TOPOLOGY PROCEEDINGS Volume 6, 1981

Pages 345–349

http://topology.auburn.edu/tp/

$\delta\text{-}\mathrm{COMPLETENESS}$ AND $\delta\text{-}\mathrm{NORMALITY}$

by

A. GARCIA-MÁYNEZ

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOON	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

δ-COMPLETENESS AND δ-NORMALITY

A. Garcia-Máynez

1. Introduction

In this paper we introduce the notion of δ -normal cover. We prove that the collection of δ -normal covers of a (Tychonoff) space X is a compatible uniformity l_{δ} of X and the completion δX of the uniform space (X, l_{δ}') lies between the topological completion μX and the realcompactification νX of X. X is δ -complete if the uniformity l_{δ}' is complete. Any product of δ -complete spaces and any closed subspace of a δ -complete space happen to be δ -complete. We prove that δX may be seen also as the intersection of all paracompact open subspaces of βX containing X. We finally prove that a space X is δ -complete if and only if it is homeomorphic to a closed subset of a product of locally compact metric spaces.

2. All Spaces Considered in This Note Will Be Completely Regular and Hausdorff (T 31/2)

A collection A of subsets of X is a cozero family if each element $A \in A$ is a cozero set in X. A is strongly cozero if for each $A' \subset A$, the set $\bigcup \{L \mid L \in A'\}$ is a cozero set. A is star-countable if for each $A \in A$, $\lambda_A = \{L \in A \mid L \cap A \neq \Phi\}$ is countable. An open cover Aof X is said to be δ -normal if it has a star-countable cozero refinement. Recall a cover A_1 Δ -refines a cover A_2 if $\{St(x, A_1) \mid x \in X\}$ refines A_2 . We express this fact symbolically as $A_1^{\Delta} < A_2$. An open cover A of X is normal

Garcia-Máynez

if there exist open covers A_1, A_2, \cdots of X such that $A_1^{\Delta} < A$ and $A_{m+1}^{\Delta} < A_m$ for each $m = 1, 2, \cdots$. A non-empty collection U of covers of a set X is a *uniformity on* X if for each pair $A_1, A_2 \in U$ there exists $A_3 \in U$ such that $A_3^{\Delta} < A_1$ and $A_3^{\Delta} < A_2$. Any uniformity U on a set X induces a topology τ_U on X, namely, $V \in \tau_U$ iff for each $x \in V$ there exists $A_x \in U$ such that $St(x, A_x) \subset V$. A uniformity U on a topological space (X, τ) is compatible if $\tau = \tau_U$.

 βX denotes, as usual, the Stone-Čech compactification of X and we consider X as an actual subspace of βX . For each A \subset X, we define $A_* = \beta X - cl_{\beta X}(X - A)$. Observe A_* is open in βX , $A_* \cap X = int_X A$ and A_* contains every open subset of βX whose intersection with X is $int_X A$. For each family $A \subset \mathcal{P}(X)$, we write $L(A) = U\{A_* | A \in A\}$.

We may now prove our first result:

2.1. Let A be an open cover of X. Then A is δ -normal iff there exists a paracompact open subspace L of βX such that $X \subset L \subset L(A)$.

Proof (Necessity). We may assume, with no loss of generality, that A is cozero and star-countable. For each $A \in A$, let A' be a cozero set in βX such that $A' \cap X = A$ and let $L = \bigcup \{A' \mid A \in A\}$. Clearly $X \subset L \subset L(A)$ and $\{A' \mid A \in A\}$ is a star-countable cozero cover of L (if $A'_1 \cap A'_2 \neq \phi$, then $A'_1 \cap A'_2 \cap X \neq \phi$ and hence $A_1 \cap A_2 \neq \phi$). Using the star-countable property, we may index A as follows:

 $A = \{A_{jm} | j \in J, m \in \mathbb{N}\},\$ where $A_{jm} \cap A_{kn} = \Phi$ whenever j,k $\in J, j \neq k$ and m,n $\in \mathbb{N}$.

Hence, L is the free union of the locally compact Lindelöf spaces $\{L_j \mid j \in J\}$, where $L_j = \bigcup \{A_{jm} \mid m \in N\}$. Therefore, L is paracompact and open in βX .

(Sufficiency). Being paracompact and locally compact, L may be expressed in the form $L = \bigcup \{L_j \mid j \in J\}$, where the L_j 's are Lindelöf, open in L and mutually disjoint. Consequently, the cover $\{A_* \cap L \mid A \in A\}$ of L has a cozero and star-countable refinement A_z . The restriction of A_z to X is then a star-countable cozero refinement of A.

Using the fact that every open cover of a paracompact locally compact space (or, more generally, of a strongly paracompact space) has a star-countable strongly cozero Δ -refinement, we obtain:

2.1.1. Corollary. Every δ -normal cover of a space X has a star-countable, strongly cozero, Δ -refinement. Hence, every δ -normal cover is normal and the collection U_{δ} of all δ -normal covers of X is a compatible uniformity on X.

The following result will be needed later. We leave the details of the proof to the reader:

2.2. Let U be a compatible uniformity on the space X that every finite cozero cover of X belongs to U. Let $L = \bigcap\{L(A) \mid A \in U\}$ and let U_L be the collection of covers $\{\{A_* \cap L \mid A \in A\} \mid A \in U\}$. Then U_L is a compatible complete uniformity on L which extends U.

A space X is δ -complete if the uniformity \mathcal{U}_{δ} is complete. Observe any strongly paracompact (in particular,

Garcia-Máynez

any paracompact locally compact) space is δ -complete. Combining 2.1 and 2.2, we obtain:

2.3. The completion δX of (X, U_{δ}) may be viewed as a subspace of βX containing X, namely, as the intersection of all paracompact open subspaces of βX containing X. Hence, X is δ -complete iff there exist paracompact and open subspaces $\{L_i \mid j \in J\}$ of βX such that $X = O\{L_i \mid j \in J\}$.

We obtain another characterization of $\delta\text{-complete}$ spaces:

2.4. A space X is δ -complete iff it is homeomorphic to a closed subset of a product of locally compact metric spaces. Hence, every closed subset of a product of δ -complete spaces is δ -complete.

Proof. The class A of paracompact locally compact spaces is a subcategory of $T_{3\frac{1}{2}}$ which is inversely preserved by perfect maps. Hence, using 2.3 and the theorem in [Fr], we deduce that X is δ -complete iff it is homeomorphic to a closed subset of a product of members of A. The proof is completed observing that each Y ϵ A is homeomorphic to a closed subset of a product of a compact T_2 space and a locally compact metric space.

Since every countable cozero cover is δ -normal and every δ -normal cover is normal, we obtain, with the help of 2.2, a final remark:

2.5. For each space X, $\mu X \subset \delta X \subset \nu X$. Hence, every δ -complete space is topologically complete and every realcompact space is δ -complete.

Bibliography

[Fr] S. Franklin, On epi-reflective hulls, Gen. Top. Appl. 1 (1971), 29-31.

Instituto de Matemáticas de la Unam