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A FACTORING TECHNIQUE FOR 

HOMEOMORPHISM GROUPS 

Margie Halel 

1.	 Introduction 

The work of Ferry [3] and Torunczyk [7] proving that 

the homeomorphism group of a compact Q-manifold is an 

22-manifold leads naturally to the search for characteriza

tions of other homeomorphism groups. This paper deals with 

the spaces Roo = lim Qn, where R denotes the 
~ 

reals and Q the Hilbert cube. Some topological properties 

of their homeomorphism groups are given in the author's 

doctoral dissertation. No complete characterization is now 

known. 

The author would like to thank the referee for a 

careful reading of the paper and several helpful sugges

tions. 

2. Preliminaries 

Throughout this paper we use F to denote either R
00 

or 

Qoo, and M will be a (paracompact) F-manifold. It is known 

[4, Theorem 11-6] that F is homeomorphic to a topological 

vector space. We let H(X) be the group of homeomorphisms 

of a	 space X with the compact-open topology. Also, idx 
denotes the identity map of X. 

lThis research was done while the author was supported 
by a Susan B. Riley Fellowship from the American Associa
tion of University Women, and constitutes part of the 
author's doctoral dissertation at Vanderbilt University. 
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If X is a space with a binary operation and 

A, B c X, we write A-B = {a-bla E A, b E B}. If X is a 

vector space over R, and if t E R, A c X, we set 

teA = {teala E A}. 

Let G be a topological group with identity element e, 

and let X be a space. Recall that a group action a of G 

on X is a function a: G x X ~ X such that the induced map 

a: G ~ H(X) is a horoomorphism of groups. We do not require 

that a be continuous, but we do assume that each a(g) is 

continuous. 

We will find the following lemmas useful. Their proofs 

are routine and will be omitted. 

Lemma A. If a is continuous, then & is continuous. 

Lemma B. If a is a continuous group action of the 

topoZogicaZ group G on X, then the function A: G x H(X) ~ 

H(x) defined by 

A(g,h) a.(g)oh 

is continuous. 

Since ~ is just a restriction of the group operation, 

this result is trivial when H(x) is a topological group. 

In our case (X = F), this is not true. 

3. The Theorem 

Here we state the result which is the main tool used 

to generate the examples which follow in Section 4. 

Theorem 1. Let a be a continuous group action of a 

topoZogicaZ group G on a space X. Let H be a subset of 
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#(X) containing a(G) and satisfying 

(i) a (G) oH c: H. 

Suppose there is a continuous map r: H + G such that 

(ii) r(id ) = e;
X

(iii) r [a (g) oh] = g- r (h).t for 9 E G.t h E H. 

Then H ~ G x r-l(e).t and a is an embedding. 

Proof. Define q: H + r-l(e) by 

q(h) = a[r(h)-l]oh. 

We show that the desired homeomorphism $: H + G x r-l(e) 

is given by 

$ (h) (r (h) ; q (h) ) . 

First, q(H) c: H by (i), and (iii) implies that 

rq(h) = e. Thus, q is well-defined. 

Define ~: G x r-l(e) + H by 

~ (g,f) a(g)of. 

The image of ~ is contained in H by (i). 

Using property (iii) and the fact that a is a homo

morphism, it is easily shown that $ and ~ are inverses. 

Continuity of both maps follows from continuity of inver

sion in G and Lemma B. 

Now, from properties (ii) and (iii) we obtain that 

ra = idG, implying that a is one-to-one and open onto its 

image. Lemma A gives continuity, and the proof is complete. 

Remark. This theorem is a topological generalization 

of a standard result in abelian group theory. If H is a 

group with subgroup G, and r: H + G is a homomorphism fixed 

on G, then H is isomorphic to the direct sum of G and the 

kernel of r. 
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4. Applications 

Example 1. Let G be any topological group. Let
 

H (G) = {h e: H(G)\h(e) e}. Then H(G) - G x Ho(G).
O

Proof· Define a: G x G -+ G by a (x, y) = x-y. It is 

easily verified that a is a continuous group action of G 

on itself. Define r: H(G) -+ G by r(h) = h(e). Conditions 

(i) and (ii) of the theorem are satisfied by H = H(G), and 

for (iii) we have 

r [a (x) oh] a (x) [h(e)] a(x,h(e» x-h(e) 

x-r(h) • 

Observe that r-l(e) = HO(G) and the proof is complete. 

In Example 1, the factors of H(G) are both groups. 

It is easily verified that the map r is not a group homo

morphism, so the factorization is not an algebraic one. 

Example 2. Since F has a topological group structure, 

H(F) =F x HO(F), by Example 1. 

Example 3. F is a factor of H(M). 

Proof. Denote the group operation on F by +. Replace 

M by M x F [6, Theorem 1] and [5, Theorem 1] and fix mO E M. 

Define a: F x (MxF) -+ MxF by a(x, (m,y» = (m,x+y). Define 

r: H(MXF) -+ F by r(h) = TIFh(mO'O), where 0 E F is the 

identity and TI F is projection. It is routine to verify 

that the theorem applies to a, r, and H = H(MXF). 

Corollary 3.1. H(M) is F-stable; that is 

H(M) =H(M) x F. 

Proof. Since F =F x F, it suffices to show that F 

is a factor of H(M). This i~ Example 3. 
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Corollary 3.2. H(M) has the disjoint n-cube property 

(see [8, Remark 3]). 

Proof. It is not difficult to prove that if X has the 

disjoint n-cube property, then so does X x Y. By a general 

position argument and [8], F has this property. Apply 

Example 3. 

Example 4. Let H (Roo) {h E H0 (Roo) Ih (1 , 0 , 0 , - - -) = p 
oo 

(t,O,o,---), for some t > o}. Then NO (Roo) ~ Roo x Np(R ). 

Proof. Define a continuous norm on Roo by 

Ix I = I (xl' x 2 ' • • • ) I = ( I x~) 1/2 • 
i=l 1 

Since x. 0 for i sufficiently large, Ixl is well-defined,
1 

and agrees with the usual norm on the subspaces Rn c Roo. 

Let 

s = {x E Roo I Ix I = I}. 

Then S = lim Sn = SOO ~ Roo by [2, Corollary 4.3], where 
-+ 

Rn lSn c + is the usual n-dimensional unit sphere. Thus, S 

has a group structure. We let e = (1,0,0,---) be the 

identity element and denote the operation by *. 

Just as sl acts on R2 by rotation, we can define a 
00 00 

group action a: S x R -+ R by 

-11 y I y I ), y ~(X*--Y- 0;
a(x,y) - 1 

o , y o. 

We verify that a is indeed a group action. We have 

--I IY1 (e*--Y- y 0;1y \), ~ a(e,y) 
o , y 0 

y. Also, for y ~ 0, we have 
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a. (x*z,y) Iy I (x*z*--L-) (l [x, Iyl (z*ml]
Iyl 

a. [x, a. (z ,y) ] . 

The same equality clearly holds for y o. Thus, a. is a 

·group action. 
oo oo

Now, &(S) c HO(R ). Since HO(R ) is a group, (i) of 
oo

the theorem holds. Define r: HO(R ) ~ S by 

h(e)
r(h) = Ih(e) I 

Notice that r is not defined on all of H(R
oo

). It is easy 

to show that r is continuous and satisfies (ii) and (iii) 

of the theorem. Also, r-l(e) = H (Roo).
P 

It remains to show continuity of the action a.. By 

continuity of the operations involved, a. is clearly con

tinuous at all points (x,y) with y ~ O. Further, 

S x Roo ~ Roo is a k-space. Thus we restrict our attention 

to a point (x,O) contained in some compact K c S x Roo. 

We make the following observations: 

(1) a. is norm-preserving: that is, Ia.(x,y)I Iyl, 

for all y E Roo; 

(2) a takes K into a compact set in Roo. 

To prove (2), we use the homeomorphism-isomorphism Roo ~ S 

to write S = lim cn' where each Cn is compact in Cn+l and 

C * C c C +l . Then a.(Cnxt-Cn) c t-C +l by (1). By comn n n n 
pactness, K is contained in a set of the form C. x U{tC. I 

~ ~ 

t E [O,m]} so (2) holds. 
00

Now let W be a neighborhood of a.(x,O) = 0 in R. By 

(2), a.(K) c Rj , for some j > i. Choose E > 0 such that 

A = {y E Rjl Iyl < £} c W n Rj . Let V = K n (S x A), a 
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neighborhood of (x,O) in K. Applying (1) it is easy to 

see that a(V) c W. 

Thus a is continuous and the proof is complete. Note 

that in this example the factor H (Roo) is not a sUbgroup
p 

oo oo 
Corollary 4.2. HO(R ) ~ H(R ).
 

Proof. Apply Example 2 and 4.1.
 

oo 
We provide one further factorization of H(R ). 

oo 
Example 5. Let HO,l (Roo) = {h E H(R ) !h(O) = ° and 

oo oo 
h(e) = e}, e as in Example 4. Then Hp(R ) =R x Ho,l(R ). 

Proof. Our topological model for R will be the multi 

00 00 
plicative group R+ = (0,00). Define a: R+ x R ~	 R by 

a(t,x) = t·x. Then a is a continuous group action satis

oo oo oo 
fying a(R+) c Hp(R ) and a(R+)oHp(R ) c Hp(R ). Define 

oo 
r:	 Hp(R ) ~ R+ by r(h) h(e). (We are making the identi 

OO 
fication (t,O,O,···) t E R+.) Setting H = Hp(R ) , it is 

easily seen that the hypotheses of the theorem are satis
OO

fied. Since r-l(l) = HO,l(R ) , we are done. 

oo	 oo 
Corollary 5.1. H(R ) =Roo x Ho,l(R ).
 

oo oo oo
 
Proof. H(R ) =HO(R ) (4.2) =Roo x Hp(R ) (Example 

4) - Roo x R x HO,l (Roo) (Example 5) ;; Roo x HO,l (Roo). 
oo 

We can show that Ho,l(R ) is also ROO-stable. Thus 
00 00 00 0000

HO,I(R) =H(R). We may ask whether H(R ) contains ~R 

or whether these two spaces are homeomorphic. For any 

I 
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Examp l e 6. Let Hn (Roo) = {h E H(Roo) Ihi Rn id}, n > 1. 
oo 

Then Roo is a faator of Hn(R ). 

Roo R bOO h th0Proof· Let TIo: + e proJect1on onto t e 1 com
1 

ponent, and let p: Roo + Roo be defined by P(x ,x ,···)
l 2 

(x +l ,x +2 ,···). Let a be the S-action of Example 4. n n 

Define S: S x Roo + R
00 

by 

8 (x,y) (yl ,··· ,y ,1T la (x,p (Y) ) ,1T 2a (x,p (Y» , ••• ) , n 

and define r: H (Roo) + S by
n 

_ ph (e') 
r(h) - Iph(e') I ' 

where e' = ( 0 , • • • , 0 , 1, 0 , 0 , • • • ) , 1 in the (n+l) st place. 

Apply the theorem. 

The last example is not a direct application of 

Theorem 1, but the technique is similar. 

Example 7. Let [(Roo) be the set of linear homeo

morphisms of Roo. Then, [(Roo) is ~2-stable. 

Proof· Let en (0,···,0,1,0,0,···) E R
00 

where 1 is 

in the nth component. Then B = {enln ~ l} is a vector 
00 

space basis for Roo. Let s be the topological group TI(O,oo) 
1 

under coordinate-wise multiplication, which we denote by • 

Recall that s = ~2 [1]. 
00 00

Define a group action a: s x R + R by
 

a(t,x) = a«t ,t2 ,···),(x1 ,x2 ,···»
1 

(t l xl ' t 2x 2 ' • • • ) • 

Since the components of x are eventually zero, a is well-

defined. It turns out that a is discontinuous. But 

Rn Rn s x + is continuous (it is essentially theal SxRn : 
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dot product in Rn ), and it follows easily that a is con

tinuous. Also we have that &(s) c L(R
oo 

). 

Define r: L(R
oo 

) ~ s by r(h) 

Then r is continuous and satisfies 

(i) r(idRoo )	 = ~' where ~ = (1,1,···) E Si 

(ii) r[hoa(t)] = r(h)·t. 

Compare (ii) to condition (iii) in Theorem 1. As in that 

theorem (i) and (ii) guarantee that ~ is an embedding. 

00 -1Also as before, we may define $: L(R ) ~ s x r (~) by 

$ (h) = (r (h) ,hoa [r (h) -1] ) . 

-1Now, $ is computed similarly to Theorem 1, and continuity 

of these maps follows from the following analog of Lemma B. 

Lemma 7.1.	 Fop the action a defined above, the compo
oo oo 

sition map P: L(R ) x s ~ L(R ) given by p(h,t) = ho&(t) 

is continuous. 

Ppoof. Let p(h,t) = hoa(t) E (K,W) c L(R
oo
), where 

(K,W) is a typical subbasic neighborhood for the compact

open topology. Let n be such that KeRn [4], and choose 

a relatively compact neighborhood 0 of K in Rn such that 

h&(t) [cl(O)] c W. Now, (cl(O) ,h-l(W)) is a neighborhood 

of a(t) in L(R
oo
), so there is a basic neighborhood 

j 
V x IT (0,00) of t in s, with V open in IT(O,oo), and such 

j+l 1 

that V x IT (0,00) is contained in &-l[(cl(O),h-l(W))]. We 
j+l 

may assume that j > n. Write t = (tl,···,t
j 

, ••• ), and 

choose a relatively compact neighborhood U of (tl,···,t )j 
j 

in IT(O,oo), with cl(U) c V. 
1 
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As noted above, al sxRn is continuous. Hence, 

C = a [ (cl (U) x {I} x {I} x ••• ) x cl (0)] is a compact sub

set of Roo. We will argue that 
00 

(a)	 (h, t) E (C,W) x (U x II (0,00)) ;
 
j+l
 

(b)	 p[(C,W) x (U x II (0,00))] c (K,W) .
 
j+l
 

00 
It is clear that t E U x II (0,00) • Let y = a(u,x) E C, 

j+l 

where u (ul,···,uj,l,l, ••• ) and x E cl(O). Now h(y) = 

ha(u,x) [hel (u) ] (x) . But u E cl(U) x {I} x 
00 

c V x II (0,00), so el(u) E (cl(O) ,h-l(W)). Since x E cl(O), 
j+l 

h[el(u) (x)] E hh-l(W) = W, and (a) holds. 
00 

Now, let (g,u) E (C,W) x (U x II (0,00)), and let k E K. 
j+l 

Then [p (g,u)] (k) = [gel (u)] (k) ga (u,k). Now, 

k = (kl ,··· ,kn,O,O,· •• ) E cl(O) eRn, and u = (ul ,··· ,un' 

···,u.,···). We want to	 argue that a(u,k) E C. It need 
J 

not be true that u E cl(U) x {I} x ••• , but if we define 

u' = (u1 ' • • • , u j , 1 , 1 , • • • ), then u' E c 1 (U) x {I} x and 

a (u, k) = (ul kl ' • • • , unk , 0, 0, • • .) = a (u' , k) (since j ~ n) , n 
and this last element is in C. Thus (b) holds and the 

lermna is proved. 

Remarks. Lermna 7.1 is necessary, since it is not 
oo

hard to show that composition of functions in L(R ) is, in 

general, discontinuous. 

We were not able to obtain a generalization of Lermna 

7.1 or of Example 7. The special nature of the action 

allowed	 this particular case. Note that even though r is 
oo

defined on HO(R ), (ii) holds only for linear maps. 
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