TOPOLOGY PROCEEDINGS Volume 6, 1981

Pages 317–328

http://topology.auburn.edu/tp/

EMBEDDING PIECEWISE LINEAR \mathbf{R}^{∞} -MANIFOLDS INTO \mathbf{R}^{∞}

by

RICHARD E. HEISEY

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

EMBEDDING PIECEWISE LINEAR R∞ -MANIFOLDS INTO R∞

Richard E. Heisey

It is well known that a compact piecewise linear manifold of dimension n, $n \ge 2$, can be piecewise linearly embedded into \mathbb{R}^{2n} . Here we establish an infinite-dimensional analogue. Let $\mathbb{R}^{\infty} = \lim_{\tau} \mathbb{R}^{n}$, the countable direct limit of lines. We show that any separable, paracompact piecewise linear \mathbb{R}^{∞} -manifold can be piecewise linearly embedded onto a closed piecewise linear submanifold of \mathbb{R}^{∞} . As a consequence piecewise linear \mathbb{R}^{∞} -manifolds may be regarded as "polyhedra" in \mathbb{R}^{∞} .

I. Definitions and Statement of the Main Theorem

Let $\mathbb{R}^{\infty} = \lim_{i \to \infty} \mathbb{R}^{n}$, the countable direct limit of lines. We think of \mathbb{R}^{∞} as $\{(\mathbf{x}_{i}):$ all but finitely many \mathbf{x}_{i} are 0} and identify \mathbb{R}^{n} with $\mathbb{R}^{n} \times \{0\} \times \{0\} \times \{0\} \times \cdots \in \mathbb{R}^{\infty}$. A straightforward observation, e.g. see Lemma III-6 of [1], shows that any compact subset of \mathbb{R}^{∞} is contained in some \mathbb{R}^{n} . Let U and V be open subsets of \mathbb{R}^{∞} . A map f: U + V is \mathbb{R}^{∞} -piecewise linear, hereafter \mathbb{R}^{∞} -p.1., if for every compact polyhedron C \subset U and for every choice of n such that $f(C) \subset V \cap \mathbb{R}^{n}$, the restriction $f|_{C}: C + V \cap \mathbb{R}^{n}$ is piecewise linear in the usual sense. (By polyhedron we mean a subset $P \subset \mathbb{R}^{n}$ such that every point $x \in P$ has a cone neighborhood xL, where L is compact. For this and other basic definitions and results from piecewise linear topology see [3].) A piecewise linear \mathbb{R}^{∞} -atlas for a space M is a collection of pairs $\{(U_{\alpha}, \phi_{\alpha})\}$ where $\{U_{\alpha}\}$ is an open cover of M by nonempty sets, $\phi_{\alpha}: U_{\alpha} \neq \phi_{\alpha}(U_{\alpha})$ is a homeomorphism onto

an open subset of \mathbb{R}^{∞} , and where, if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, $\phi_{\beta}\phi_{\alpha}^{-1}$: $\phi_{\alpha}(U_{\alpha} \cap U_{\beta}) + \phi_{\beta}(U_{\alpha} \cap U_{\beta})$ is \mathbb{R}^{∞} -p.1. A piecewise linear \mathbb{R}^{∞} -structure for M is a maximal p.1. \mathbb{R}^{∞} -atlas for M. Since any p.1. \mathbb{R}^{∞} -atlas for the space M is contained in a unique maximal p.1. \mathbb{R}^{∞} -atlas, a p.1. \mathbb{R}^{∞} -atlas for M determines a p.1. \mathbb{R}^{∞} -structure for M. A piecewise linear \mathbb{R}^{∞} -manifold is a paracompact space M together with a p.1. \mathbb{R}^{∞} -structure. A piecewise linear \mathbb{R}^{∞} -atlas for the p.1. \mathbb{R}^{∞} -manifold M is any p.1. \mathbb{R}^{∞} -atlas for the space M which is contained in the p.1. \mathbb{R}^{∞} -structure for M. An element (U,ϕ) of some p.1. \mathbb{R}^{∞} -atlas for the p.1. \mathbb{R}^{∞} -manifold M is a piecewise linear \mathbb{R}^{∞} -chart for M. If (U,ϕ) is such a chart and if $\phi': U' + \phi'(U')$ is the restriction of ϕ to a nonempty open subset of U then, clearly, (U',ϕ') is such a chart.

A map f: $M \rightarrow N$ between two p.l. \mathbb{R}^{∞} -manifolds is \mathbb{R}^{∞} -piecewise linear if for each $x \in M$ there is a p.l. \mathbb{R}^{∞} -chart (U,ϕ) for M and a p.l. \mathbb{R}^{∞} -chart (V,ψ) for N such that $x \in U$, $f(x) \in V$ and $\psi f \phi^{-1}$: $\phi (U \cap f^{-1}(V)) \rightarrow \psi (V)$ is \mathbb{R}^{∞} -p.l. It follows then that if f: $M \rightarrow N$ is \mathbb{R}^{∞} -p.l. and (U,ϕ) and (V,ψ) are any given \mathbb{R}^{∞} -p.l. charts with $x \in U$ and $f(x) \in V$ then $\psi f \phi^{-1}$: $\phi (U \cap f^{-1}(V)) \rightarrow \psi (V)$ is \mathbb{R}^{∞} -p.l. An \mathbb{R}^{∞} -p.l. map f: $M \rightarrow N$ is an \mathbb{R}^{∞} -p.l. *isomorphism* if f is a homeomorphism and f^{-1} : $N \rightarrow M$ is \mathbb{R}^{∞} -p.l.

Let $\tau: \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ be the natural linear homeomorphism $\tau((\mathbf{x}_{i}), (\mathbf{y}_{i})) = (\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{x}_{2}, \mathbf{y}_{2}, \mathbf{x}_{3}, \mathbf{y}_{3}, \cdots).$ (That τ is a homeomorphism follows since R is locally compact [1, Corollary III-1].) We identify $\mathbb{R}^{\infty} \times \mathbb{R}^{\infty}$ with \mathbb{R}^{∞} as p.1. \mathbb{R}^{∞} -manifolds via τ . Thus, for a p.1. \mathbb{R}^{∞} -manifold M we may identify any given p.1. \mathbb{R}^{∞} -chart with image in \mathbb{R}^{∞} with one whose image is in $\mathbb{R}^{\infty} \times \mathbb{R}^{\infty}$. Let N be a subset of the p.1. \mathbb{R}^{∞} -manifold M such that for each $x \in \mathbb{N}$ there is a p.1. \mathbb{R}^{∞} -chart (\mathbb{U}, ϕ) for M with $x \in \mathbb{U}$ such that $\phi(\mathbb{U}) = \mathbb{U}_{1} \times \mathbb{U}_{2}$, \mathbb{U}_{1} open in \mathbb{R}^{∞} , and such that $\phi(\mathbb{U} \cap \mathbb{N}) = \mathbb{U}_{1} \times \{\mathbf{0}\}$. (Here $\mathbf{0} = (0, 0, 0, \cdots)$.) If we identify $\mathbb{R}^{\infty} \times \{\mathbf{0}\}$ with \mathbb{R}^{∞} , then, for such a chart (\mathbb{U}, ϕ) , $\phi \mid (\mathbb{U} \cap \mathbb{N})$: $\mathbb{U} \cap \mathbb{N} + \mathbb{U}_{1}$ is a homeomorphism. Thus, charts of the form $(\mathbb{U}^{*}, \phi^{*}) = (\mathbb{U} \cap \mathbb{N}, \phi \mid (\mathbb{U} \cap \mathbb{N}))$ form a p.1. \mathbb{R}^{∞} -atlas for N inducing a p.1. \mathbb{R}^{∞} -structure for N. With this p.1. \mathbb{R}^{∞} -structure we call N a p.1. \mathbb{R}^{∞} -submanifold of M (of infinite codimension).

We may now state our main theorem.

Theorem. If M is a separable, paracompact p.l. R^{∞} -manifold then there is an R^{∞} -p.l. isomorphism f: M + N, N a closed p.l. R^{∞} -submanifold of R^{∞} .

The proof of this theorem is given in §III.

There is a natural definition for R° -polyhedra and p.l. maps between them.

Definition. A subset X of \mathbb{R}^{∞} is an \mathbb{R}^{∞} -polyhedron if for each compact polyhedron C in \mathbb{R}^{∞} , C \cap X is a polyhedron. A map f: X + Y between two \mathbb{R}^{∞} -polyhedra is \mathbb{R}^{∞} -piecewise linear if for each compact polyhedron C \subset X and any choice of n such that f(C) \subset Y $\cap \mathbb{R}^{n}$, f|C: C + Y $\cap \mathbb{R}^{n}$ is p.1. We conclude our paper by showing, in §IV, that any p.1. \mathbb{R}^{∞} -submanifold of \mathbb{R}^{∞} is an \mathbb{R}^{∞} -polyhedron and that for maps between two such submanifolds the two definitions of \mathbb{R}^{∞} -piecewise linear agree. Thus, the study of p.1. \mathbb{R}^{∞} -manifolds and \mathbb{R}^{∞} -p.1. maps between them is a special case of the study of \mathbb{R}^{∞} -polyhedra and \mathbb{R}^{∞} -p.1. maps between them.

II. Preliminary Results

Lemma 1 below is the crucial auxilliary result we will need. In addition we establish some helpful elementary results about R^{∞} -p.1. maps. First, a useful definition.

Definition. If U is an open subset of R^{∞} and P is a finite-dimensional polyhedron we say a map f: U + P is piecewise linear (p.l.) if for every compact polyhedron $C \subset U$, f|C: C + P is p.l. If M is a p.l. R^{∞} -manifold we say that f: M + P is p.l. if $f\phi^{-1}$: $\phi(U) + P$ is p.l. for each p.l. R^{∞} -chart (U,ϕ) for M.

Lemma 1. Let U be an open subset of R^{∞} . Let $A \subset W \subset U$ where A is closed in U and W is open in U. Then there is a p.1. map $\lambda: U \rightarrow I$ such that $\lambda | A = 0$ and $\lambda | (U-W) = 1$.

Proof. The proof proceeds in the spirit of the proof of Proposition IV.2 in [2]. Let $c = \{c_i\} = (c_1, c_2, \cdots, c_{n_0}, 0, 0, \cdots) \in \mathbb{R}^{\infty}$, and let $V = [(c_1 - \varepsilon_1, c_1 + \varepsilon_1) \times (c_2 - \varepsilon_2, c_2 + \varepsilon_2) \times \cdots \times (c_{n_0} - \varepsilon_{n_0}, c_{n_0} + \varepsilon_{n_0}) \times (-\varepsilon_{n_0} + 1, \varepsilon_{n_0} + 1) \times \cdots] \cap \mathbb{R}^{\infty}$, where $\varepsilon_i > 0$. Define V(2) = $[(c_1 - 2\varepsilon_1, c_1 + 2\varepsilon_1) \times (c_2 - 2\varepsilon_2, c_2 + 2\varepsilon_2) \times \cdots] \cap \mathbb{R}^{\infty}$. Let $\alpha_i : \mathbb{R} \neq I$ be a p.l. map such that $\alpha_i | [c_i - \varepsilon_i, c_i + \varepsilon_i] = 1$ and $\alpha_i | [R \setminus (c_i - 2\varepsilon_i, c_i + 2\varepsilon_i)] = 0$. Define $\psi_i : \mathbb{R}^{\infty} \to I$ by $\psi_i ((x_i, x_2, \cdots)) = \alpha_i (x_i)$ and then $\psi(x) = \min\{\psi_1(x) | i = i, 2, 3 \cdots\}$. If $x \in \mathbb{R}^n$, $n \ge n_0$, then $\psi_i(x) = 1$, i > n, and $\psi(x) = \min\{\psi_1(x), \cdots, \psi_n(x)\}$. Thus, ψ is continuous, $\psi | \mathbb{R}^n$ is p.1., $n \ge 1$, $\psi | V = 1$, and $\psi | [R \setminus V(2)] = 0$. Note that sets of the form of V form a basis for \mathbb{R}^{∞} [1, Proposition II.1(a)].

Let A, W, and U be as in Lemma 1. By elementary reasoning U = lim C_n where $C_n \subset R^n$ is a compact polyhedron and $C_n \subset Int_{R^{n+1}}C_{n+1}$. Let $A_k = A \cap C_k$. Choose finitely many basic open sets of the type in the preceding paragraph, $V_{i,1}, \dots, V_{l,k_1}$, covering compact A_1 and such that $V_{1,i}(2) \subset W, i = 1, 2, \dots, k_1$. For each $x \in A_2 \setminus C_1$, choose a basic open set $V_{2,x}$ such that $x \in V_{2,x} \subset V_{2,x}(2) \subset W \setminus C_1$. Then $V_{1,1}, \dots, V_{1,k_1}$ together with $\{V_{2,x}: x \in A_2 \setminus C_1\}$ form an open cover of A_2 , so we may select a finite subcover $v_{1,1}, \dots, v_{1,k_1}, v_{2,1}, \dots, v_{2,k_2}$. Continuing, we obtain a sequence $v_{1,1}, \dots, v_{1,k_1}, v_{2,1}, \dots, v_{2,k_2}, v_{3,1}, \dots, v_{3,k_3}, \dots$ covering A such that $V_{i,i}(2) \subset W \setminus C_{i-1}$, i > 1. By the work in the preceding paragraph, for each (i,j) there is a p.l. map $\phi_{i,j}$: U + I such that $\phi_{i,j} | v_{i,j} = 0$ and $\phi_{i,j} | [U \setminus v_{i,j}(2)]$ = 1. Let $\phi_i = \min\{\phi_{i,1}, \dots, \phi_{i,k_i}\}$ and $\phi = \min\{\phi_i | i =$ 1,2,...}. Let $x \in C_n$. Then $x \notin V_{k,j}(2)$, k > n, so that $\phi_{k,j}(x) = 1, k > n.$ Therefore, $\phi | C_n = \min\{\phi_1, \dots, \phi_n\}.$ Thus, $\phi | C_n$ is p.l., $n \ge 1$, and it follows that ϕ is p.l. Also, $\phi | A = 0$ and $\phi | (U \setminus W) = 1$.

Lemma 2. (a) The composition of \mathbb{R}^{∞} -p.l. maps is \mathbb{R}^{∞} -p.l. Also, if f: M + N is \mathbb{R}^{∞} -p.l. and g: N + P, P a

finite-dimensional polyhedron, is p.l., then gf is p.l. (b) A map $f = (f_1, f_2, f_3, \dots): M \rightarrow R^{\infty}$, M a p.l. R^{∞} -manifold, is R^{∞} -p.l. if and only if each f, is p.l.

Proof. The proof of (a) is straightforward, and we omit it. For (b) regard a p.l. map (on a finite-dimensional polyhedron) as one that is locally conical [3, p. 5]. Given a p.l. \mathbb{R}^{∞} -chart (U, ϕ) for M and a compact polyhedron $C \subset \phi(U)$, $f\phi^{-1}(c) \subset \mathbb{R}^{n}$ some n. Thus, it is clear that if each $f_{i}\phi^{-1}$ is locally conical so is $f\phi^{-1}|_{C}$. Thus, $f\phi^{-1}$ is \mathbb{R}^{∞} -p.l. Conversely, if f is \mathbb{R}^{∞} -p.l. then $f_{i} = \pi_{i}f$ where $\pi_{i}: \mathbb{R}^{\infty} + \mathbb{R}$ is the projection onto the ith-coordinate. Since π_{i} is p.l., f_{i} is p.l. by (a).

Lemma 3. If $\{(U_{\alpha}, \phi_{\alpha}) \mid \alpha \in A\}$ is a p.l. \mathbb{R}^{∞} -atlas for the p.l. \mathbb{R}^{∞} -manifold M, then there is a p.l. \mathbb{R}^{∞} -atlas $\{(U_{\alpha}, \psi_{\alpha}) \mid \alpha \in A\}$ for M such that $\psi_{\alpha}(\mathbf{x}) \in (-1, 1)^{\infty} = \lim_{+} (-1, 1)^{n}$, all $\alpha \in A$, $\mathbf{x} \in U_{\alpha}$.

Proof. Let $\beta: \mathbb{R} \neq (-1,1)$ be a p.l. homeomorphism taking 0 to 0. Then $\beta': \mathbb{R}^{\infty} \neq (-1,1)^{\infty}$, defined by $\beta'(x_1, x_2, x_3, \cdots) = (\beta(x_1), \beta(x_2), \beta(x_3), \cdots)$, is an \mathbb{R}^{∞} -p.l. isomorphism. Letting $\psi_{\alpha} = \beta' \phi_{\alpha}$ gives the desired atlas.

Lemma 4. Let (U, ϕ) be a p.l. \mathbb{R}^{∞} -chart for the p.l. \mathbb{R}^{∞} -manifold M such that $\phi(U) \subset (-1,1)^{\infty}$. Let A be a closed subset of U, V an open subset of U such that $A \subset V \subset \overline{V} \subset U$, \overline{V} the closure of V in M. Then there is a p.l. map $\lambda \colon M \to I$ and an \mathbb{R}^{∞} -p.l. map $\psi \colon M + (-1,1)^{\infty} \subset \mathbb{R}^{\infty}$ such that $\lambda | A = 1$, $\lambda | M \setminus V = 0$, $\psi | \lambda^{-1}(1) = \phi | \lambda^{-1}(1)$, and $\psi | (U \setminus V) = \mathbf{0}$.

Proof. By Lemma 1 there is a p.l. map $\lambda': \phi(U) \rightarrow I$ such that $\lambda' | \phi(A) = 1, \lambda' | \phi(U \setminus \overline{V}) = 0$. Define p.l. $\lambda: M \rightarrow I$ by $\lambda | U = \lambda \cdot \phi$ and $\lambda | (M \setminus \overline{V}) = 0$. Write $\phi(x) = (\phi_1(x), \phi_2(x), \cdots)$. Define $\psi = (\psi_1, \psi_2, \cdots)$ by

$$\psi_{i}(\mathbf{x}) = \begin{cases} \max\{-\lambda(\mathbf{x}), \min\{\lambda(\mathbf{x}), \phi_{i}(\mathbf{x})\}\}, \ \mathbf{x} \in \mathbf{U} \\ 0, \qquad \mathbf{x} \in \mathbf{M} \setminus \overline{\mathbf{V}}. \end{cases}$$

That ψ is R^{∞} -p.l. follows from Lemma 2(b). The other desired properties are clear.

Finally, we will use the following.

Proposition 5. Let M and N be p.l. \mathbb{R}^{∞} -manifolds. Let f: $M \rightarrow N$ be an \mathbb{R}^{∞} -p.l. map which is also a homeomorphism. Then f is an \mathbb{R}^{∞} -p.l. isomorphism. I.e. f^{-1} is also \mathbb{R}^{∞} -p.l.

Proof. Let (U,ϕ) be a p.l. \mathbb{R}^{∞} -chart at $x \in M$, (V,ψ) a p.l. \mathbb{R}^{∞} -chart at f(x) in N such that $f^{-1}(V) \subset U$. It suffices to show that $\phi f^{-1}\psi^{-1}$: $\psi(V) \neq \phi(f^{-1}(V))$ is \mathbb{R}^{∞} -p.l. Let $C \subset \psi(V)$ be a compact polyhedron. Then $\phi f^{-1}\psi^{-1}(C)$ is compact. Hence, we may choose n and then a compact polyhedron P such that $\phi f^{-1}\psi^{-1}(C) \subset P \subset \phi(f^{-1}(V)) \cap \mathbb{R}^{n}$. On P, $\psi f \phi^{-1}$ is a p.l. homeomorphism, so $Q = \psi f \phi^{-1}(P)$ is a compact polyhedron [3, p. 13] and $\phi f^{-1}\psi^{-1}|Q$ is p.l. [3, p. 6]. Since C is a subpolyhedron of Q, $\phi f^{-1}\psi^{-1}|C$ is also p.l., as required.

In relation to the above proposition we remark that if f: $M \rightarrow N$ is an \mathbb{R}^{∞} -p.l. map such that $f(M) \subset Q$ where Q is a p.l. \mathbb{R}^{∞} -submanifold of N then f: $M \rightarrow Q$ is also (clearly) \mathbb{R}^{∞} -p.l. Thus, if f is also a topological embedding onto Q, then f: $M \rightarrow Q$ is a p.l. \mathbb{R}^{∞} -isomorphism.

III. Proof of the Theorem

Let M be as in the theorem. Let $\rho: \mathbb{R}^{\infty} \to (\mathbb{R}^{\infty})^{\infty} =$ lim(\mathbb{R}^{∞})ⁿ be the map obtained by Cantor diagonalization. That is, $\rho((\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots)) = ((\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_6, \mathbf{x}_{10}, \dots), (\mathbf{x}_2, \mathbf{x}_5, \mathbf{x}_9, \dots), (\mathbf{x}_4, \mathbf{x}_8, \dots), \dots)$. Then ρ is a linear homeomorphism [1, Corollary III-3]. Identify \mathbb{R}^{∞} with $(\mathbb{R}^{\infty})^{\infty}$ as p.l. \mathbb{R}^{∞} -manifolds via ρ . It suffices, then, to show that there is an \mathbb{R}^{∞} -p.l. isomorphism f: $\mathbb{M} + (\mathbb{R}^{\infty})^{\infty}$ onto a closed \mathbb{R}^{∞} -submanifold of $(\mathbb{R}^{\infty})^{\infty}$. Note that, by Lemma 2(b), with our identification a map f: $\mathbb{M} + (\mathbb{R}^{\infty})^{\infty}$ is \mathbb{R}^{∞} -p.l. if and only if each of its projections to R is p.l. and, hence, if and only if each of its projections to \mathbb{R}^{∞} is \mathbb{R}^{∞} -p.l.

Let $m \in M$. By Lemma 3 there is a p.l. \mathbb{R}^{∞} -chart (U_m, ϕ_m) with $m \in U_m$ and $\phi_m(U_m) \subset (-1,1)^{\infty}$. If we choose an open set G such that $\phi(m) \in G \subset \overline{G} \subset \phi(U_m)$, \overline{G} the closure of G in \mathbb{R}^{∞} , then for any U with $\overline{U} \subset \phi^{-1}(G)$ we have $\phi(\overline{U}) = \overline{\phi(U)}$. Thus, there is a p.l. \mathbb{R}^{∞} -atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ for M such that each $\phi_{\alpha}(U_{\alpha}) \subset (-1,1)^{\infty}$ and each ϕ_{α} extends to a closed embedding $\phi_{\alpha}: \overline{U}_{\alpha} \neq \overline{\phi_{\alpha}(U_{\alpha})}$ into \mathbb{R}^{∞} . Since M is paracompact and Lindelöf we thus obtain a countable, locally finite, p.l. \mathbb{R}^{∞} -atlas $\{(U_{i}, \phi_{i})\}$ for M such that, for each i, $\phi_{i}(U_{i}) \subset$ $(-1,1)^{\infty}$ and ϕ_{i} extends to a closed embedding into \mathbb{R}^{∞} .

Let $\{\textbf{W}_{\underline{i}}\},~\{\textbf{V}_{\underline{i}}\}$ be precise open refinements of $\textbf{U}_{\underline{i}}$ such that

 $\phi \neq W_i \subset \overline{W}_i \subset V_i \subset \overline{V}_i \subset U_i$

(the closures in M). By Lemma 4 there is, for each i, a p.1. map $\lambda_i: M \rightarrow I$ and an \mathbb{R}^{∞} -p.1. map $\psi_i: M \rightarrow \mathbb{R}^{\infty}$ such that $\lambda_i | \overline{W}_i = 1, \lambda_i | (M - V_i) = 0, \psi_i | \lambda_i^{-1}(1) = \phi_i \text{ and } \lambda_i | (M - V_i) = 0.$

Choose a nonzero point $e \in \mathbb{R}^{\infty}$. Define f: $M \neq (\mathbb{R}^{\infty})^{\infty}$ by f(m) = $(\sum_{i=1}^{\infty} i\lambda_{i}(m)e,\psi_{1}(m),\lambda_{1}(m)e,\psi_{2}(m),\lambda_{2}(m)e,\psi_{3}(m),\lambda_{3}(m)e,\cdots)$. We will show that f is the desired \mathbb{R}^{∞} -p.1. isomorphism. The local finiteness of $\{U_{i}\}$ guarantees that the sum is finite and that f is well defined, i.e. that $f(m) \in (\mathbb{R}^{\infty})^{\infty}$. Let f_{i} be the projection of f onto the i-th copy of \mathbb{R}^{∞} . Since each f_{i} is \mathbb{R}^{∞} -p.1., f is an \mathbb{R}^{∞} -p.1. map. Let x and y be distinct elements of M. Choose i such that $x \in W_{i}$. If $\lambda_{i}(x) \neq \lambda_{i}(y)$, then clearly $f(x) \neq f(y)$. Otherwise $\lambda_{i}(y) = \lambda_{i}(x) = 1$ which implies $\psi_{i}(x) = \phi_{i}(x) \neq \phi_{i}(y) =$ $\psi_{i}(y)$. Thus, f is one-to-one.

To see that f is a closed topological embedding let $f(m_{\alpha}) + y = (y_1, y_2, \dots) \in (\mathbb{R}^{\infty})^{\infty}$, $\{m_{\alpha} \mid \alpha \in A\}$ a net in A, a closed subset of M. Then $f_1(m_{\alpha}) + y_1$ implies that for some n and some $\beta \in A$, $\sum_{i=1}^{\infty} i\lambda_i(m) \leq n, \alpha > \beta$. Since $M \subset \bigcup_{i=1}^{\infty} \lambda_i^{-1}(1)$, it follows that $\{m_{\alpha} \mid \alpha > \beta\} \subset \lambda_1^{-1}(1) \cup \dots \cup \lambda_n^{-1}(1)$. Thus, for some cofinal $\partial \subset A$ and some k, $\{m_{\alpha} \mid \alpha \in \partial\} \subset \lambda_k^{-1}(1)$. But on $\lambda_k^{-1}(1)$, $f_{2k} = \phi_k$ is a closed embedding into \mathbb{R}^{∞} . Thus, since $f_{2k}(m_{\alpha}) = \phi_k(m_{\alpha}) + y_{2k}$ we have that $y_{2k} = \phi_k(m)$ some m $\in A$ and that $\{m_{\alpha} \mid \alpha \in \partial\} + m$. Thus, $\{f(m_{\alpha}) \mid \alpha \in \partial\} + f(m)$ so that $y = f(m) \in f(A)$. We have shown that f(A) is closed, and it follows that f is a closed topological embedding.

Let N = f(M). To see that N is a p.l. \mathbb{R}^{\sim} -submanifold of $(\mathbb{R}^{\sim})^{\sim}$ let $\mathbb{m}_0 \in \mathbb{M}$. Find j such that $\mathbb{m}_0 \in \mathbb{W}_j$ and then a neighborhood 0 of \mathbb{m}_0 such that $0 \subset \mathbb{W}_j$. Then on 0, $f_{2j} = \phi_j$. Let Z = $(\mathbb{R}^{\sim} \times \mathbb{R}^{\sim} \times \cdots \times \mathbb{R}^{\sim} \times \phi_j(0) \times \mathbb{R}^{\sim} \times \mathbb{R}^{\sim} \times \cdots) \cap (\mathbb{R}^{\sim})^{\sim}$, where $\phi_j(0)$ occurs in the 2j factor. Define $\gamma: \mathbb{Z} + \mathbb{Z}$ by $\gamma((\mathbf{x}_i)) = (\mathbb{Y}_i)$ where $\mathbb{Y}_i = \mathbb{X}_i - f_i \phi_j^{-1}(\mathbb{X}_{2j})$, $i \neq 2j$, and $\mathbb{Y}_{2j} = \mathbb{X}_{2j}$. Then γ is an \mathbb{R}^{\sim} -p.l. isomorphism, and $\gamma(\mathbb{Z} \cap f(\mathbb{M}))$ = $\mathbf{0} \times \mathbf{0} \times \cdots \times \mathbf{0} \times \phi_j(0) \times \mathbf{0} \times \mathbf{0} \cdots$. Define $\delta: \mathbb{Z} + \phi_j(0)$ $\times \mathbb{R}^{\sim}$ by $\delta((\mathbb{X}_i)) = (\mathbb{X}_{2j}, \rho^{-1}(\mathbb{X}_1, \cdots, \mathbb{X}_{2j-1}, \mathbb{X}_{2j+1}, \mathbb{X}_{2j+2}, \cdots))$ where $\rho: \mathbb{R}^{\infty} \to (\mathbb{R}^{\infty})^{\infty}$ is the homeomorphism given at the beginning of this proof. Then δ is a p.l. \mathbb{R}^{∞} -isomorphism. Thus, $(\mathbf{Z}, \delta \gamma)$ is a p.l. \mathbb{R}^{∞} -chart for $(\mathbb{R}^{\infty})^{\infty}$ with $f(\mathbf{m}_{0}) \in \mathbf{Z}, \gamma \delta(\mathbf{Z}) = \phi_{j}(0) \times \mathbb{R}^{\infty}$, and $\delta \gamma (\mathbf{Z} \cap f(\mathbf{M})) = \phi_{j}(0) \times \{\mathbf{0}\}$. Thus, $\mathbf{N} = f(\mathbf{M})$ is an \mathbb{R}^{∞} -p.l. submanifold of $(\mathbb{R}^{\infty})^{\infty}$.

We thus have an \mathbb{R}^{∞} -p.l. map f: $M \rightarrow (\mathbb{R}^{\infty})^{\infty}$ which is a topological embedding onto a closed p.l. \mathbb{R}^{∞} -submanifold of $(\mathbb{R}^{\infty})^{\infty}$. While it is relatively easy to see directly that f^{-1} is \mathbb{R}^{∞} -p.l., for this we refer, instead, to the remark following Proposition 5. Thus, f is the desired \mathbb{R}^{∞} -p.l. isomorphism.

IV. R[∞] .Polyhedra

In this section we show that any p.l. \mathbb{R}^{∞} -submanifold of \mathbb{R}^{∞} is an \mathbb{R}^{∞} -polyhedron (see definition in §I) and relate the two definitions of \mathbb{R}^{∞} -p.l. maps on such spaces.

Lemma 6. Let M be a p.l. \mathbb{R}^{∞} -manifold. Let $\mathbb{C} \subset \mathbb{M}$ be compact. Than any p.l. \mathbb{R}^{∞} -atlas for M contains finitely many p.l. \mathbb{R}^{∞} -charts $\{(U_i, \phi_i) | i = 1, \dots, n\}$ such that there are cubes D_1, \dots, D_n in $\mathbb{R}^{k_1}, \dots, \mathbb{R}^{k_n}$, respectively, with $D_i \subset \phi_i(U_i)$ and $\mathbb{C} \subset \bigcup_{i=1}^n \phi_i^{-1}(\operatorname{Int}_{pk_i}(D_i))$.

Proof. Let $c \in C$. Let (U, ϕ) be a p.l. \mathbb{R}^{∞} -chart from the given atlas. Choose an open set V such that $c \in V \subset \overline{V} \subset U$. Then compact $\phi(C \cap \overline{V}) \subset \mathbb{R}^n$ some n. Let $y = (y_i) = \phi(c)$ and choose $D' = (\prod_{i=1}^{\infty} [y_i - \varepsilon_i, y_i + \varepsilon_i]) \cap \mathbb{R}^{\infty}$ such that $D' \subset \phi(U)$. Then, if $D = \prod_{i=1}^{n} [y_i - \varepsilon_i, y_i + \varepsilon_i]$, $\phi^{-1}(\operatorname{Int}_{\mathbb{R}^n} D) \supset \phi^{-1}((\prod_{i=1}^{n} (y_i - \varepsilon_i, y_i + \varepsilon_i)) \cap \phi(C \cap V))$, a neighborhood of cin $C \cap V$ and, hence, also in C. The lemma now follows from the compactness of C.

Proposition 7. If M is a closed p.l. \mathbb{R}^{∞} -submanifold of \mathbb{R}^{∞} , then M is an \mathbb{R}^{∞} -polyhedron.

Proof. Let $C \in \mathbb{R}^{\infty}$ be a compact polyhedron. From the definition of submanifold for each $x \in M$ there is a p.l. \mathbb{R}^{∞} -chart (U,ϕ) with $x \in U$ and such that $\phi(U) = U_1 \times U_2$, $\phi(U \cap M) = U_1 \times \{\mathbf{0}\} = U_1$. The corresponding charts $(U',\phi') = (U \cap M,\phi|(U \cap M))$ forma p.l. \mathbb{R}^{∞} -atlas for M. By the preceding lemma there are finitely many such charts $\{(U'_i,\phi'_i)|i=1,\cdots,n\}$ and compact cubes $D_i \subset \phi'_i(U'_i)$ such that $C \cap M \subset U^n_{i=1}(\phi'_i)^{-1}(D_i)$. Thus, $C \cap M = C \cap U^n_{i=1}(\phi'_i)^{-1}(D_i)$. Since finite unions and intersections of compact polyhedra are again polyhedra it suffices to show that each $(\phi'_i)^{-1}(D_i)$ is a polyhedron in \mathbb{R}^{∞} . But $(\phi'_i)^{-1}(D_i) = \phi_i^{-1}(D_i \times \mathbf{0})$, a compact polyhedron since ϕ_i^{-1} : $\phi_i(U) \neq U$ is an \mathbb{R}^{∞} -p.l. isomorphism.

Proposition 8. If M and N are closed p.l. \mathbb{R}^{∞} -submanifolds of \mathbb{R}^{∞} then f: $M \neq N$ is \mathbb{R}^{∞} -p.l. in the manifold sense if and only if f is \mathbb{R}^{∞} -p.l. in the polyhedral sense.

Proof. First note that if (U,ϕ) is any p.1. \mathbb{R}^{∞} -chart in \mathbb{R}^{∞} , and if $Q \subset U$ is a compact polyhedron then $\phi | Q = (\operatorname{id}_{-\infty})^{-1} \phi | Q$ is p.1. and, hence, $\phi(Q)$ is a compact polyhedron.

Now let f be \mathbb{R}^{∞} -p.l. in the manifold sense. Let $\mathbb{C} \subset \mathbb{M}$ be a compact polyhedron, $\mathbf{x} \in \mathbb{C}$. Let (\mathbf{U}, ϕ) , (\mathbf{V}, ψ) be charts for M and N, respectively, with $\mathbf{x} \in \mathbf{U}$, $f(\mathbf{x}) \in \mathbf{V}$ and such that $(\mathbf{U}', \phi') = (\mathbf{U} \cap \mathbf{M}, \phi | (\mathbf{U} \cap \mathbf{M}))$ and $(\mathbf{V}', \psi') = (\mathbf{V} \cap \mathbf{N}, \psi | (\mathbf{V} \cap \mathbf{N}))$ are p.l. \mathbb{R}^{∞} -charts for M and N. Choose a compact polyhedral neighborhood P of x in $\mathbb{C} \cap \mathbf{U}' \cap f^{-1}(\mathbf{V}')$. Then $\phi'(P) = \phi(P)$ is a compact polyhedron, and, since f is \mathbb{R}^{∞} -p.l. in manifold sense, $\psi'f(\phi')^{-1}|\phi(P)$ is p.l. Thus, $f|P = \psi^{-1}(\psi'f(\phi')^{-1})\phi|P$ is p.l. Thus, f|C is locally p.l. and, hence, p.l. as required.

Conversely, if f: $M \neq N$ is \mathbb{R}^{∞} -p.l. in the polyhedral sense and $x \in M$, let (U, ϕ) , (V, ψ) , (U', ϕ') , (V', ψ') be as above. If $P \subset \phi'(U' \cap f^{-1}(V'))$ is a compact polyhedron then $(\phi')^{-1}(P)$ is a compact polyhedron in M. Thus $f|(\phi')^{-1}(P)$ is p.l. Hence $\psi'f(\phi')^{-1}|P$ is p.l. as required.

References

- R. E. Heisey, Contracting spaces of maps on the countable direct limit of a space, Trans. Amer. Math. Soc. 193 (1974), 389-411.
- Partitions of unity and a closed embedding theorem for (C,b*)-manifolds, Trans. Amer. Math. Soc. 206 (1975), 281-294.
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse Math. Grenzgebiete, Band 69, Springer-Verlag, New York, 1972. MR. #3236.

Vanderbilt University

Nashville, Tennessee 37235