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EMBEDDING PIECEWISE LINEAR
Re -MANIFOLDS INTO R=

Richard E. Heisey

It is well known that a compact piecewise linear mani-
fold of dimension n, n > 2, can be piecewise linearly

embedded into R2n.

Here we establish an infinite-dimensional
analogue. Let R® = Lim Rn, the countable direct limit of
lines. We show that any separable, paracompact piecewise
linear R -manifold can be piecewise linearly embedded onto

a closed piecewise linear submanifold of R . As a conse-
quence piecewise linear R -manifolds may be regarded as

o0

"polyhedra" in R .

I. Definitions and Statement of the Main Theorem

Let R* = lim Rn, the countable direct limit of lines.
We think of R as {(xi): all but finitely many x; are 0}
and identify R™ with R™ x {0} x {0} x {0} x -+ « R . A
straightforward observation, e.g. see Lemma III-6 of [1],
shows that any compact subset of R* is contained in some R".
Let U and V be open subsets of R°. A map f: U » V is
Rw-piecéwise linear, hereafter Rw—p.l., if for every com-
pact polyhedron C « U and for every choice of n such that
f(C) «van Rn, the restriction f|C: c~vn R is piecewise
linear in thé usual sense. (By polyhedron we mean a subset
P c R® such that every point x € P has a cone neighborhood
xL, where L is compact. For'this and other basic defini-

tions and results from piecewise linear topology see [3].)
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A piecewise linear R -atlas for a epace M is a collec-
tion of pairs {(Ua,¢a)}‘where {Ua} is an open cover of M

by nonempty sets, ¢ _: Ua > ¢a(Ua) is a homeomorphism onto

o
an open subset of R, and where, if U, N U # 8, ¢B¢;l:
¢a(Ua n UB) -> ¢B(Ua n UB) is Rm—p.l. A piecewise linear

R -structure for M is a maximal p.l. R”-atlas for M. Since
any p.l. R -atlas for the space M is contained in a unique
maximal p.l. Rw-atlas, a p.l. R -atlas for M determines a
p.l. R -structure for M. A piecewige linear Rw—manifold

is a paracompact space M together with a p.l. R -structure.
A piecewise linear R -atlas for the p.l. Rm-manifold M is
any p.l. R -atlas for the space M which is contained in

the p.l. R -structure for M. An element (U,$) of some

p.l. R”-atlas for the p.l. R -manifold M is a piecewise
linear R -chart for M. If (U,¢) is such a chart and if

¢': U' > ¢'(U') is the restriction of ¢ to a nonempty open
subset of U then, clearly, (U',¢') is such a chart.

A map f: M + N between two p.l. R -manifolds is
Rm—piecewise linear if for each x € M there is a p.l.
R”-chart (U,¢) for M and a p.l. R”-chart (V,y) for N such
that x € U, £(x) € V and $£6 2 : ¢(U N £ 1(V)) » (V) is
Rm-p.l. It follows then that if £f: M » N is Rw—p.l. and
(U,¢) and (V,y) are any given Rm—p.l. charts with x € U
and £(x) € V then vfo t: ¢(U N £1(V)) > p(V) is R™-p.1.
An Rw—p.l. map £f: M > N is an Rm—p.l. isomorphism if f is
a homeomorphism and £ : N » M is R™-p.1.

Let T: R. x R. + R be the natural linear homeomorphism

r((xi),(yi)) =_(xl,yl,xz,yz,x3,y3,---). (That T is a
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homeomorphism follows since R is locally compact [1l, Corol-
lary III-1].) We identify R° x R with R as p.l.

R -manifolds via T.  Thus, for a p.l. R -manifold M we may
identify any given p.l. R -chart with image in R” with one
whose image is in R° x R°. Let N be a subset of the p.1l.

R -manifold M such that for each x € N there is a p.l.

R”-chart (U,$) for M with x € U such that ¢(U) = U, x U

1 2’

U, open in R, and such that ¢ (U n N) = U, x {0}. (Here
0 = (0,0,0,+++).) If we identify R x {0} with R”, then,

for such a chart (U,9), ¢|(U N N): UNN~+ U, is a homeo-

1
morphism. Thus, charts of the form (U',¢') = (U N N,
¢| (u N N)) form a p.l. R -atlas for N inducing a p.l.
R -structure for N. With this p.1l. R -structure we call

N a p.l. Rw-submanifold of M (of infinite codimension).

We may now state our main theorem.

Theorem. If M is a separable, paracompact p.l.
Rm-manifold then there is an Rm-p.l. tigomorphism £: M + N,

N a closed p.l. Rm-submanifold of R".

The proof of this theorem is given in §III.
There is a natural definition for Rm—polyhedra and

p.l. maps between them.

Definition. A subset X of R is an Rm-polyhedron if
for each compact polyhedron C in Rm, C N X is a polyhedron.
A map f: X +» Y between two Rm-polyhedra is Rw—piecewise
linear if for each compact polyhedron C < X and any choice

of n such that £(C) « Y n R%, £|c: ¢ » Y n R® is p.1.
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We conclude our paper by showing, in §IV, that any
p.-1. R -submanifold of R is an ﬁx—polyhedron and that for
maps between two such submanifolds the two definitions of
ﬁ”-piecewise linear agree. Thus, the study of p.l.
R -manifolds and R?-p.l. maps between them is a special
case of the study of Rw-polyhedra and Rw-p.l. maps between

them.

II. Preliminary Results

Lemma 1 below is the crucial auxilliary result we will
need. In addition we establish some helpful elementary

results about Rm-p.l. maps. First, a useful definition.

Definition. If U is an open subset of R” and P is a
finite-dimensional polyhedron we say a map f: U » P is
piecewise linear (p.l.) if for every compact polyhedron
ccu, flc: ¢ » P is p.1. If M is a p.l. R -manifold we
say that f: M » P is p.1. if £6™1: ¢(U) » P is p.l. for

each p.1l. R -chart (U,9) for M.

Lemma 1. Let U be an open subset of R°. Let AcWcU
where A is closed in U and W is open in U. Then there is
a p.l. mqio A: U > I sueh that )\lA = 0 and )\| (U-W) = 1.
Probf. The proof proceeds in the spirit of the proof
of Propogition IV.2 in [2]. Let c = {ci} = (cl,cz,---,
cno,O,o,-.-) € R”, and let V = [(cl—el,cl+gl) x (c2—€2,

C,teL) X eoe x (¢ - ,Cc_ +e_ ) %X (-€ ,€ ) X see] an,
2 72% ng ng'"nyTng n,+1l’ "n. +1

where €5 > 0. Define V(2) = [(cl—Zel,cl+2€l) X (c2—2€2,

c2+2€2) X ses]1 N R°. Let oy R > I be a p.1. map such
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that aillci—ei,ci+ei] = 1 and aiI[R\(ci—Zei,ci+26i)] = 0.

Define wi: R® » I by wi((xi,xz,-~-)) = ai(xi) and then

v(x) = min{y; (x)|i = 1,2,3--+}. If x € R, n > ng, then

0’
wi(x) =1, i > n, and ¥ (x) = min{wl(x),"°,wn(x)}. Thus,
y is continuous, Y|R" is p.l., n >1, y|v=1, and
Y| [R\V(2)] = 0. Note that sets of the form of V form a
basis for R [1, Proposition II.l(a)].

Let A, W, and U be as in Lemma 1. By elementary rea-
soning U = 1im Cn where Cn c R" is a compact polyhedron

and C, © Int n+lcn+l' Let A =A n c. Choose finitely

R
many basic open sets of the type in the preceding para-

graph, Vi eee,V , covering compact Al and such that

, 17 l,kl
i(2) cW,1i=1,2,++,k

For each x € AZ\C choose a

Vl, 1°
basic open set v, X such that x € V
1

l’
2,x © v2,x(2) c W\Cl.

Then V see together with {Vz,x’ x € Az\Cl} form

1,177 V1 ,x

1
an open cover of Az, so we may select a finite subcover
vl,l'...’vl,kl’VZ,l"'.’VZ,kz' Continuing, we obtain a
sequence Vl,l’...’vl,kl’VZ,l’.."v2,k2’v3,l’.."V3,k3’.'.

covering A such that Vi j(2) = W\Ci_ i > 1. By the work

ll
in the preceding paragraph, for each (i,j) there is a p.l.

map ¢i,j: U + I such that ¢i,

= 1. Let ¢; = min{¢i,l,---

j'vi,j = 0 and ¢i,jI[U\vi,j(2)]

,¢i,ki} and ¢ = m1n{¢i|1 =
1,2,+++}. Let x € Cn' Then x € Vk j(2), k > n, so that
¢k,j(x) =1, k > n. Therefore, ¢|Cn = mln{¢l,-",¢n}.
Thus, ¢|Cn is p.1., n > 1, and it follows that ¢ is p.l.

Also, ¢|A = 0 and ¢]| (U\W) = 1.

Lemma 2. (a) The composition of Rw—p.l. maps <8

Rm-p.l. Also, 1f £f: M > N is Rw—p.l. and g: N+ P, P a
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finite~dimensional polyhedron, is p.l., then ¢f is p.l.
(b) A map £ = (fl,fz,f3,"'): M - Rw, Ma p.l. Rw-manifold,
18 Ré-p.l. 1f and only if each fi 18 p.l.

Proof. The proof of (a) is straightforward, and we
omit it. For (b) regard a p.l. map (on a finite-dimensional
polyhedron) as one that is locally conical [3, p. 5].

Given a p.l. R -chart (U,$) for M and ;.compact polyhedron

Cc < ¢(U), f¢-l(c) < R" some n. Thus, it is clear that if
each fi¢_l is locally conical so is f¢-1|C. Thus, f¢_l is
Rw-p.l. Conversely, if f is Rw—p.l. then fi = ﬂif where
LFE R+ R is the projection onto the ith-coordinate.

Since L is p.1l., £, is p.l. by (a).

Lemma 3. If {(Ua’¢a)la € 4} is a p.1. R -atlas for the
p.l. R -manifold M, then there is a p.l. R -atlas {(Ua,wa)l
‘o € A} for M such that y (x) € (-1,1)" = 1lim(-1,1)", all
a € ﬂ, x € U .

a

Proof. Let f: R+ (-1,1) be a p.l. homeomorphism
taking 0 to 0. Then B': R~ - (-l,l)w, defined by
B (%) /%y Xg,00r) = (B(x)),B(x,),B(x3),+++), is an R™-p.1.

isomorphism. Letting b, = B'¢a gives the desired atlas.

Lemma 4. Let (U,¢) be a p.l. R -chart for the p.l.
Rw-manifold M such that ¢(U) <« (—l,l)m. Let A be a closed
subset of U, V an open subset of U such that A =« V < Veu,
V the closure of V in M. Then there is a p.l. map A: M + I
and an Rw—p.l. map Ys: M ~+ (-l,l)w e R” such that Ala =1,
Amv = 0, y[aTha) = o127, and v (W) = 0.

Proof. By Lemma 1 there is a p.l. map A': ¢(U) - I

such that A'[¢(a) =1, A'|¢(U\V) = 0. Define p.l. A: M + I
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by AU = A'¢ and A|(M\V) = 0. Write ¢ (x) = (01 () 40, (%) ,22").
Define ¢y = (wl,wz,---) by

max{-A(X).min{k(x).cbi(x)}}, Xx €U

Wl(x) = {

That ¢ is Rm-p.l. follows from Lemma 2(b). The other

0, X € M\V.

desired properties are clear.

Finally, we will use the following.

Proposition 5. Let M and N be p.l. Rm-manifolds. Let
f: M+ N be an Rm—p.l. map which is also a homeomorphism.

-1

Then £ 18 an Rm—p.l. isomorphism. I.e, £ is also Rm-p.l.

Proof. Let (U,¢) be a p.l. R -chart at x € M, (V,y)
a p.1. R -chart at f£(x) in N such that f-l(V) c U. It suf-

Ly » o)) is R®-p.1.

fices to show that ¢f_lw_
Let C « y{(V) be a compact polyhedron. Then ¢f-lw_l(C) is
compact. Hence, we may choose n and then a compact poly-
hedron P such that ¢f-lw_l(c) P c ¢(f-l(V)) n Rn. On
P, wf¢—l is a p.l. homeomorphism, so Q = wf¢_l(P) is a com-
pact polyhedron [3, p. 13] and ¢f_lw—l|Q is p.1. [3, p. 6].
Since C is a subpolyhedron of Q, ¢f_l¢_llc is also p.1.,
as required.

In relation to the above proposition we remark that
if £f: M + N is an Rm-p.l. map such that f(M) < Q where Q
is a p.1l. R -submanifold of N then f: M + Q is also (clearly)
Rm-p.l. Thus, if f is also a topological embedding onto Q,

then f: M + Q is a p.1l. Rm—isomorphism.

II1. Proof of the Theorem
Let M be as in the theorem. Let p: Rc’o -+ (Rm)oo =

lim(Rm)n be the map obtained by Cantor diagonalization.
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That is, p((xl,xz,x3,~°')) = ((xl’x3’x6’x10'.'.)’

(X5 1 XgsXgstee), (Xy,Xgpeee),»++). Then p is a linear homeo-
morphism [1, Corollary III-3]. Identify R with (R)° as
p.1l. R -manifolds via o. It suffices, then, to show that
there is an Ré—p.l. isomorphism f: M -+ (R")” onto a closed

R -submanifold of (Ré)m. Note that, by Lemma 2(b), with our
identification a map £f: M ~+ (R")” is Rm—p.l. if and only if
each of its projections to R is p.l. and, hence, if and only
if each of its projections to R® is Ré—p.l.

Let m € M. By Lemma 3 there is a p.1l. R -chart (Um,¢m)
with m € Um and ¢m(Um) c (—1,1)m. If we choose an open set
G such that ¢(m) € Gc G c ¢(Um), G the closure of G in R,
then for any U with U c ¢-1(G) we have ¢ (U) = $(U). Thus,
there is a p.l. R -atlas {(Ua’¢a)} for M such that each
¢a(Ua) < (-1,1)w and each ¢a extends to a closed embedding
¢, ° ﬁ& -+ $;Tﬁ;7 into R°. Since M is paracompact and
Lindeldf we thus obtain a countable, locally finite, p.l.

R -atlas {(u;,$;)} for M such that, for each i, ¢,(U;)
(—l,l)m and q>i extends to a closed embedding into Rm.

Let {Wi}, {Vi} be precise open refinements of Uy such

that

¢ # W, < Wi cVv, Vi SR
(the closures in M). By Lemma 4 there is, for each i, a
p.l. map Ai: M + I and an Rm-p.l. map ¢i: M + R such that

— -1
xilwi =1, Ail(M - vy =0, wi|xi (1) = ¢, and Ai|(M - vy

i
= 0.

. x© . ©

Choose a nonzero point e € R . Define f: M » (R ) by

f(m) = (zzzliki(m)e,wl(m),Al(m)e,wz(m),Az(m)e,w3(m),

A3(m)e,---).
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We will show that f is the desired ﬁ”—p.l. isomorphism.
The local finiteness of {Ui} guarantees that the sum is
finite and that f is well defined, i.e. that £(m) € (R )"
Let fi be the projection of f onto the i-th copy of R .
Since each fi is Rw-p.l., f is an Rm-p.l. map. Let x and
y be distinct elements of M. Choose i such that x € wi.
If xi(x) # xi(y), then clearly f(x) # f£(y). Otherwise
xi(y) = Ai(x) = 1 which implies wi(x) = ¢i(x) # ¢i(y) =
wi(y). Thus, f is one-to-one.

To see that f is a closed topological embedding let
fm) >y = (y;,¥,0°) € (R")”, {mala € A} a net in A, a

closed subset of M. Then fl(ma) >y implies that for some

P ) 0 -l
n and some B € A, Zi=11 M <n, a>8. Since Mc U _;A; (1),
it follows that {m |a > 8} = A71(1) u -+ u A7h(1). Thus, for

some cofinal ) < A and some k, {ma|a € 0} < x;l(l). But on

x;l(l), f = is a closed embedding into R. Thus, since

2k = %

£ =.¢k(ma) > Yoy e have that Yo = ¢k(m) some m € A

2k (M)
and that {mala € )} - m. Thus, {f(ma)la € )} » £(m) so
that y = f(m) € £(A). We have shown that f(A) is closed,
and it follows that f is a closed topological embedding.
et N = £f(M). To see that N is a p.1l. R -submanifold
of (R))” 1let m, € M. Find j such that m
neighborhood 0 of m

0 € wj and then a

o Such that 0 < wj. Then on 0, f2j = ¢j.

(=~ [+ o (=] o (2B -3
Let 2 = (R X R X see¢ X R X ¢j(0) x R X R x «+«) 1 (R) ,

where ¢j(0) occurs in the 2j factor. Define y: Z - Z by

-1
3 a2yl
Then Y is an R ~-p.l. isomorphism, and Yy (2 N £ (M))

(x i # 23j, and

Y((x{)) = (y;) where y;, = x, - £¢

Y23 T 2y |
= 0x 0 x «e0 x0 x ¢j(0) x0 x 0 ..., pefine §: z + ¢j(0)

o _ -1 )
Xx R by 6((xl)) = (xzer (xlr 'lxzj_lrx2j+1lx2j+21 ))
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where p:'Iim + (Rm)w is the homeomorphism éiven at the begin-
ning of this proof. Then ¢ is a p.l. Rm—isomorphism. Thus,
(z,8vy) is a p.l. R -chart for (Ré)m with f(mo) € Z, vyS§(2) =

¢j(0) x R, and 8y (2 0 £(M)) = ¢j(0) x {0}. Thus, N = £(M)

is an Ré—p.l. submanifold of (Ré)m.

We thus have an Ré—p.l. map f: M ~» (R.m)co which is a
topological embedding onto a closed p.l. R -submanifold of
(ﬁn)m. While it is relatively easy to see directly that
f-l is Rw—p.l., for this we refer, instead, to the remark
following Proposition 5., Thus, f is the desired Ré—p.l.

isomorphism.

IV. R” .Polyhedra

In this section we show that any p.l. R -submanifold
of R  is an Ré—polyhedron (see definition in §I) and relate

the two definitions of Ré—p.l. maps on such spaces.

Lemma 6. Let M be a p.l. Rw-manifold. Let C © M be
eompact. Than any p.l. R -atlas for M contains finitely

many p.l. R -charts {(Ui,¢i)|i = 1,+++,n} suech that there

k k

1 n

are cubes Dl,---,Dn in R ©,*+**,R ', respectively, with

n -1
Di c ¢i(Ui) and C < Ui=l¢i (Int k (Di)).

R7i

Proof. Let ¢ € C. Let (U,%) be a p.l. R -chart from
the given atlas. Choose an open set V such that ¢ € V <
¥ c U. Then compact ¢(C N V) ¢ R® some n. Let y = (v;) =

‘_'w _ o
¢ (c) gnq choose D' = (Hi=l[yi Ei' yi+ei]) N R such that
: _n _ -1
D' < ¢TU). Then, if D = Hi=1[yi ei,yi+ei], ¢ (IntRnD) =
-1 n .

¢ ((Hi=l(yi-ei,yi+ei)) n ¢(q N Vv)), a neighborhood of c

in ¢ 0 Vv and, hence, also in C. The lemma now follows from



TOPOLOGY PROCEEDINGS Volume 6 1981 327

the compactness of C.

Proposition 7. If M is a closed p.l. Rm-submanifold
of Rm, then M 1s an Rm—polyhedron.

Proof. Let C < R be a compact polyhedron., From the
definition of submanifold for each x € M there is a p.l.
R -chart (U,0) with x € U and such that ¢ (U) = Ul X U2,
$(U N M) =U; x {0} = U;. The corresponding charts (U',¢') =
(UNn Mo[(UNM)) forma p.1. R -atlas for M. By the preceding
lemma there are finitely many such charts {(Ui,¢i)|i = 1,++*,n}
1

(D.).

] ] n Yy~
and compact cubes D; = ¢i(Ui) such that C N M < Ui=l(¢i) i

1

Thus, CN M=C N U?=l(¢i)_ (D.). Since finite unions and

i
intersections of compact polyhedra are again polyhedra it
suffices to show that each (¢i)-l(Di) is a polyhedron in
R . But (¢i)—l(Di) = ¢11(Di x0), a compact polyhedron

since ¢;l: ¢;(U) > U is an R -p.l. isomorphism.

Proposition 8. If M and N are closed p.l. R -submani-
foldé of R” then £f: M + N is Rw-p.l. in the manifold sense
if and only if £ is Rw—p.l. in the polyhedral sense.

Proof. First note that if (U,¢) is any p.l. R -chart
in R®, and if Q € U is a compact polyhedron then ¢|Q =
(id m)_l¢|Q is p.l. and, hence, ¢(Q) is a compact polyhedron.

8 Now let £ be Rw—p.l. in the manifold sense. Let C < M
be a compact polyhedron, x € C. Let (U,¢), (V,¢) be charts
for M and N, respectively, with x € U, f(x) € V and such
that (U',¢') = (U N M, ¢}(U N M) and (V',¢') = (VN N,

g} (Vv N N)) are p.l. R -charts for M and N. Choose a compact

polyhedral neighborhood P of x in C N U' n £ (v'). Then
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$'(P) = ¢$(P) is a compact polyhedron, and, since f is Rm—p.l.
in manifold sense, w'f(¢')—l|¢(P) is p.l. Thus, f|P =
w—l(w'f(¢')_l)¢|P is p.l. Thus, f|C is locally p.l. and,
hence, p.l. as required.

Conversely, if £: M » N is Rm-p.l. in the polyhedral
sense and x € M, let (U,¢), (V,¥), (U',¢'), (V',¥') be as
above. If P c ¢'(U' N £ ¥(V')) is a compact polyhedron
then (¢')-1(P) is a compact polyhedron in M. Thus

£](6')"1(P) is p.1. Hence y'f£(¢') }|P is p.l. as required.
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