TOPOLOGY PROCEEDINGS

Volume 6, 1981
Pages 287-298
http://topology.auburn.edu/tp/

SEQUENTIAL ORDER OF HOMOGENEOUS AND PRODUCT SPACES

by
L. Foged

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

SEQUENTIAL ORDER OF HOMOGENEOUS AND PRODUCT SPACES

L. Foged

In this paper we will present some examples of sequential spaces with properties related to their sequential order [l]. In section 1 we will show that homogeneous spaces may have any prescribed sequential order. In section 2 we will show that the sequential order of the sequential coreflection of a product of spaces of "small" sequential order may have "large" sequential order and will answer a question posed by Michael [4] when we give an example of a sequential N_{0}-space Z so that the sequential coreflection of z^{2} is not regular. Our constructions use sets of sequences as underlying sets and will be facilitated by the following notation. If X is a set, we denote finite sequences in X by $\left\langle x_{0}, x_{1}, \cdots, x_{k}\right\rangle$, where $k \in \omega$ and every $x_{j} \in X . \quad$ If $\left\{x_{0}, x_{1}, \cdots, x_{k}\right\} \subset X$ and $S \subset X$, we let $\left\langle x_{0}, x_{1}, \cdots, x_{k}, S\right\rangle=\left\{\left\langle x_{0}, x_{1}, \cdots, x_{k}, x_{k+1}\right\rangle: x_{k+1} \in S\right\}$ and let $\left\langle x_{o}, x_{1}, \cdots, x_{k}, S, \ldots\right\rangle$ be the set of all finite sequences in x which extend a member of $\left\langle x_{0}, x_{1}, \cdots, x_{k}, s\right\rangle$.

1. Homogeneous Spaces

The authors of [1] asked whether their space S_{ω} is the only countable, Hausdorff, homogeneous, sequential space which is not first countable. A technique which produces many spaces with these properties was given in [3]; this technique produces spaces which, like S_{ω}, have sequential
order ω_{1}. While [5] gives a non-regular example with the listed properties and has sequential order 2 , the situation among regular spaces is clarified by the following.
A. Examples. For every $\alpha \leq \omega_{1}$ there is a countable, regular, homogeneous, weakly first countable space X_{α} with sequential order α.

Following [1], if A is a subset of a topological
space X then $A^{\circ}=A$; if $\alpha=\beta+1$, then $A^{\alpha}=$ the set of limits of sequences in A^{β}; if α is a limit ordinal, then $A^{\alpha}=U_{B<\alpha} A^{B}$.

We will construct our spaces by induction on α, letting X_{0} be a countable discrete space. Suppose we have constructed X_{β} for all $\beta<\alpha$.

```
1. a is not a limit ordinal.
Write \alpha = \beta+l; let B be a wfc system [2] for }\mp@subsup{X}{\beta}{}\mathrm{ ; pick
``` a distinguished point \(x^{*}\) in \(X_{\beta}\). Let \(X_{\alpha}\) be the set of finite sequences ( \(x_{0}, x_{1}, \cdots, x_{2 k}\) ) in \(x_{B} \cup \omega\) so that
\[
\begin{aligned}
& x_{j} \in x_{\beta} \text { if } j \text { is even, } \\
& x_{j} \in \omega \text { if } j \text { is odd. }
\end{aligned}
\]

We define a wfc system \(B^{\prime}\) for \(X_{\alpha}\) as follows. If \(n<\omega\) and
\[
\begin{aligned}
& \sigma=\left(x_{0}, x_{1}, \cdots, x_{k}\right\rangle \in x_{\alpha}, \text { then } \\
& B^{\prime}(n, \sigma)=\{\sigma\} \cup\left\langle x_{0}, \cdots, x_{k-1}, B\left(n, x_{k}\right) \backslash\left\{x_{k}\right\}, \cdots\right) \\
& \cup\left(x_{0}, \cdots, x_{k}, w \backslash n, x^{*}, \cdots\right),
\end{aligned}
\]
where \(\omega \backslash n=\{n, n+1, n+2, \cdots\}\).
We may then show that the sets
\[
\begin{aligned}
& \{\sigma\} u\left\langle x_{0}, x_{1}, \cdots, x_{k-1}, u \backslash\left\{x_{k}\right\}, \cdots\right\rangle u \\
& \underset{n \geq n_{0}}{u}\left\langle x_{0}, x_{1}, \cdots, x_{k}, n, v_{n}, \cdots\right\rangle
\end{aligned}
\]
where \(\sigma=\left\langle x_{0}, x_{1}, \cdots, x_{k}\right\rangle \in X_{\alpha}\), \(U\) is a neighborhood of \(x_{k}\) in \(X_{\beta}, n_{o}<\omega\), and every \(V_{n}\) is a neighborhood of \(x^{*}\) in \(X_{\beta}\), make up a local neighborhood base at \(\sigma\).

Inductively, \(X_{\alpha}\) may be shown to have a base of clopen sets.

For each \(\sigma=\left\langle x_{0}, x_{1}, \cdots, x_{k}\right\rangle \in X_{\alpha}\) the clopen neighborhood \(\left\{x_{0}, x_{1}, \cdots, x_{k-1}, x_{\beta}, \cdots\right\rangle\) of \(\sigma\) is canonically homeomorphic to \(X_{\alpha}=\left\langle X_{\beta}, \cdots\right\rangle\) under a homeomorphism carrying \(\sigma\) to \(\left\langle x^{*}\right\rangle\). It follows that distinct points \(\sigma\) and \(\tau\) lie in disjoint clopen sets which admit a homeomorphism carrying \(\sigma\) to \(r\); hence \(X_{\alpha}\) is homogeneous.

We wish to show that \(X_{\alpha}\) has sequential order \(\alpha\). Suppose \(A \subset X_{\alpha}\) and \(\left\langle x^{*}\right\rangle \in \operatorname{clA} \backslash A\). Then as \(\left\{\left\langle x^{*}\right\rangle\right\} U\) \(\left\langle x_{\beta} \backslash\left\{x^{*}\right\}, \cdots\right\rangle \cup\left\{x^{*}, \omega, x_{\beta}, \cdots\right\rangle\) is a neighborhood of \(\left\langle x^{*}\right\rangle\), we may assume that either (1) \(A \subset\left\{x_{\beta} \backslash\left\{x^{*}\right\}, \cdots\right\rangle\), or (2) \(A \subset\left\langle x^{*}, \omega, x_{\beta}, \cdots\right\rangle\).
(case 1) \(A \subset\left\{x_{\beta} \backslash\left\{x^{*}\right\}, \cdots\right\rangle\). Let \(\pi:\left\langle x_{\beta} \backslash\left\{x^{*}\right\}, \cdots\right\rangle \rightarrow\) \(\left\langle x_{\beta} \backslash\left\{x^{*}\right\}\right\rangle\) be the natural "trimming" function. Since〈 \(\left.x^{*}\right\rangle \in \operatorname{cl} A\), we may use the given neighborhood base for \(\left\langle x^{*}\right\rangle\) to show that \(\left\langle x^{*}\right\rangle \in \operatorname{cl} \pi(A)\). As \(\pi(A) \subset\left\langle X_{\beta}\right\rangle\) and \(\left\langle x_{B}\right\rangle\) is closed and homeomorphic to \(X_{\beta}\), we deduce that \(\left\langle x^{*}\right\rangle \in\) \([\pi(A)]^{\beta}\). That \(\left\langle x^{*}\right\rangle \in A^{\beta}\), follows from (*).
(*) For every \(\gamma[\pi(A)]^{\gamma} \backslash \pi(A) \subset A^{\gamma}\).
If \(\gamma=1\) and \(\left(x_{0}\right\rangle \in\) seq cl \(\pi(A) \backslash \pi(A)\), then there is a sequence \(\left\langle\sigma_{n}\right\rangle_{n<\omega}\) in \(A\) so that \(\left\langle\pi\left(\sigma_{n}\right)\right\rangle_{n<\omega}\) converges to \(\left\langle x_{0}\right\rangle\). Recalling the definition of \(\mathrm{B}^{\prime}\), we see that in fact \(\left\langle\sigma_{n}\right\rangle_{n<\omega}\) converges to \(\left\langle x_{0}\right\rangle\). Assume now that (*) holds for all \(\delta<\gamma\). If \(\gamma=\delta+1\), let \(\left\langle x_{0}\right\rangle \in[\pi(A)]^{\gamma} \backslash \pi(A)\); we may
assume \(\left\langle x_{0}\right\rangle \notin[\pi(A)]^{\delta}\). Then there is a sequence \(\left\langle\sigma_{n}\right\rangle_{n<\omega}\) in \([\pi(A)]^{\delta} \backslash \pi(A)\) converging to \(\left\langle x_{0}\right\rangle\), the induction hypothesis yielding that \(\left\langle x_{0}\right\rangle \in A^{\gamma}\). On the other hand, if \(\gamma\) is a limit ordinal, then \([\pi(A)]^{\gamma} \backslash \pi(A)=U_{\delta<\gamma}[\pi(A)]^{\delta} \backslash \pi(A) \subset\) \(U_{\delta<\gamma} A^{\delta}=A^{\gamma}\). This establishes (\({ }^{*}\)).
(case 2) \(A \subset\left\langle x^{*}, \omega, x_{\beta}, \cdots\right\rangle\). Let \(\pi:\left\langle x^{*}, \omega, x_{\beta}, \cdots\right\rangle \rightarrow\) \(\left\langle x^{*}, \omega, x_{\beta}\right\rangle\) be the trimming function. Again, \(\left\langle x^{*}\right\rangle \in \operatorname{cl} A\) implies that \(\left\langle x^{*}\right\rangle \in \operatorname{cl} \pi(A)\). Because \(\pi(A) \subset\left(x^{*}, \omega, x_{\beta}\right\rangle U\) \(\left\{\left\langle x^{*}\right\rangle\right\}\) and because the latter set is closed and homeomorphic to the sequential sum [l] of \(\mu_{0}\) copies of \(X_{\beta}\) (thus has sequential order \(\beta+1\)), we get \(\left(x^{*}\right\rangle \in[\pi(A)]^{\beta+1}\). We may verify that (\({ }^{*}\)) holds for \(\pi\), and thus \(\left(x^{*}\right\rangle \in A^{\beta+1}\).

Thus in either case \(\left(x^{*}\right) \in A^{\beta+1}=A^{\alpha}\). Hence the sequential order of \(X_{\alpha}\) is no greater than \(\alpha\). As \(X_{\alpha}\) contains a closed copy of the sequential sum of \(\kappa_{0}\) copies of \(X_{\beta}\), the sequential order is precisely \(\alpha\).
2. \(\alpha\) is a limit ordinal.

Write \(\alpha=\sup \left\{\beta_{i}: i<\omega\right\}\) so that the \(\beta_{i}\) 's are not limit ordinals. For every \(i<\omega\), let \(x_{i}=x_{\beta_{i}}\); distinguish a point \(x^{i}\) in \(X_{i}\), and \(\operatorname{let} X_{i}^{*}=X_{i} \backslash\left\{x^{i}\right\}\). \(X_{\alpha}\) is the set of all finite sequences (\(x_{0}, x_{1}, \cdots, x_{k}\)) in \(U_{i<\omega} X_{i}^{*}\) so that for all \(j<k\)
\[
\text { if } x_{j} \in X_{i}^{*} \text {, then } x_{j+1} \notin x_{i}^{*}
\]

Let \(B_{i}\) be a wfc system for \(X_{i}\) so that for every \(x \in X_{i}\) and every \(n \leq i, B_{i}(n, x)=X_{i}\). Now define a wfc system \(B\) for \(x_{\alpha}\) as follows: For \(n<\omega\) and \(\sigma=\left(x_{o}, x_{1}, \cdots, x_{k}\right) \in x_{\alpha}\) with \(x_{k} \in X_{i_{o}}^{*}\) let
\[
\begin{aligned}
B(n, \sigma)= & \{\sigma\} \cup\left\langle x_{o}, x_{1}, \cdots, x_{k-1}, B_{i}\left(n, x_{k}\right) \backslash\left\{x_{k}\right\}, \cdots\right\rangle \\
& \cup \cup_{i \neq i_{o}}\left\langle x_{o}, x_{1}, \cdots, x_{k}, B_{i}\left(n, x^{i}\right) \backslash\left\{x^{i}\right\}, \cdots\right\rangle .
\end{aligned}
\]

A neighborhood base at \(\sigma\) is formed by the sets of the form
\[
\begin{aligned}
\{\sigma\} & \cup
\end{aligned} \begin{aligned}
& \left.x_{0}, x_{1}, \cdots, x_{k-1}, U \backslash\left\{x_{k}\right\}, \cdots\right\rangle u \\
& \\
& U_{i \neq i_{0}}\left\langle x_{o}, x_{1}, \cdots, x_{k}, v^{i} \backslash\left\{x^{i}\right\}, \cdots\right\rangle,
\end{aligned}
\]
where \(U\) is a neighborhood of \(x_{k}\) in \(X_{i_{o}}\), for all \(i \neq i_{o} V^{i}\) is a neighborhood in \(X_{i}\) of \(x^{i}\), and for all but finitely many \(i v^{i}=X^{i}, X_{\alpha}\) may be shown to have a base of clopen sets.
\[
\text { Fix } x_{o}^{\prime} \in X_{o}^{*} . \quad \text { Let } \sigma=\left\langle x_{0}, x_{1}, \cdots, x_{k}\right\rangle \in X_{\alpha} \text { with } x_{k} \in X_{i}^{*} .
\]

We will find clopen neighborhoods of \(\left\langle x_{0}^{\prime}\right\rangle\) and \(\sigma\) that are homeomorphic under a mapping carrying \(\sigma\) to (\(x_{0}^{\prime}\)), giving homogeneity as before. If \(i=0\), then we can find a homeomorphism \(f\) on \(X_{o}\) so that \(f\left(X_{k}\right)=X_{o}^{\prime}\) and a clopen neighborhood \(V\) of \(x_{k}\) in \(X_{o}\) so that \(x^{\circ} \notin V \cup f(V)\); thus (\(\left.f(V), \ldots\right)\) and \(\left\langle x_{0}, x_{1}, \cdots, x_{k-1}, V, \ldots\right\rangle\) are the desired clopen neighborhoods. If on the other hand \(i \neq 0\), find homeomorphisms \(f_{o}\) on \(X_{o}\) and \(f_{i}\) on \(X_{i}\) so that \(f_{o}\left(x^{o}\right)=x_{o}^{\prime}\) and \(f_{i}\left(x_{k}\right)=x^{i}\); also find clopen neighborhoods \(v_{o}\) of \(x^{\circ}\) and \(V_{i}\) of \(x_{k}\) so that \(x^{\circ} \& f_{o}\left(V_{o}\right)\) and \(x^{i} \& V_{i}\). The natural map defined piecewise from the clopen neighborhood \(\{\sigma\} u\left\langle x_{0}, x_{1}, \cdots, x_{k-1}\right.\), \(\left.v_{i} \backslash\left\{x_{k}\right\}, \cdots\right\rangle u\left\langle x_{0}, x_{1}, \cdots, x_{k}, v_{o} \backslash\left\{x^{0}\right\}, \ldots\right\rangle u u_{j \neq i, 0}\) \(\left\langle x_{o}, x_{1}, \cdots, x_{k}, x_{j}^{*}, \ldots\right\rangle\) of \(\sigma\) onto the clopen neighborhood \(\left\{\left\langle x_{0}^{\prime}\right\rangle\right\} u\left\langle x_{o}^{\prime}, f_{i}\left(V_{i}\right) \backslash\left\{x^{i}\right\}, \cdots\right\rangle u\left\langle f_{o}\left(v_{o}\right) \backslash\left\{x_{o}^{i}\right\}, \cdots\right\rangle u u_{j \neq i, 0}\) \(\left\langle x_{0}^{\prime}, x_{j}^{*}, \cdots\right\rangle\) of \(\left\langle x_{0}^{\prime}\right\rangle\) is a homeomorphism.

Suppose \(A \subset X_{\alpha}\) and \(\left\langle x_{0}^{\prime}\right\rangle \in c l A \backslash\) seq cl A. Since
(\(x_{0}^{\prime}\)) \(\mathcal{L} \operatorname{seq} c l A\), there \(i s\) an \(i_{o}<\omega\) so that \(A\) misses \(U_{i>i_{o}}\left(x_{o}^{\prime}, X_{i}^{*}, \ldots\right)\). We may assume that either \(A \subset\left(X_{o}^{*} \backslash\left\{x_{0}^{\prime}\right\}, \cdots\right)\) or that \(A \subset\left\{x_{0}^{\prime}, X_{i}^{*}, \ldots\right\rangle\) for some \(i \leq i_{0}\) If \(A \subset\left\langle x_{0}^{\prime}, X_{i}^{*}, \ldots\right\rangle\), let \(\pi:\left\langle x_{0}^{\prime}, X_{i}^{*}, \cdots\right\rangle \rightarrow\left\langle x_{0}^{\prime}, X_{i}^{*}\right\rangle\), be the trimming function. Then \(\left(x_{0}^{\prime}\right) \in c l \pi(A)\), and since \(\pi(A) \subset\left\langle X_{0}^{\prime}, X_{i}^{*}\right\rangle\) and \(\left\langle x_{0}^{\prime}, X_{i}^{*}\right\rangle \cup\left\{\left\langle x_{0}^{\prime}\right\rangle\right\}\) is closed and homeomorphic to \(X_{i}\), we have that \(\left(x_{0}^{\prime}\right) \in[\pi(A)]^{\beta} \in[\pi(A)]^{\alpha}\). One may show that \(\pi\) satisfies (*); thus \(\left\langle x_{0}^{\prime}\right\rangle \in A^{\alpha}\). The proof in the case \(A \subset\left(X_{0} \backslash\left\{x_{0}^{\prime}\right\}, \ldots\right\rangle\) is similar. Hence \(X_{\alpha}\) has sequential order no larger than \(\alpha\). The subsets \(\left\{\left\langle x_{0}\right\rangle\right\} u\) (\(x_{o}, X_{i}^{*}\)) of \(X_{\alpha}\) are closed and homeomorphic to \(X_{i}\) when \(\mathrm{X}_{\mathrm{o}} \mathbb{R} \mathrm{X}_{\mathrm{i}}^{*}\), so the sequential order of \(\mathrm{X}_{\alpha}\) is at least \(\sup _{i<\omega} B_{i}=\alpha\). This completes the proof.

\section*{2. Product Spaces}

While the product of two sequential spaces need not be sequential, if \(X\) and \(Y\) are sequential there is a natural sequential space topology for the set \(X \times Y\) : decree that a sequence \(\left\langle\left(x_{n}, y_{n}\right)\right\rangle_{n \in \omega}\) "converges" to \((x, y)\) if and only if \(\left\langle x_{n}\right\rangle_{n \in \omega}\) converges to \(x\) in \(X\) and \(\left\langle y_{n}\right\rangle_{n \in \omega}\) converges to \(Y\) in \(Y\); define \(U\) to be open in \(X \times Y\) if it is sequentially open with respect to these "convergent" sequences. This is the sequential coreflection of the usual product topology, denoted henceforth by \(\sigma(X \times Y)\).

Our next examples show that there is no natural bound on the sequential order of \(\sigma(X \times Y)\) based on the sequential orders of \(X\) and \(Y\).
B. Examples. There are countable regular spaces X and \(Y\) so that \(X\) is Fréchet and \(Y\) is weakly first countable with sequential order 2 so that \(\sigma X^{2}\) and \(\sigma Y^{2}\) have sequential order \({ }^{w_{1}}\).

Let \(X\) be the set of all finite sequences in \(w\) of even (possibly 0) length. A set \(U\) is open in \(X\) if and only if for every \(\left\langle n_{1}, n_{2}, \cdots, n_{2 k}\right\rangle \in U\) and every \(i \in \omega\), there is a \(j \in \omega\) so that \(\left\langle n_{1}, n_{2}, \cdots, n_{2 k}, i, \omega \backslash j, \cdots\right\rangle \subset U\).

The space \(\sigma X^{2}\) contains a closed copy of \(S_{\omega}\). Let \(s(\phi)=(\phi, \phi)\) and for \(n_{1} \in \omega\) let \(s\left(n_{1}\right)=\left(\left(0, n_{1}\right), \phi\right)\). Generally, \(s\left(n_{1}, n_{2}, \cdots, n_{2 k}\right)=\left(\left\langle 0, n_{1}, n_{2}, \cdots, n_{2 k-1}\right\rangle\right.\), \(\left\langle n_{1}, n_{2}, \cdots, n_{2 k}\right\rangle\) and \(s\left(n_{1}, n_{2}, \cdots, n_{2 k+1}\right)=\left(\left\langle 0, n_{1}, n_{2}, \cdots, n_{2 k+1}\right\rangle\right.\), \(\left.\left\langle n_{1}, n_{2}, \cdots, n_{2 k}\right\rangle\right)\). Observe that \(\left\langle s\left(n_{1}, n_{2}, \cdots, n_{k+1}\right)\right\rangle_{n_{k+1} \in \omega}\) converges to \(s\left(n_{1}, \cdots, n_{k}\right)\). We will show that these are essentially the only sequences in \(S=\{s(\sigma): \sigma\) a finite sequence in \(\omega\}\) converging to a point of \(X^{2}\), hence \(S\) is a sequentially closed copy of \(s_{\omega}\) in \(X^{2}\)

Suppose with us that there is a sequence \(\sigma\) in \(S\) converging to \(\left(\left\langle r_{1}, r_{2}, \cdots, r_{2 k}\right\rangle,\left\langle s_{1}, s_{2}, \cdots, s_{2 \ell}\right\rangle\right) \in X^{2}\) which is not eventually constant. in either factor. Then there is such a \(\sigma=\left\langle\left(\left\langle 0, n_{1}^{p}, n_{2}^{p}, \cdots, n_{i}^{p}\right\rangle,\left\langle n_{1}^{p}, n_{2}^{p}, \cdots, n_{j_{p}}^{p}\right\rangle\right)\right\rangle{ }_{p \in \omega}\) so that \(\left|i_{p}-j_{p}\right|=1, i_{p} \geq 2 k+1, j_{p} \geq 2 \ell+2\) for all \(p \in w ;\) \(\left\{n_{2 k+1}^{p}: p \in \omega\right\}\) and \(\left\{n_{2 \ell+2}^{p}: p \in \omega\right\}\) are infinite; \(\left\{n_{2 k}^{p}: p \in \omega\right\}\) and \(\left\{n_{2 \ell+1}^{p}: p \in \omega\right\}\) are finite. Now if \(j \leq 2 \ell,\left\langle n_{j}^{p}\right\rangle_{p \in \omega}\) is eventually constant \(\left(=s_{j}\right)\), so \(2 k+1>2 \ell\); also \(2 \ell+1 \neq 2 k+1\), so \(2 k+1>2 \ell+2\). We also have that if \(j \leq 2 k-1,\left\langle n_{j}^{P}\right)_{p \in \omega}\) is eventually constant \(\left(=r_{j+1}\right)\), so \(2 \ell+2>2 k-1\). With \(2 k \neq 2 \ell+2\), we get \(2 \ell+2>2 k+1\), a contradiction.

So every convergent sequence in \(S\) is eventually constant in one of the factors. If \(\sigma\) is a sequence in \(S\) which is constant in the second factor, \(\sigma \backslash\left(\left\langle 0, n_{1}, n_{2}, \cdots, n_{2 k-1}\right\rangle\right.\), \(\left.\left\langle n_{1}, n_{2}, \cdots, n_{2 k}\right\rangle\right\rangle=\left\langle\left(\left\langle 0, n_{1}, n_{2}, \cdots, n_{2 k}, n_{2 k+1}^{p}\right\rangle\right.\right.\), \(\left.\left.\left\langle n_{1}, n_{2}, \cdots, n_{2 k}\right\rangle\right\rangle\right\rangle_{p \in \omega}\) for some \(\left\langle n_{1}, n_{2}, \cdots, n_{2 k}\right\rangle \in X\). Likewise if \(\sigma\) is constant in the first factor, \(\sigma \backslash\left(\left\langle 0, n_{1}, n_{2}, \cdots, n_{2 k-1}\right\rangle,\left(n_{1}, n_{2}, \cdots, n_{2 k-2}\right\rangle\right)=\) \(\left\langle\left(\left\langle 0, n_{1}, n_{2}, \cdots, n_{2 k-1}\right\rangle,\left(n_{1}, n_{2}, \cdots, n_{2 k-1}, n_{2 k}^{p}\right\rangle\right)\right\rangle_{p \in \omega}\), showing that every sequence in \(S\) converging to a point in \(X^{2}\) is eventually constant or a subsequence of one of our canonical convergent sequences, as desired.

Let \(Y\) be the set of all non-void finite sequences of positive rationals with wfc system given by \(B\left(m,\left\langle q_{o}, q_{1}, \cdots, q_{k}\right\rangle\right)=\left\langle q_{o}, q_{1}, \cdots, q_{k-1}, s_{m}\left(q_{k}\right)\right\rangle u\) \(\left\langle q_{0}, q_{1}, \cdots, q_{k}, S_{m}(0), \cdots\right\rangle\), where \(s_{m}(q)=\left\{r \in 0^{+}:|r-q|<1 / m\right\}\). Now let \(\langle q(j)\rangle_{j<\omega}\) be a sequence in \(\mathbf{0}^{+}\)converging monotonically to 0 and \(\langle q(j, k)\rangle_{k<\omega}\) be a sequence in \((q(j+1), q(j)) \cap \mathbf{a}^{+}\)converging monotonically to \(q(j)\). We will show that the set \(S=\{s(\sigma): \sigma\) a finite sequence in \(\omega\}\) is a closed copy of \(S_{\omega}\) in \(\sigma Y^{2}\), where \(s(\phi)=(\langle 1\rangle,\langle 1\rangle\), \(s\left(n_{1}, n_{2}, \cdots, n_{2 k-1}\right)=\left(\left\langle 1, q\left(n_{1}, n_{2}\right), \cdots, q\left(n_{2 k-3}, n_{2 k-2}\right), q\left(n_{2 k-1}\right)\right)\right.\), \(\left.\left\langle 1+q\left(n_{1}\right), q\left(n_{2}, n_{3}\right), \cdots, q\left(n_{2 k-2}, n_{2 k-1}\right)\right)\right), s\left(n_{1}, n_{2}, \cdots, n_{2 k}\right)=\) \(\left(\left\langle 1, q\left(n_{1}, n_{2}\right), \cdots, q\left(n_{2 k-1}, n_{2 k}\right)\right),\left(1+q\left(n_{1}\right), q\left(n_{2}, n_{3}\right), \cdots\right.\right.\), \(\left.\left.q\left(n_{2 k-2}, n_{2 k-1}\right), q\left(n_{2 k}\right)\right\rangle\right)\).

We will show that a sequence \(\left\langle\sigma_{p}\right\rangle_{p<\omega}=\left\langle s\left(n_{1}^{p}, n_{2}^{p}, \cdots\right.\right.\), \(\left.\left.n_{i_{p}}^{p}\right)\right\rangle_{p<\omega}\) in \(S\) cannot converge to a point \(\left(\left\langle r_{1}, r_{2}, \cdots, r_{k}\right\rangle\right.\), (\(\left.s_{1}, s_{2}, \cdots, s_{\ell}\right\rangle\)) of \(Y^{2}\) if for infinitely many \(p<\omega\) both the first coordinate \(\left(=\sigma_{p}^{1}\right)\) has length \(>k\) and the second
coordinate \(\left(=\sigma_{p}^{2}\right)\) has length \(>\ell\). For if such a sequence did converge we could, by finding a subsequence, assume that the \(\sigma_{p}^{l}{ }_{p} s\) extend \(\left\langle r_{1}, \cdots, r_{k}\right\rangle\) and converge to 0 in the \(k+1\) position, while the \(\sigma_{p}^{2}\) 's extend \(\left\langle s_{1}, \cdots, s_{\ell}\right\rangle\) and converge to 0 in the \(\ell+1\) position. That is, \(\left\{n_{i}^{p}: p<\omega\right\}\) is finite for all \(i<2 k-1\) and \(\left\{n_{2 k-1}^{p}: p<\omega\right\}\) is infinite, while \(\left\{n_{i}^{p}: p<\omega\right\}\) is finite for all \(i<2 \ell\) and \(\left\{n_{2 \ell}^{p}: p<\omega\right\}\) is infinite; this contradiction establishes our claim.
\[
\text { If }\left\langle\sigma_{p}\right\rangle_{p<\omega}=\left\langle s\left(n_{1}^{p}, n_{2}^{p}, \cdots, n_{i}^{p}\right)\right\rangle_{p<\omega} \text { is a sequence in } S
\] converging to \(\left(\left\langle r_{1}, r_{2}, \cdots, r_{k}\right\rangle,\left\langle s_{1}, s_{2}, \cdots, s_{\ell}\right\rangle\right)\) so that the \(\sigma_{p}^{l}\) 's have length \(k\), then \(\sigma_{p}^{l}\) is eventually constant \(\left(=\left\langle r_{1}, \cdots, r_{k-1}\right\rangle\right)\) in the first \(k-1\) positions, i.e. for appropriate \(n_{1}, n_{2}, \cdots, n_{2 k-4}\) and large \(p<1, q\left(n_{1}, n_{2}^{p}\right), \cdots\), \(\left.q\left(n_{2 k-5}^{p}, n_{2 k-4}^{p}\right)\right\rangle=\left\langle 1, q\left(n_{1}, n_{2}\right), \cdots, q\left(n_{2 k-5}, n_{2 k-4}\right)\right\rangle\). Further, \(\left\langle\sigma_{p}^{1}\right\rangle_{p<\omega}\) converges to \(r_{k} \neq 0\) in the \(k\) position, so that \(\left\langle n_{2 k-3}^{p}\right\rangle_{p<\omega}\) is eventually constant \(\left(=n_{2 k-3}\right)\) and \(\left\{n_{2 k-2}^{p}: p<\omega\right\}\) is infinite. Consequently \(\left\langle\sigma_{p}\right\rangle{ }_{p<\omega}\) is a subsequence of \(\left\langle s\left(n_{1}, n_{2}, \cdots, n_{2 k-3}, n_{2 k-2}\right)\right\rangle_{n_{2 k-2}<\omega}\).

Similarly, if \(\left\langle\sigma_{p}\right\rangle_{p<\omega}\) is a sequence in \(S\) converging to \(\left.\left\langle r_{1}, r_{2}, \cdots, r_{k}\right\rangle,\left\langle s_{1}, s_{2}, \cdots, s_{\ell}\right\rangle\right)\) so that the \(\sigma_{p}^{2}\) 's have length \(\ell\), then \(\left\langle\sigma_{p}\right\rangle_{p<\omega}\) is eventually a subsequence of
\(\left\langle s\left(n_{1}, n_{2}, \cdots, n_{2 \ell-2}, n_{2 \ell-1}\right\rangle_{n_{2 \ell-1}<\omega}\right.\).
Since \(\left\langle s\left(n_{1}, n_{2}, \cdots, n_{j}, n_{j+1}\right)\right\rangle_{n_{j+1}<\omega}\) converges to
\(s\left(n_{1}, n_{2}, \cdots, n_{j}\right)\) and these are essentially the only convergent sequences in \(S, S\) may be viewed as a closed copy of \(S_{\omega}\) in \({ }_{\sigma} Y^{2}\).
C. Example. There is a regular space \(Z\) with a countable weak base [6] so that \(\sigma Z^{2}\) is not regular.

Let \(P\) be a countable set of irrationals which is dense in I, where \(\phi: P \rightarrow \mathbf{N}\) is one-to-one. Let \(Z\) be the set of all non-void sequences (finite or infinite) in \(P\) with wfc system defined as follows.
\(B\left(n,\left(p_{o}, p_{1}, \cdots, p_{k}\right)\right)=\left(p_{o}, p_{1}, \cdots, p_{k-1}, s_{n}\left(p_{k}\right)\right) U\left(p_{o}, p_{1}, \cdots\right.\), \(\left.p_{k}, S_{n}(0), \cdots\right)\),
\(B\left(n,\left(p_{i}\right\rangle_{i \in \omega}\right)=\left\langle p_{0}, p_{1}, \cdots, p_{n-1}, p_{n}, \cdots\right\rangle\), where
\(S_{n}(x)=\left\{y \in P:|y-x|<\frac{1}{n}\right\}\) and \(\left\langle p_{0}, p_{1}, \cdots, p_{k}, T, \cdots\right\rangle\) is the set of all sequences in \(P\), finite or infinite, which extend a member of \(\left\langle p_{o}, p_{1}, \cdots, p_{k}, T\right\rangle . Z\) is regular and has a countable weak base.

For \(k \in \omega\) let
\(W_{2 k}=u\left\{B\left(\phi\left(q_{k}\right),\left\langle p_{o}, p_{1}, \cdots, p_{k}\right\rangle\right) \times B\left(1,\left(q_{o}, q_{1}, \cdots, q_{k}\right\rangle\right):\right.\)
\(\left.p_{o}, p_{1}, \cdots, p_{k}, q_{o}, q_{1}, \cdots, q_{k} \in P\right\}\)
\(w_{2 k+1}=U\left\{B\left(1,\left(p_{o}, p_{1}, \cdots, p_{k+1}\right)\right) \times B\left(\phi\left(p_{k+1}\right),\left(q_{o}, q_{1}, \cdots, q_{k}\right)\right):\right.\)
\(\left.p_{o}, p_{1}, \cdots, p_{k+1}, q_{o}, q_{1}, \cdots, q_{k} \in p\right\}\).
It is straightforward to check that a sequence converging to a member of \(W_{k}\) must eventually be in \(W_{k} \cup W_{k+1}\), and hence \(W=U_{k \in \omega} W_{k}\) is a sequentially open set in \(z^{2}\).

Let \(\left\{p_{0}, q_{0}^{-}\right\} \subset p\) so that \(\phi\left(p_{0}\right)>\left(q_{0}^{\prime}\right)^{-1}\). We will show that every sequentially open set \(U\) in \(z^{2}\) with (\(\left.\left(p_{o}\right),\left(q_{0}^{*}\right)\right) \in U\) contains a sequence converging to a point not in \(W\), hence that \(\sigma Z^{2}\) is not regular.

Assume we have found \(p_{i}(i \leq k), q_{i}(i<k)\), and \(q_{k}^{\prime}\) so that
1. \(\left(\left\langle p_{o}, \cdots, p_{i}\right\rangle,\left(q_{o}, \cdots, q_{i}\right\rangle\right) \in U\) if \(i<k\).
2. \(\phi\left(q_{i}\right)>\left(p_{i+1}\right)^{-1}\) and \(\phi\left(p_{i}\right)>q_{i}^{-1}\) if \(i<k\).
3. \(\phi\left(p_{k}\right)>\left(q_{k}^{\prime}\right)^{-1}\).
4. \(\left(\left\langle p_{o}, \cdots, p_{k}\right\rangle,\left\langle q_{o}, \cdots, q_{k-1}, q_{k}^{-}\right\rangle\right) \in U\)

Because of (4) we can find an \(m \in \omega\) such that \(B\left(m,\left\langle p_{o}, \cdots, p_{k}\right\rangle\right) \times B\left(m,\left\langle q_{o}, \cdots, q_{k-1}, q_{k}^{\prime}\right\rangle\right) \subset U\); choose \(p_{k+1}^{\prime} \in P\) so that \(\left\langle p_{o}, \cdots, p_{k}, p_{k+1}^{\prime}\right\rangle \in B\left(m,\left(p_{o}, \cdots, p_{k}\right\rangle\right)\) and \(q_{k} \in P\) so that \(\left\langle q_{0}, \cdots, q_{k}\right\rangle \in B\left(m,\left\langle q_{o}, \cdots, q_{k-1}, q_{k}^{\prime}\right\rangle\right)\), \(q_{k}^{-1}<\left(q_{k}^{-}\right)^{-1}<\phi\left(p_{k}\right)\), and \(\phi\left(q_{k}\right)>\left(p_{k+1}^{-}\right)^{-1}\). Note that \(\left(\left\langle p_{o}, \cdots, p_{k}\right\rangle,\left\langle q_{o}, \cdots, q_{k}\right\rangle\right) \in U\).

Since \(\left(\left\langle p_{o}, \cdots, p_{k}, p_{k+1}^{\prime}\right\rangle,\left\langle q_{o}, \cdots, q_{k}\right)\right) \in U\), there is an \(n<\omega\) so that \(B\left(n,\left(p_{o}, \cdots, p_{k}, p_{k+1}^{\prime}\right\rangle\right) \times B\left(n,\left(q_{o}, \cdots, q_{k}\right)\right) \in U\). So there is a \(q_{k+1}^{\prime} \in P\) so that \(\left\langle q_{0}, \cdots, q_{k}, q_{k+1}^{\prime}\right\rangle \epsilon\) \(B\left(n,\left\langle q_{o}, \cdots, q_{k}\right\rangle\right)\) and a \(p_{k+1} \in P\) such that \(\left(p_{o}, \cdots, p_{k+1}\right\rangle \in\) \(B\left(n,\left(p_{o}, \cdots, p_{k}, p_{k+1}^{-}\right)\right), \phi\left(q_{k}\right)>\left(p_{k+1}\right)^{-1}\), and \(\phi\left(p_{k+1}\right)>\) \(\left(q_{k+1}^{\prime}\right)^{-1}\). This finishes the induction.

The sequence \(\left\{\left(\left(p_{0}, \cdots, p_{k}\right),\left(q_{o}, \cdots, q_{k}\right\rangle\right): k \in \omega\right\}\) in \(U\) converges to \(\zeta=\left(\left\langle p_{i}\right\rangle_{i<\omega},\left\langle q_{i}\right\rangle_{i<\omega}\right)\) in \(z^{2}\). To see that \(\zeta \& W\), note that if \(\zeta \in B\left(\phi\left(s_{k}\right),\left(r_{o}, r_{1}, \cdots, r_{k}\right)\right) \times\) \(B\left(1,\left\langle s_{o}, s_{1}, \cdots, s_{k}\right)\right.\) for some \(k \geq 0\), then, since every infinite sequence in \(B\left(\phi\left(s_{k}\right),\left(r_{o}, r_{1}, \cdots, r_{k}\right)\right)\) is an extension of \(\left\langle r_{o}, r_{1}, \cdots, r_{k}\right\rangle,\left\langle p_{o}, \cdots, p_{k}\right\rangle=\left\langle r_{o}, \cdots, r_{k}\right\rangle\), and for the same reason \(\left\langle s_{o}, \cdots, s_{k}\right\rangle=\left\langle q_{o}, \cdots, q_{k}\right\rangle\). Thus \(\zeta \in B\left(\phi\left(q_{k}\right),\left\langle p_{o}, p_{1}, \cdots, p_{k}\right\rangle\right) \times B\left(1,\left\langle q_{o}, \cdots, q_{k}\right\rangle\right)\), which would mean \(\phi\left(q_{k}\right)<\left(p_{k+1}\right)^{-1}\), violating (2). A like argument shows that \(\zeta\) is not in any of the sets \(B\left(1,\left\langle r_{0}, r_{1}, \cdots\right.\right.\), \(\left.r_{k+1}\right\rangle \times B\left(\phi\left(r_{k+1}\right),\left\langle s_{0}, \cdots, s_{k}\right\rangle\right)\). Thus \(\zeta \& W\) as claimed.

We note that \(Z\) is an \(\delta_{0}\)-space (Theorem 1.15 in [6]), thereby answering Michael's question in [4].

\section*{References}
[1] A. Arhangel'skii and S. Franklin, Ordinal invariants for topological spaces, Mich. Math. J. 15 (1968), 313-320.
[2] S. Davis, G. Gruenhage, and P. Nyikos, \(\mathrm{G}_{\delta}\)-sets in symmetrizable and related spaces, General Topology and Appl. 9 (1978), 253-261.
[3] V. Kannan, An extension that nowhere has the Fréchet property, Mich. Math. J. 20 (1973), 225-234.
[4] E. Michael, On k-spaces, \(\mathrm{k}_{\mathrm{R}}\)-spaces and \(\mathrm{k}(\mathrm{X})\), Pac. J. Math. 47 (1973), 487-498.
[5] P. Nyikos, Metrizability and the Fréchet-Urysohn property in topological groups (to appear).
[6] F. Siwiec, On defining a space by a weak base, Pac. J. Math. 52 (1974), 233-245.

University of Texas at El Paso
El Paso, Texas 79968```

