{\mathrm{q}}_{\mathrm{n}}^{\mathrm{n}+1}:\left(\tilde{\mathrm{z}}_{\mathrm{n}+1}, \tilde{\mathrm{x}}_{\mathrm{n}+1}\right) \rightarrow\left(\tilde{\mathrm{z}}_{\mathrm{n}}, \tilde{\mathrm{x}}_{\mathrm{n}}\right)
$$

such that

$$
p_{n} \cdot \tilde{q}_{n}^{n+1}=q_{n}^{n+1} \cdot p_{n+1}
$$

Since each P_{n} induces isomorphisms of all k-homotopy groups for $k \geq 2$ and pro $\pi_{k}\left(X_{1} \cup X_{2}, x_{0}\right)$ is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for $k=m+1$, we infer that $\left(\pi_{k}\left(\tilde{z}_{n}, \tilde{x}_{n}\right), \pi_{k}\left(\tilde{\mathrm{q}}_{n}^{n+1}\right)\right)$ is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for $k=m+1$. By Theorem 1 the pro-group $\left(H_{k}\left(\widetilde{Z}_{n}\right), H_{k}\left(\tilde{q}_{n}^{n+1}\right)\right)$ is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for $\mathrm{k}=\mathrm{m}+1$.

For each n consider the component $\hat{x}_{0, n}$ of $\bar{x}_{0, n}$ containing \tilde{x}_{n}.

Then $\bar{p}_{n}=p_{n} \mid \hat{x}_{0, n}: \hat{x}_{0, n} \rightarrow x_{0, n}$ is a covering projection such that $\operatorname{im}\left[\pi_{1}\left(\bar{p}_{n}\right)\right]$ is equal to the kernel of the natural homomorphism from $G_{0}=\stackrel{シ}{\pi}_{1}\left(X_{0}, x_{0}\right)$ to $G=\ddot{\pi}_{1}\left(X_{1} \cup X_{2}, x_{0}\right)$. Therefore

$$
\bar{q}_{n}^{n+1}=\tilde{q}_{n}^{n+1}\left(\hat{x}_{0, n+1}, \tilde{x}_{n+1}\right):\left(\hat{x}_{0, n+1}, \tilde{x}_{n+1}\right) \rightarrow\left(\hat{x}_{0, n}, \tilde{x}_{n}\right)
$$

induces isomorphisms on π_{1}. Similarly as before we get that $\left(H_{k}\left(\hat{X}_{0, n}\right), H_{k}\left(\bar{q}_{n}^{n+1}\right)\right)$ is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for $k=m+1$. Now observe that $\tilde{\mathrm{q}}_{\mathrm{n}}^{\mathrm{n}+1}$ induces a bijection between components of $\bar{x}_{0, n+1}\left(\bar{x}_{1, n+1}\right)$ and $\bar{x}_{0, n}\left(\bar{x}_{1, n}\right)$. Moreover each component of
$\overline{\mathrm{X}}_{0, \mathrm{n}}\left(\overline{\mathrm{X}}_{1, \mathrm{n}}\right)$ is the image of $\hat{\mathrm{x}}_{0, \mathrm{n}}\left(\hat{\mathrm{X}}_{1, \mathrm{n}}\right.$ which is the component of $\bar{X}_{1, n}$ containing \tilde{x}_{n}) under an element of $g \in G$, where G is interpreted as a subgroup of $\pi_{1}\left(z_{n}, x_{n}\right)$ which acts on \mathbb{Z}_{n} (see [Co], p. 12). Since the action of fundamental groups is functorial in the sense of 3.16 in [Co] (p. 12), one easily gets that $\left(H_{k}\left(\overline{\mathrm{X}}_{0, n}\right), \mathrm{H}_{\mathrm{k}}\left(\tilde{\mathrm{q}}_{\mathrm{n}}^{\mathrm{n}+1} \mid \overline{\mathrm{X}}_{0, \mathrm{n}+1}\right)\right)$ is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for $\mathrm{k}=\mathrm{m}+\mathrm{l}$.

Now for each n we have the functorial Mayer-Vietoris exact sequence

$$
\begin{aligned}
& +H_{k}\left(\bar{X}_{0, n}\right)+H_{k}\left(\bar{X}_{1, n}\right) \oplus H_{k}\left(\bar{X}_{2, n}\right)+H_{k}\left(\bar{Z}_{n}\right) \\
& \quad \rightarrow H_{k-1}\left(\bar{X}_{0, n}\right) \rightarrow .
\end{aligned}
$$

Applying Lemma to 4 and 5 we get that

$$
\left(\mathrm{H}_{\mathrm{k}}\left(\overline{\mathrm{x}}_{1, n}\right), \mathrm{H}_{\mathrm{k}}\left(\tilde{\mathrm{q}}_{\mathrm{n}}^{\mathrm{n}+1} \mid \overline{\mathrm{x}}_{1, \mathrm{n}+1}\right)\right)
$$

is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for $k=m+1$. Since $\left(\bar{x}_{1, n},\left[\tilde{q}_{n}^{n+1} \mid \bar{x}_{1, n+1}\right]\right)$ dominates $\left(\hat{\mathrm{x}}_{1, \mathrm{n}},\left[\tilde{\mathrm{q}}_{\mathrm{n}}^{\mathrm{n}+1} \mid \hat{\mathrm{x}}_{1, \mathrm{n}+1}\right]\right)$ in pro-homotopy, we infer that

$$
\left(\mathrm{H}_{\mathrm{k}}\left(\hat{\mathrm{x}}_{1, n}\right), \mathrm{H}_{\mathrm{k}}\left(\tilde{\mathrm{q}}_{\mathrm{n}}^{\mathrm{n}+1} \mid \hat{\mathrm{x}}_{1, \mathrm{n}+1}\right)\right)
$$

is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for $k=m+1$. Recall that the natural homomorphism of G_{1} to G is a monomorphism. Therefore each $\hat{X}_{1, n}$ is simply connected and Theorem 1 says that ($\pi_{k}\left(\hat{X}_{1, n}, \widetilde{x}_{n}\right)$, $\left.\pi_{k}\left(\tilde{q}_{n}^{n+1} \mid \hat{x}_{1, n+1}\right)\right)$ is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for $k=m+1$. Consequently $\left(\pi_{k}\left(X_{1, n}, x_{n}\right), \pi_{k}\left(q_{n}^{n+1}\right)\right)=\operatorname{pro}-\pi_{k}\left(X_{1}, x_{0}\right)$ is stable for $k \leq m$ and satisfies the Mittag-Leffler condition for $k=m+1$ which completes the proof of Theorem 6 in case $X_{1} \cap X_{2}$ is connected.

If $X_{1} \cap X_{2}$ is not connected it has a finite number of components. Take an abstract arc L intersecting each component of $X_{1} \cap X_{2}$ in exactly one point. Then $X_{1}^{\prime}=X_{1} \cup L$ and $X_{2}^{\prime}=X_{2} U L$ satisfy the hypotheses of Theorem 6 and $X_{1}^{\prime} \cap X_{2}^{\prime}$ is connected. Therefore $X_{1} U L$ has the shape of an $L C^{n}$-space. By the main result of $\left[K_{2}\right]$ (see also [D-S], p. 95) there is a sequence $Y_{k} \supset Y_{k+1} \supset \cdots$ of locally connected continua whose intersection is X_{1} such that each Y_{k+1} is a strong deformation retract of Y_{k}. Then $Y_{k+1} U L$ is a strong deformation retract of $Y_{k} \cup L$ which implies that $\left(X_{1}, x_{0}\right)$ is shape dominated by $\left(X_{1} \cup L, x_{0}\right)$. Therefore X_{1} has the shape of some $L C^{m}$-space. Thus the proof of Theorem 6 is concluded.

Corollary 7. Suppose X_{1} and X_{2} are continua such that $\mathrm{X}_{1} \cap \mathrm{X}_{2} \neq \emptyset$ and $\mathrm{X}_{1} \mathrm{U} \mathrm{X}_{2}$ are pointed ANSR's. If X_{1} is a pointed l-movable continuum of finite deformation dimension and the natural homomorphism $\stackrel{V}{\pi}_{1}\left(\mathrm{X}_{1}, \mathrm{X}_{0}\right) \rightarrow \stackrel{\vee}{\pi}_{1}\left(\mathrm{X}_{1} \mathrm{U} \mathrm{X}_{2}, \mathrm{X}_{0}\right)$ is a monomorphism, then X_{1} is a pointed ANSR.

Proof. By Theorem 6 and Ferry's result [F] all homotopy groups of $\left(X_{1}, X_{0}\right)$ are stable. By [E-G] (Theorem 5.1, see also [D-S], Theorem 9.22 on p. ll4) X_{1} is a pointed ANSR.

Corollary 8. Suppose X_{1} and X_{2} are continua of finite deformation dimension such that $\mathrm{X}_{1} \cap \mathrm{X}_{2}$ and $\mathrm{X}_{1} \cup \mathrm{X}_{2}$ are pointed ANSR's. If $\mathrm{X}_{1} \cap \mathrm{X}_{2}$ is l-shape connected, then X_{1} and X_{2} are pointed ANSR's.

Proof. First suppose $X_{1} \cap X_{2}$ is connected and take $x_{0} \in X_{1} \cap X_{2}$ (the case $X_{1} \cap x_{2}=\varnothing$ is obvious). Since the projections $\mathrm{p}: \mathrm{X}_{1} \cup \mathrm{X}_{2} \rightarrow\left(\mathrm{X}_{1} \cup \mathrm{X}_{2}\right) \mid\left(\mathrm{X}_{1} \cap \mathrm{X}_{2}\right)$ and $p\left|X_{1}: X_{1} \rightarrow X_{1}\right|\left(x_{1} \cap X_{2}\right)$ induce isomorphisms of first shape groups (see $\left[D_{4}\right]$, Theorem 8.6 on p. 4l) and clearly the inclusion $\mathrm{X}_{1}\left|\left(\mathrm{x}_{1} \cap \mathrm{X}_{2}\right) \rightarrow\left(\mathrm{X}_{1} \cup \mathrm{X}_{2}\right)\right| \mathrm{x}_{1} \cap \mathrm{X}_{2}$ induces monomorphism of first shape groups, we infer that the natural homomorphism from $\check{\pi}_{1}\left(\mathrm{X}_{1}, \mathrm{x}_{0}\right)$ to $\stackrel{\check{\pi}}{1}\left(\mathrm{X}_{1} \cup \mathrm{X}_{2}, \mathrm{x}_{0}\right)$ is a monomorphism. Then Corollary 7 implies that X_{1} is a pointed ANSR.

If $X_{1} \cap X_{2}$ is not connected we take an abstract arc L intersecting each component of $X_{1} \cap X_{2}$ at exactly one point. If $X_{1}^{\prime}=X_{1} \cup L$ and $X_{2}^{\prime}=X_{2} \cup L$, then the hypotheses of Corollary 8 are satisfied and $X_{1}^{\prime} \cap X_{2}^{\prime}$ is connected. Therefore $X_{1} U$ L is a pointed ANSR. Now Corollary 5.2 in [D-O] implies that X_{1} is pointed l-movable. In the same way as in the proof of Theorem 6 one gets that (X_{1}, x_{0}) is shape dominated by $\left(X_{1} \cup L, x_{0}\right)$. Consequently X_{1} is a pointed ANSR.

Remark. Both Corlllary 7 and 8 relate to the following problem posed by Borsuk [B]:

Is it true that X_{1} and X_{2} are ANSR's provided $X_{1} \cup X_{2}$ and $X_{1} \cap X_{2}$ are ANSR's?

A counterexample to this problem was provided by the author in $\left[\mathrm{D}_{5}\right]$ and independently by K . Kuperberg (unpub1ished).

Observe that using our methods one can prove the following

Theorem 9. If compacta X_{1} and X_{2} have the shape of $L C^{k}$ spaces ($\mathbf{k} \geq 0$) and $X_{1} \cap X_{2}$ has the shape of an $L C^{k-1}$-space, then $X_{1} \cup X_{2}$ has the shape of an $L C^{k}$-space.

The proof of Theorem 9 is analogous to the proof of Theorem 6 and uses the following

Lemma 10. Suppose $\mathrm{X}_{1}, \mathrm{X}_{2}$ and $\mathrm{X}_{1} \cap \mathrm{X}_{2}$ are continua such that for some point $\mathrm{x}_{0} \in \mathrm{X}_{1} \cap \mathrm{X}_{2}$ the pro-groups pro- $\pi_{1}\left(\mathrm{X}_{1}, \mathrm{x}_{0}\right)$ and pro- $\pi_{1}\left(\mathrm{X}_{2}, \mathrm{x}_{0}\right)$ are stable. If $\mathrm{X}_{1} \cap \mathrm{X}_{2}$ is pointed 1-movable, then pro- $\pi_{1}\left(\mathrm{X}_{1} \cup \mathrm{X}_{2}, \mathrm{x}_{0}\right)$ is stable.

Proof. Take an inverse sequence ($\mathrm{Z}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}}^{\mathrm{n}+1}$) of finite connected $C W$ complexes such that for some connected subcomplexes $X_{1, n}, x_{0, n}$ and $x_{2, n}$ of z_{n} there is
a. $x_{0, n}=x_{1, n} \cap x_{2, n}$ and $z_{n}=x_{1, n} \cup x_{2, n}$,
b. $x_{1} \cup x_{2}=1 \frac{i m}{}\left(z_{n}, q_{n}^{n+1}\right)$,
c. $x_{1}=\lim \left(x_{1, n}, q_{n}^{n+1}\right)$
d. $x_{2}=\lim \left(x_{2, n}, q_{n}^{n+1}\right)$
e. $x_{0}=x_{1} \cap x_{2}=\lim \left(x_{0, n}, q_{n}^{n+1}\right)$.

Without loss of generality we may assume each q_{n}^{n+1} is cellular. Moreover we may assume that each q_{n}^{n+1} induces isomorphisms of $\pi_{1}\left(x_{1, n+1}, x_{n+1}\right)$ onto $\pi_{1}\left(x_{1, n}, x_{n}\right)$ (here $x_{0}=\left(x_{n}\right)$) and of $\pi_{1}\left(x_{2, n+1}, x_{n+1}\right)$ onto $\pi_{1}\left(x_{2, n}, x_{n}\right)$, and an epimorphism of $\pi_{1}\left(x_{0, n+1}, x_{n+1}\right)$ onto $\pi_{1}\left(X_{0, n}, x_{n}\right)$ (see [K], Theorem 3.1 on p .151 , or [F]).

Let us fix n for a moment and consider the kernel A of

$$
\pi_{1}\left(q_{n}^{n+1}\right): \pi_{1}\left(x_{0, n+1}, x_{n+1}\right) \rightarrow \pi_{1}\left(x_{0, n}, x_{n}\right)
$$

Notice that any loop α such that $[\alpha] \in A$ is contractible in
both $\mathrm{X}_{1, \mathrm{n}+1}$ and $\mathrm{X}_{2, \mathrm{n}+1}$.
Therefore if we attach a family $\left\{D_{j}\right\}_{j \in J}$ of 2 -discs to $X_{0, n+1}$ in order to kill A, the inclusions

$$
x_{1, n+1}+x_{1, n+1} \cup \underset{j \in J}{\cup} D_{j} \text { and } x_{2, n+1}+x_{2 n+1} \cup \underset{j \in J}{\cup} D_{j}
$$

induce isomorphisms of fundamental groups, and $X_{1, n+1} u$ $x_{2, n+1}$ is a retract of $x_{1, n+1} \cup x_{2, n+1} \cup \underset{j \in J}{\cup} D_{j}$. Hence the inclusion $i_{n}: X_{1, n+1} \cup x_{2, n+1} \rightarrow x_{1, n+1} \cup x_{2, n+1} \cup \underset{j \in J}{\cup} D_{j}$ induces isomorphism of fundamental groups. Take any extension

Then
and

$$
\begin{aligned}
\bar{q}_{n}^{n+1}: & z_{n+1} \cup \underset{j \in J}{\cup D_{j}}+z_{n} \text { of } q_{n}^{n+1} \text { with } \\
& \bar{q}_{n}^{n+1}\left(\underset{j \in J}{\cup D_{j}}\right) \subset x_{0, n} .
\end{aligned}
$$

$$
\begin{aligned}
& \bar{q}_{n}^{n+1} \mid x_{1, n+1} \cup \underset{j \in J}{\cup D_{j}}: x_{1, n+1} \cup \underset{j \in J}{\cup D_{j}} \rightarrow x_{1, n} \\
& \bar{q}_{n}^{n+1} \mid x_{2, n+1} \cup \underset{j \in J}{\cup D_{j}}: x_{2, n+1}^{u} \underset{j \in J}{\cup D_{j}} \rightarrow x_{2, n}
\end{aligned}
$$

$$
\bar{q}_{n}^{n+1} \mid x_{0, n+1} \cup \underset{j \in J}{\cup D_{j}}: x_{0, n+1} \cup \underset{j \in J}{\cup D_{j}} \rightarrow x_{0, n}
$$

induce isomorphisms of fundamental groups and by van Kampen's Theorem \bar{q}_{n}^{n+1} induces an isomorphism of fundamental groups.

Consequently $q_{n}^{n+l}=\bar{q}_{n}^{n+1} \cdot i_{n}$ induces an isomorphism of fundamental groups and the proof of Lemma 10 is concluded.

Remark. Theorem 9 can be derived from [Kod] under the weaker assumption that $X_{1} \cap X_{2}$ has the shape of an LC ${ }^{k}$-space.

References

[B] K. Borsuk, Some remarks on perforated spaces (in Russian), Usp. Math. Nauk 31 (1976), 49-56.
[Co] M. M. Cohen, A course in simple homotopy theory, Springer-Verlag, New York, 1973.
[$\mathrm{D}_{1,2}$] J. Dydak, On algebraic properties of continua, I and II, Bull. Ac. Pol. Sci. (to appear).
$\left[\mathrm{D}_{3}\right] \quad, \quad$ On LC^{n}-divisors, Topology Proceedings 3
[D4] The Whitehead and Smale Theorems in shape theory, Dissertationes Mathematicae 156 (1979), 1-50.
$\left[\mathrm{D}_{5}\right]$. Some properties of nearly 1-movable continua, Bull. Ac. Pol. Sci. 25 (1977), 685-689.
[D-O] \qquad and M. Orlowski, On the simple n-perforation, Bull. Ac. Pol. Sci. 26 (1978), 163-168.
[D-S] J. Dydak and J. Segal, Shape theory: An introduction, Lecture Notes in Math. 688, Springer 1978, 1-150.
[E-G] D. Edwards and R. Geoghegan, The stability problem in shape and a Whitehead theorem in pro-homotopy, Trans. Amer. Math. Soc. 214 (1975), 261-273.
[F] S. Ferry, A stable converse to the Vietoris-Smale theorem with applications to shape theory (preprint).
[G-L] R. Geoghegan and R. L. Lacher, Compacta with the shape of finite complexes, Fund. Math. 92 (1976), 25-27.
[Kod] Y. Kodama, on fine n-movability, J. Math. Soc. Japan 30 (1978), 101-116.
$\left[K_{1}\right]$ J. Krasinkiewicz, Continuous images of continua and 1-movabizity, Fund. Math. 98 (1978), 141-164.
$\left[K_{2}\right]$ Local connectedness and pointed l-movabizity, Bull. Ac. Pol. Sci. 25 (1977), 1265-1269.
[S] E. Spanier, AZgebraic topoZogy, McGraw-Hill Book Co., New York, 1966.

SUNY at Binghamton
Binghamton, New York 13901
and
University of Warsaw
PKiN, 00-901 Warsaw, Poland

[^0]: l^{1} presented at the Alabama Topology Conference, March 1980. Paper not proofread by author.

