TOPOLOGY PROCEEDINGS Volume 6, 1981

Pages 287–298

http://topology.auburn.edu/tp/

SEQUENTIAL ORDER OF HOMOGENEOUS AND PRODUCT SPACES

by

L. Foged

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SEQUENTIAL ORDER OF HOMOGENEOUS AND PRODUCT SPACES

L. Foged

In this paper we will present some examples of sequential spaces with properties related to their sequential order [1]. In section 1 we will show that homogeneous spaces may have any prescribed sequential order. In section 2 we will show that the sequential order of the sequential coreflection of a product of spaces of "small" sequential order may have "large" sequential order and will answer a question posed by Michael [4] when we give an example of a sequential \aleph_0 -space Z so that the sequential coreflection of z^2 is not regular. Our constructions use sets of sequences as underlying sets and will be facilitated by the following notation. If X is a set, we denote finite sequences in X by $\langle x_0, x_1, \cdots, x_k \rangle$, where $k \in \omega$ and every $x_j \in X$. If $\{x_0, x_1, \dots, x_k\} \subset X$ and $S \subset X$, we let $\langle \mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_k, \mathbf{S} \rangle = \{ \langle \mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_k, \mathbf{x}_{k+1} \rangle : \mathbf{x}_{k+1} \in \mathbf{S} \}$ and let $(x_0, x_1, \dots, x_k, S, \dots)$ be the set of all finite sequences in X which extend a member of $\langle x_0, x_1, \cdots, x_k, S \rangle$.

1. Homogeneous Spaces

The authors of [1] asked whether their space S_{ω} is the only countable, Hausdorff, homogeneous, sequential space which is not first countable. A technique which produces many spaces with these properties was given in [3]; this technique produces spaces which, like S_{ω} , have sequential

Foged

order ω_1 . While [5] gives a non-regular example with the listed properties and has sequential order 2, the situation among regular spaces is clarified by the following.

A. Examples. For every $\alpha \leq \omega_1$ there is a countable, regular, homogeneous, weakly first countable space X_{α} with sequential order α .

Following [1], if A is a subset of a topological space X then $A^{O} = A$; if $\alpha = \beta+1$, then $A^{\alpha} =$ the set of limits of sequences in A^{β} ; if α is a limit ordinal, then $A^{\alpha} = \cup_{\beta < \alpha} A^{\beta}$.

We will construct our spaces by induction on α , letting X_O be a countable discrete space. Suppose we have constructed X_{α} for all $\beta < \alpha$.

1. α is not a limit ordinal.

Write $\alpha = \beta + 1$; let B be a wfc system [2] for X_{β} ; pick a distinguished point x^* in X_{β} . Let X_{α} be the set of finite sequences $\langle x_{\alpha}, x_{1}, \cdots, x_{2k} \rangle$ in $X_{\beta} \cup \omega$ so that

 $\sigma = \langle \mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_k \rangle \in \mathbf{X}_{\alpha}, \text{ then}$

$$B'(n,\sigma) = \{\sigma\} \cup \langle x_{0}, \cdots, x_{k-1}, B(n,x_{k}) \setminus \{x_{k}\}, \cdots \rangle$$
$$\cup \langle x_{0}, \cdots, x_{k}, \omega \setminus n, x^{*}, \cdots \rangle,$$

where $\omega \setminus n = \{n, n+1, n+2, \cdots\}$.

We may then show that the sets

$$\{\sigma\} \cup \langle \mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{U} \setminus \{\mathbf{x}_k\}, \cdots \rangle \cup$$

$$\bigcup_{\substack{n \ge n \\ 0}} \langle x_0, x_1, \cdots, x_k, n, V_n, \cdots \rangle$$

288

where $\sigma = \langle x_0, x_1, \cdots, x_k \rangle \in X_{\alpha}$, U is a neighborhood of x_k in X_{β} , $n_0 < \omega$, and every V_n is a neighborhood of x^* in X_{β} , make up a local neighborhood base at σ .

Inductively, \textbf{X}_{α} may be shown to have a base of clopen sets.

For each $\sigma = \langle x_{\sigma}, x_{1}, \dots, x_{k} \rangle \in X_{\alpha}$ the clopen neighborhood $\langle x_{\sigma}, x_{1}, \dots, x_{k-1}, X_{\beta}, \dots \rangle$ of σ is canonically homeomorphic to $X_{\alpha} = \langle x_{\beta}, \dots \rangle$ under a homeomorphism carrying σ to $\langle x^{*} \rangle$. It follows that distinct points σ and τ lie in disjoint clopen sets which admit a homeomorphism carrying σ to τ ; hence X_{α} is homogeneous.

We wish to show that X_{α} has sequential order α . Suppose $A \subset X_{\alpha}$ and $\langle x^* \rangle \in clA \setminus A$. Then as $\{\langle x^* \rangle\} \cup \langle X_{\beta} \setminus \{x^*\}, \cdots \rangle \cup \langle x^*, \omega, X_{\beta}, \cdots \rangle$ is a neighborhood of $\langle x^* \rangle$, we may assume that either (1) $A \subset \langle X_{\beta} \setminus \{x^*\}, \cdots \rangle$, or (2) $A \subset \langle x^*, \omega, X_{\beta}, \cdots \rangle$.

(case 1) A $\subset \langle X_{\beta} \setminus \{x^{*}\}, \cdots \rangle$. Let $\pi \colon \langle X_{\beta} \setminus \{x^{*}\}, \cdots \rangle \neq \langle X_{\beta} \setminus \{x^{*}\} \rangle$ be the natural "trimming" function. Since $\langle x^{*} \rangle \in cl A$, we may use the given neighborhood base for $\langle x^{*} \rangle$ to show that $\langle x^{*} \rangle \in cl \pi(A)$. As $\pi(A) \subset \langle X_{\beta} \rangle$ and $\langle X_{\beta} \rangle$ is closed and homeomorphic to X_{β} , we deduce that $\langle x^{*} \rangle \in [\pi(A)]^{\beta}$. That $\langle x^{*} \rangle \in A^{\beta}$, follows from (*).

(*) For every $\gamma [\pi(A)]^{\gamma} \setminus \pi(A) \subset A^{\gamma}$.

If $\gamma = 1$ and $\langle \mathbf{x}_{O} \rangle \in \text{seq cl } \pi(\mathbf{A}) \setminus \pi(\mathbf{A})$, then there is a sequence $\langle \sigma_{n} \rangle_{n < \omega}$ in A so that $\langle \pi(\sigma_{n}) \rangle_{n < \omega}$ converges to $\langle \mathbf{x}_{O} \rangle$. Recalling the definition of B', we see that in fact $\langle \sigma_{n} \rangle_{n < \omega}$ converges to $\langle \mathbf{x}_{O} \rangle$. Assume now that (*) holds for all $\delta < \gamma$. If $\gamma = \delta + 1$, let $\langle \mathbf{x}_{O} \rangle \in [\pi(\mathbf{A})]^{\gamma} \setminus \pi(\mathbf{A})$; we may assume $\langle \mathbf{x}_{O} \rangle \not\in [\pi(\mathbf{A})]^{\delta}$. Then there is a sequence $\langle \sigma_{n} \rangle_{n < \omega}$ in $[\pi(\mathbf{A})]^{\delta} \setminus \pi(\mathbf{A})$ converging to $\langle \mathbf{x}_{O} \rangle$, the induction hypothesis yielding that $\langle \mathbf{x}_{O} \rangle \in \mathbf{A}^{\gamma}$. On the other hand, if γ is a limit ordinal, then $[\pi(\mathbf{A})]^{\gamma} \setminus \pi(\mathbf{A}) = \cup_{\delta < \gamma} [\pi(\mathbf{A})]^{\delta} \setminus \pi(\mathbf{A}) \subset \cup_{\delta < \gamma} \mathbf{A}^{\delta} = \mathbf{A}^{\gamma}$. This establishes (*).

(case 2) $A \subset \langle x^*, \omega, X_{\beta}, \cdots \rangle$. Let $\pi: \langle x^*, \omega, X_{\beta}, \cdots \rangle \neq \langle x^*, \omega, X_{\beta} \rangle$ be the trimming function. Again, $\langle x^* \rangle \in cl A$ implies that $\langle x^* \rangle \in cl \pi(A)$. Because $\pi(A) \subset \langle x^*, \omega, X_{\beta} \rangle \cup \{\langle x^* \rangle\}$ and because the latter set is closed and homeomorphic to the sequential sum [1] of \aleph_0 copies of X_β (thus has sequential order $\beta + 1$), we get $\langle x^* \rangle \in [\pi(A)]^{\beta+1}$. We may verify that (*) holds for π , and thus $\langle x^* \rangle \in A^{\beta+1}$.

Thus in either case $\langle x^* \rangle \in A^{\beta+1} = A^{\alpha}$. Hence the sequential order of X_{α} is no greater than α . As X_{α} contains a closed copy of the sequential sum of \aleph_{0} copies of X_{β} , the sequential order is precisely α .

2. α is a limit ordinal.

Write $\alpha = \sup\{\beta_i: i < \omega\}$ so that the β_i 's are not limit ordinals. For every $i < \omega$, let $X_i = X_{\beta_i}$; distinguish a point x^i in X_i , and let $X_i^* = X_i \setminus \{x^i\}$. X_α is the set of all finite sequences (x_0, x_1, \cdots, x_k) in $\bigcup_{i < \omega} X_i^*$ so that for all j < k

if $x_i \in X_i^*$, then $x_{i+1} \notin X_i^*$.

Let B_i be a wfc system for X_i so that for every $x \in X_i$ and every $n \leq i$, $B_i(n,x) = X_i$. Now define a wfc system B for X_α as follows: For $n < \omega$ and $\sigma = \langle x_0, x_1, \dots, x_k \rangle \in X_\alpha$ with $x_k \in X_{i_0}^*$ let

$$B(n,\sigma) = \{\sigma\} \cup \langle x_{o}, x_{1}, \cdots, x_{k-1}, B_{i_{o}}(n, x_{k}) \setminus \{x_{k}\}, \cdots \rangle$$
$$\cup \cup_{i \neq i_{o}} \langle x_{o}, x_{1}, \cdots, x_{k}, B_{i}(n, x^{i}) \setminus \{x^{i}\}, \cdots \rangle.$$

A neighborhood base at $\boldsymbol{\sigma}$ is formed by the sets of the form

where U is a neighborhood of x_k in X_{i_o} , for all $i \neq i_o V^i$ is a neighborhood in X_i of x^i , and for all but finitely many i $V^i = x^i$. X_{α} may be shown to have a base of clopen sets.

Fix $x_0' \in X_0^*$. Let $\sigma = \langle x_0, x_1, \cdots, x_k \rangle \in X_\alpha$ with $x_k \in X_i^*$. We will find clopen neighborhoods of $\langle x_0 \rangle$ and σ that are homeomorphic under a mapping carrying σ to $\langle x_{\sigma}^{+} \rangle$, giving homogeneity as before. If i = 0, then we can find a homeomorphism f on X_0 so that $f(x_k) = x_0'$ and a clopen neighborhood V of x_k in X so that $x^{\circ} \notin V \cup f(V)$; thus $\langle f(V), \cdots \rangle$ and $\langle x_0, x_1, \cdots, x_{k-1}, V, \cdots \rangle$ are the desired clopen neighborhoods. If on the other hand i \neq 0, find homeomorphisms f on X and f, on X, so that $f_0(x^0) = x'_1$ and $f_1(x_1) = x^1$; also find clopen neighborhoods V_0 of x^0 and V_1 of x_k so that $x^{\circ} \notin f_{\circ}(V_{\circ})$ and $x^{i} \notin V_{i}$. The natural map defined piecewise from the clopen neighborhood $\{\sigma\} \cup \langle x_0, x_1, \cdots, x_{k-1}, \rangle$ $V_{i} \setminus \{x_{k}\}, \dots \setminus \cup \langle x_{o}, x_{1}, \dots, x_{k}, V_{o} \setminus \{x^{o}\}, \dots \setminus \cup \cup_{i \neq i, 0}$ $\langle x_{\alpha}, x_{1}, \cdots, x_{k}, x_{j}^{*}, \cdots \rangle$ of σ onto the clopen neighborhood $\{\langle \mathbf{x}_{0}^{\prime}\rangle\} \cup \langle \mathbf{x}_{0}^{\prime}, \mathbf{f}_{1}(\mathbf{V}_{1}) \setminus \{\mathbf{x}^{1}\}, \cdots \rangle \cup \langle \mathbf{f}_{0}(\mathbf{V}_{0}) \setminus \{\mathbf{x}_{0}^{\prime}\}, \cdots \rangle \cup \cup_{i \neq 1, 0}$ $\langle x_0^{\dagger}, x_1^{\dagger}, \cdots \rangle$ of $\langle x_0^{\dagger} \rangle$ is a homeomorphism.

Suppose $A \subset X_{\alpha}$ and $\langle x_{\alpha}' \rangle \in cl A \mid seq cl A$. Since

 $\langle \mathbf{x}_{O}^{i} \rangle \notin \text{seq cl A}$, there is an $\mathbf{i}_{O} < \omega$ so that A misses $\bigcup_{i > \mathbf{i}_{O}} \langle \mathbf{x}_{O}^{i}, \mathbf{X}_{I}^{*}, \cdots \rangle$. We may assume that either $A \subset \langle \mathbf{X}_{O}^{*} \setminus \{\mathbf{x}_{O}^{i}\}, \cdots \rangle$ or that $A \subset \langle \mathbf{x}_{O}^{i}, \mathbf{X}_{I}^{*}, \cdots \rangle$ for some $\mathbf{i} \leq \mathbf{i}_{O}$. If $A \subset \langle \mathbf{x}_{O}^{i}, \mathbf{X}_{I}^{*}, \cdots \rangle$, let $\pi: \langle \mathbf{x}_{O}^{i}, \mathbf{X}_{I}^{*}, \cdots \rangle \neq \langle \mathbf{x}_{O}^{i}, \mathbf{X}_{I}^{*} \rangle$, be the trimming function. Then $\langle \mathbf{x}_{O}^{i} \rangle \in \text{clm}(A)$, and since $\pi(A) \subset \langle \mathbf{x}_{O}^{i}, \mathbf{X}_{I}^{*} \rangle$ and $\langle \mathbf{x}_{O}^{i}, \mathbf{X}_{I}^{*} \rangle \cup \{\langle \mathbf{x}_{O}^{i} \rangle\}$ is closed and homeomorphic to \mathbf{X}_{I} , we have that $\langle \mathbf{x}_{O}^{i} \rangle \in [\pi(A)]^{\beta}\mathbf{i} \subset [\pi(A)]^{\alpha}$. One may show that π satisfies (*); thus $\langle \mathbf{x}_{O}^{i} \rangle \in A^{\alpha}$. The proof in the case $A \subset \langle \mathbf{X}_{O} \setminus \{\mathbf{x}_{O}^{i}\}, \cdots \rangle$ is similar. Hence \mathbf{X}_{α} has sequential order no larger than α . The subsets $\{\langle \mathbf{x}_{O}^{i} \}\} \cup$ $\langle \mathbf{x}_{O}, \mathbf{X}_{I}^{*} \rangle$ of \mathbf{X}_{α} are closed and homeomorphic to \mathbf{X}_{I} when $\mathbf{x}_{O} \notin \mathbf{X}_{I}^{*}$, so the sequential order of \mathbf{X}_{α} is at least $\sup_{O} \beta_{I} = \alpha$. This completes the proof.

2. Product Spaces

While the product of two sequential spaces need not be sequential, if X and Y are sequential there is a natural sequential space topology for the set X × Y: decree that a sequence $\langle (x_n, y_n) \rangle_{n \in \omega}$ "converges" to (x, y) if and only if $\langle x_n \rangle_{n \in \omega}$ converges to x in X and $\langle y_n \rangle_{n \in \omega}$ converges to y in Y; define U to be open in X × Y if it is sequentially open with respect to these "convergent" sequences. This is the sequential coreflection of the usual product topology, denoted henceforth by $\sigma(X \times Y)$.

Our next examples show that there is no natural bound on the sequential order of $\sigma(X \times Y)$ based on the sequential orders of X and Y.

B. Examples. There are countable regular spaces X and Y so that X is Fréchet and Y is weakly first countable with sequential order 2 so that σX^2 and σY^2 have sequential order ω_1 .

Let X be the set of all finite sequences in ω of even (possibly 0) length. A set U is open in X if and only if for every $\langle n_1, n_2, \dots, n_{2k} \rangle \in U$ and every $i \in \omega$, there is a $j \in \omega$ so that $\langle n_1, n_2, \dots, n_{2k}, i, \omega \setminus j, \dots \rangle \subset U$.

The space σX^2 contains a closed copy of S_{ω} . Let $s(\phi) = (\phi, \phi)$ and for $n_1 \in \omega$ let $s(n_1) = (\langle 0, n_1 \rangle, \phi)$. Generally, $s(n_1, n_2, \cdots, n_{2k}) = (\langle 0, n_1, n_2, \cdots, n_{2k-1} \rangle, \langle n_1, n_2, \cdots, n_{2k} \rangle)$ and $s(n_1, n_2, \cdots, n_{2k+1}) = (\langle 0, n_1, n_2, \cdots, n_{2k+1} \rangle, \langle n_1, n_2, \cdots, n_{2k} \rangle)$. Observe that $\langle s(n_1, n_2, \cdots, n_{k+1}) \rangle_{n_{k+1} \in \omega}$ converges to $s(n_1, \cdots, n_k)$. We will show that these are essentially the only sequences in $S = \{s(\sigma): \sigma \text{ a finite}$ sequence in ω } converging to a point of x^2 , hence S is a sequentially closed copy of S_{ω} in x^2

Suppose with us that there is a sequence σ in S converging to $(\langle r_1, r_2, \cdots, r_{2k} \rangle, \langle s_1, s_2, \cdots, s_{2k} \rangle) \in X^2$ which is not eventually constant in either factor. Then there is such a $\sigma = \langle \langle \langle 0, n_1^p, n_2^p, \cdots, n_{i_p}^p \rangle, \langle n_1^p, n_2^p, \cdots, n_{j_p}^p \rangle \rangle_{p \in \omega}$ so that $|i_p - j_p| = 1, i_p \ge 2k + 1, j_p \ge 2\ell + 2$ for all $p \in \omega$; $\{n_{2k+1}^p: p \in \omega\}$ and $\{n_{2\ell+2}^p: p \in \omega\}$ are infinite; $\{n_{2k}^p: p \in \omega\}$ and $\{n_{2\ell+1}^p: p \in \omega\}$ are finite. Now if $j \le 2\ell, \langle n_j^p \rangle_{p \in \omega}$ is eventually constant (=s_j), so $2k + 1 > 2\ell$; also $2\ell + 1 \ne 2k + 1$, so $2k + 1 > 2\ell + 2$. We also have that if $j \le 2k - 1, \langle n_j^p \rangle_{p \in \omega}$ is eventually constant (=r_{j+1}), so $2\ell + 2 > 2k - 1$. With $2k \ne 2\ell + 2$, we get $2\ell + 2 > 2k + 1$, a contradiction.

So every convergent sequence in S is eventually constant in one of the factors. If σ is a sequence in S which is constant in the second factor, $\sigma \setminus \langle \langle 0, n_1, n_2, \cdots, n_{2k-1} \rangle$, $\langle n_1, n_2, \cdots, n_{2k} \rangle \rangle = \langle \langle \langle 0, n_1, n_2, \cdots, n_{2k}, n_{2k+1}^p \rangle$, $\langle n_1, n_2, \cdots, n_{2k} \rangle \rangle_{p \in \omega}$ for some $\langle n_1, n_2, \cdots, n_{2k} \rangle \in X$. Likewise if σ is constant in the first factor, $\sigma \setminus \langle \langle 0, n_1, n_2, \cdots, n_{2k-1} \rangle, \langle n_1, n_2, \cdots, n_{2k-2} \rangle \rangle =$ $\langle \langle \langle 0, n_1, n_2, \cdots, n_{2k-1} \rangle, \langle n_1, n_2, \cdots, n_{2k-1}, n_{2k}^p \rangle \rangle_{p \in \omega}$, showing that every sequence in S converging to a point in X^2 is eventually constant or a subsequence of one of our canonical convergent sequences, as desired.

Let Y be the set of all non-void finite sequences of positive rationals with wfc system given by $B(m, \langle q_0, q_1, \cdots, q_k \rangle) = \langle q_0, q_1, \cdots, q_{k-1}, S_m(q_k) \rangle \cup \\ \langle q_0, q_1, \cdots, q_k, S_m(0), \cdots \rangle, \text{ where } S_m(q) = \{r \in \mathbf{Q}^+ : |r-q| < 1/m\}.$

Now let $\langle q(j) \rangle_{j < \omega}$ be a sequence in \mathbf{Q}^+ converging monotonically to 0 and $\langle q(j,k) \rangle_{k < \omega}$ be a sequence in $(q(j+1),q(j)) \cap \mathbf{Q}^+$ converging monotonically to q(j). We will show that the set $S = \{s(\sigma): \sigma \text{ a finite sequence in } \omega\}$ is a closed copy of S_{ω} in σY^2 , where $s(\phi) = \langle (1), \langle 1 \rangle \rangle$, $s(n_1, n_2, \cdots, n_{2k-1}) = \langle (1,q(n_1, n_2), \cdots, q(n_{2k-3}, n_{2k-2}), q(n_{2k-1}) \rangle$, $\langle 1+q(n_1), q(n_2, n_3), \cdots, q(n_{2k-2}, n_{2k-1}) \rangle$, $s(n_1, n_2, \cdots, n_{2k}) = \langle (1,q(n_1, n_2), \cdots, q(n_{2k-2}, n_{2k-1}) \rangle$, $\langle 1+q(n_1), q(n_2, n_3), \cdots, q(n_{2k-1}, n_{2k}) \rangle$, $\langle 1+q(n_1), q(n_2, n_3), \cdots, q(n_{2k-1}, n_{2k}) \rangle$.

We will show that a sequence $\langle \sigma_p \rangle_{p < \omega} = \langle s \langle n_1^p, n_2^p, \cdots, n_{p}^p \rangle_{p < \omega}$ in S cannot converge to a point $\langle \langle r_1, r_2, \cdots, r_k \rangle$, $\langle s_1, s_2, \cdots, s_k \rangle$) of Y^2 if for infinitely many $p < \omega$ both the first coordinate $(=\sigma_p^1)$ has length > k and the second

coordinate $(=\sigma_p^2)$ has length > ℓ . For if such a sequence did converge we could, by finding a subsequence, assume that the σ_p^1 's extend $\langle r_1, \cdots, r_k \rangle$ and converge to 0 in the k+l position, while the σ_p^2 's extend $\langle s_1, \cdots, s_k \rangle$ and converge to 0 in the ℓ +l position. That is, $\{n_i^p: p < \omega\}$ is finite for all i < 2k - 1 and $\{n_{2k-1}^p: p < \omega\}$ is infinite, while $\{n_i^p: p < \omega\}$ is finite for all i < 2ℓ and $\{n_{2\ell}^p: p < \omega\}$ is infinite; this contradiction establishes our claim.

If $\langle \sigma_{p} \rangle_{p < \omega} = \langle s(n_{1}^{p}, n_{2}^{p}, \cdots, n_{i}^{p}) \rangle_{p < \omega}$ is a sequence in S converging to $(\langle r_{1}, r_{2}, \cdots, r_{k} \rangle, \langle s_{1}, s_{2}, \cdots, s_{k} \rangle)$ so that the σ_{p}^{1} 's have length k, then σ_{p}^{1} is eventually constant $(= \langle r_{1}, \cdots, r_{k-1} \rangle)$ in the first k-l positions, i.e. for appropriate $n_{1}, n_{2}, \cdots, n_{2k-4}$ and large $p \langle 1, q(n_{1}^{p}, n_{2}^{p}), \cdots, q(n_{2k-5}^{p}, n_{2k-4}^{p}) \rangle = \langle 1, q(n_{1}, n_{2}), \cdots, q(n_{2k-5}, n_{2k-4}) \rangle$. Further, $\langle \sigma_{p}^{1} \rangle_{p < \omega}$ converges to $r_{k} \neq 0$ in the k position, so that $\langle n_{2k-3}^{p} \rangle_{p < \omega}$ is eventually constant $(=n_{2k-3})$ and $\{n_{2k-2}^{p}: p < \omega\}$ is infinite. Consequently $\langle \sigma_{p} \rangle_{p < \omega}$ is a subsequence of $\langle s(n_{1}, n_{2}, \cdots, n_{2k-3}, n_{2k-2}, n_{2k-2} < \omega$.

Similarly, if $\langle \sigma_p \rangle_{p < \omega}$ is a sequence in S converging to $\langle \langle \mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_k \rangle, \langle \mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_k \rangle \rangle$ so that the σ_p^2 's have length ℓ , then $\langle \sigma_p \rangle_{p < \omega}$ is eventually a subsequence of $\langle \mathbf{s} \langle \mathbf{n}_1, \mathbf{n}_2, \cdots, \mathbf{n}_{2\ell-2}, \mathbf{n}_{2\ell-1} \rangle_{\mathbf{n}_{2\ell-1} < \omega}$.

Since $\langle s(n_1, n_2, \cdots, n_j, n_{j+1}) \rangle_{n_{j+1} < \omega}$ converges to $s(n_1, n_2, \cdots, n_j)$ and these are essentially the only convergent sequences in S, S may be viewed as a closed copy of S_{ω} in σY^2 .

C. *Example*. There is a regular space Z with a countable weak base [6] so that σZ^2 is not regular.

Let P be a countable set of irrationals which is dense in [, where $\phi: P \rightarrow N$ is one-to-one. Let Z be the set of all non-void sequences (finite or infinite) in P with wfc system defined as follows.

$$\begin{split} & B(n, \langle p_0, p_1, \cdots, p_k \rangle) = \langle p_0, p_1, \cdots, p_{k-1}, S_n(p_k) \rangle \cup \langle p_0, p_1, \cdots, p_k, S_n(0), \cdots \rangle, \\ & B(n, \langle p_i \rangle_{i \in \omega}) = \langle p_0, p_1, \cdots, p_{n-1}, p_n, \cdots \rangle, \text{ where } \\ & S_n(x) = \{ y \in P : |y-x| < \frac{1}{n} \} \text{ and } \langle p_0, p_1, \cdots, p_k, T, \cdots \rangle \text{ is the set of all sequences in P, finite or infinite, which extend } \\ & a \text{ member of } \langle p_0, p_1, \cdots, p_k, T \rangle. \quad Z \text{ is regular and has a } \\ & \text{countable weak base.} \end{split}$$

For
$$k \in \omega$$
 let

$$W_{2k} = \bigcup \{ B(\phi(q_k), \langle p_0, p_1, \cdots, p_k \rangle) \times B(1, \langle q_0, q_1, \cdots, q_k \rangle) :$$

$$p_0, p_1, \cdots, p_k, q_0, q_1, \cdots, q_k \in \mathbb{P} \}$$

$$W_{2k+1} = \bigcup \{ B(1, \langle p_0, p_1, \cdots, p_{k+1} \rangle) \times B(\phi(p_{k+1}), \langle q_0, q_1, \cdots, q_k \rangle) :$$

$$p_0, p_1, \cdots, p_{k+1}, q_0, q_1, \cdots, q_k \in \mathbb{P} \}.$$

It is straightforward to check that a sequence converging to a member of W_k must eventually be in $W_k \cup W_{k+1}$, and hence $W = \bigcup_{k \in \omega} W_k$ is a sequentially open set in z^2 .

Let $\{p_0, q_0^{\prime}\} \subset P$ so that $\phi(p_0) > (q_0^{\prime})^{-1}$. We will show that every sequentially open set U in Z^2 with $(\langle p_0 \rangle, \langle q_0^{\prime} \rangle) \in U$ contains a sequence converging to a point not in W, hence that σZ^2 is not regular.

Assume we have found \texttt{p}_{i} (i \leq k), \texttt{q}_{i} (i < k), and $\texttt{q}_{k}^{'}$ so that

1.
$$(\langle p_0, \cdots, p_i \rangle, \langle q_0, \cdots, q_i \rangle) \in U \text{ if } i < k.$$

2. $\phi(q_i) > (p_{i+1})^{-1} \text{ and } \phi(p_i) > q_i^{-1} \text{ if } i < k.$

3.
$$\phi(\mathbf{p}_{k}) > (\mathbf{q}_{k})^{-1}$$
.
4. $\langle\langle \mathbf{p}_{0}, \cdots, \mathbf{p}_{k} \rangle, \langle \mathbf{q}_{0}, \cdots, \mathbf{q}_{k-1}, \mathbf{q}_{k} \rangle\rangle \in \mathbf{U}$

Because of (4) we can find an $m \in \omega$ such that $B(m, \langle p_0, \cdots, p_k \rangle) \times B(m, \langle q_0, \cdots, q_{k-1}, q_k^{-}\rangle) \subset U$; choose $p'_{k+1} \in P$ so that $\langle p_0, \cdots, p_k, p'_{k+1} \rangle \in B(m, \langle p_0, \cdots, p_k \rangle)$ and $q_k \in P$ so that $\langle q_0, \cdots, q_k \rangle \in B(m, \langle q_0, \cdots, q_{k-1}, q_k^{-}\rangle)$, $q_k^{-1} < (q'_k)^{-1} < \phi(p_k)$, and $\phi(q_k) > (p'_{k+1})^{-1}$. Note that $(\langle p_0, \cdots, p_k \rangle, \langle q_0, \cdots, q_k \rangle) \in U$.

Since $(\langle \mathbf{p}_0, \cdots, \mathbf{p}_k, \mathbf{p}'_{k+1} \rangle, \langle \mathbf{q}_0, \cdots, \mathbf{q}_k \rangle) \in \mathbf{U}$, there is an $\langle \mathbf{n} < \omega$ so that $B(\mathbf{n}, \langle \mathbf{p}_0, \cdots, \mathbf{p}_k, \mathbf{p}'_{k+1} \rangle) \times B(\mathbf{n}, \langle \mathbf{q}_0, \cdots, \mathbf{q}_k \rangle) \subset \mathbf{U}$. So there is a $\mathbf{q}'_{k+1} \in \mathbf{P}$ so that $\langle \mathbf{q}_0, \cdots, \mathbf{q}_k, \mathbf{q}'_{k+1} \rangle \in B(\mathbf{n}, \langle \mathbf{q}_0, \cdots, \mathbf{q}_k \rangle)$ and a $\mathbf{p}_{k+1} \in \mathbf{P}$ such that $\langle \mathbf{p}_0, \cdots, \mathbf{p}_{k+1} \rangle \in B(\mathbf{n}, \langle \mathbf{p}_0, \cdots, \mathbf{p}_k, \mathbf{p}'_{k+1} \rangle)$, $\phi(\mathbf{q}_k) > (\mathbf{p}_{k+1})^{-1}$, and $\phi(\mathbf{p}_{k+1}) > (\mathbf{q}'_{k+1})^{-1}$. This finishes the induction.

The sequence $\{\langle p_0, \cdots, p_k \rangle, \langle q_0, \cdots, q_k \rangle\}: k \in \omega\}$ in U converges to $\zeta = \langle p_1 \rangle_{1 < \omega}, \langle q_1 \rangle_{1 < \omega} \rangle$ in \mathbb{Z}^2 . To see that $\zeta \notin W$, note that if $\zeta \in B(\phi(s_k), \langle r_0, r_1, \cdots, r_k \rangle) \times B(1, \langle s_0, s_1, \cdots, s_k \rangle)$ for some $k \ge 0$, then, since every infinite sequence in $B(\phi(s_k), \langle r_0, r_1, \cdots, r_k \rangle)$ is an extension of $\langle r_0, r_1, \cdots, r_k \rangle, \langle p_0, \cdots, p_k \rangle = \langle r_0, \cdots, r_k \rangle$, and for the same reason $\langle s_0, \cdots, s_k \rangle = \langle q_0, \cdots, q_k \rangle$. Thus $\zeta \in B(\phi(q_k), \langle p_0, p_1, \cdots, p_k \rangle) \times B(1, \langle q_0, \cdots, q_k \rangle)$, which would mean $\phi(q_k) < (p_{k+1})^{-1}$, violating (2). A like argument shows that ζ is not in any of the sets $B(1, \langle r_0, r_1, \cdots, r_{k+1} \rangle) \times B(\phi(r_{k+1}), \langle s_0, \cdots, s_k \rangle)$. Thus $\zeta \notin W$ as claimed.

We note that Z is an \aleph_0 -space (Theorem 1.15 in [6]), thereby answering Michael's question in [4].

References

- A. Arhangel'skii and S. Franklin, Ordinal invariants for topological spaces, Mich. Math. J. 15 (1968), 313-320.
- [2] S. Davis, G. Gruenhage, and P. Nyikos, G_δ-sets in symmetrizable and related spaces, General Topology and Appl. 9 (1978), 253-261.
- [3] V. Kannan, An extension that nowhere has the Fréchet property, Mich. Math. J. 20 (1973), 225-234.
- [4] E. Michael, On k-spaces, k_R-spaces and k(X), Pac. J. Math. 47 (1973), 487-498.
- [5] P. Nyikos, Metrizability and the Fréchet-Urysohn property in topological groups (to appear).
- [6] F. Siwiec, On defining a space by a weak base, Pac. J. Math. 52 (1974), 233-245.

University of Texas at El Paso

El Paso, Texas 79968