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RETRACTION OF MI-SPACES 

Takuo Miwa 

In this paper, we s~all prove that an Ml-space X can 

be imbedded in an Ml-space Z(X) as a closed subset in such 

a way that X is an AR(m ) (resp. ANR(m if and only if Xl »l 

is a retract (resp. neighborhood retract) of Z(X), where 

m is	 the class of all Ml-spaces. Moreover, we shall provel 

that an Ml-space is an AE(m ) (resp. ANE(m ff and only
l

»
l 

if it is an AR(m ) (resp. ANR(ml ».l 

1.	 Introduction 

In metric spaces, the closed imbedding theorem of 

Eilenberg-Wojdyslawski plays an important role in the 

development of retract theory. By using this .theorem, it 

was shown that a metric space is an AE(m) (resp. ANE(m» 

if and only if it is an AR(m) (resp. ANR(m», where m is 

the class of all metric spaces. In [3], R. Cauty showed 

that a stratifiable space X can be imbedded in a strati 

fiable space Z(X) as a closed subset in such a way that X 

is an AR(S) (resp. ANR(S» if and only if X is a retract 

(resp. neighborhood retract) of Z(X), where S is the class 

of all stratifiable spaces. By using this theorem, R. Cauty 

extended to stratifiable spaces the results of O. Hanner 

[6] concerning near maps and small homotopies. In this 

paper, for a space X we shall construct Z(X) by using the 

method of R. Cauty [3], and prove the results mentioned 

above. Furthermore, we consider the relationships between 
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near	 maps, small homotopies, connectivity and AR(m ) (or
l 

ANR (m ) ) • 
l 

Throughout this paper, all spaces are assumed to be 

Hausdorff topological spaces and all maps to be continuous. 

N and I denote the set of all natural numbers and the 

closed unit interval [0,1], respectively. For the defini

tions of Ml-space and stratifiable space, see [4]. AR([) 

(resp. ANR([»' is the abbreviation for absolute (resp. 

neighborhood) retract for the class [ and AE([) (resp. 

ANE([» the abbreviation for absolute (resp. neighborhood) 

extensor for the class [. For these definitions, see [8]. 

Note that in [8] each class [ is weakly hereditary; that is 

to say, if [ contains X, then it contains every closed sub

space of X. However, in this paper we consider the' class 

m of all Ml-spaces though it is unknown if m is weaklyl l
 

hereditary.
 

2.	 Auxiliary Lemma 

Definition 2.1 ([12]). Let X be a space and F a 

closed subset of X. An open cover of X - F is said to be an 

anti-aover of F. An anti-cover V is said to be uniformly 

approaahing to F in X if for each open subset U of X, 

Clx(V(X-U» does not meet U n F, where V (X - U) denotes the 

star of X - U with respect to V and Cl denotes the closure x 

operation in X. A paracompact a-space X is said to be a 

D-spaae if each closed subset of X has a uniformly approach

ing anti-cover. 

Note that V is a semi-canonical cover of a pair (X,F) 

([9]) if and only if V is uniformly approaching to F in X. 
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The following lemma was essentially proved in the 

proof of [11, Lemma 3.2]. For extensions of a closure 

preserving open collection, see [13, Definition 2]. 

Lemma 2.2. Let X be aD-space, F a closed subset of 

X and f a map from F into a space Y. Let Y also denote the 

natural imbedding of Y in X U fY = Z. If lj = {U : a E A} is a 

a closure preserving open collection in Y, then for each 

a E A there is a collection {US: S E B } of open subsets a 

in Z satisfying the following three conditions: 

(El) lj' = {US: S E Ba,a E A} is closure preserving 

in Z, 

(E2 ) for each S E B , U' n Y = U , and for every open
a S a 

subset V in Z with V n Y = U there is S E B such that 
a a 

U c U' c V, and 
a S
 

(E3 ) for every open subset W in Y, there is an open
 

subset W' of Z such that W· n Y Wand WI n u· = ~ when
S 

ever S E B and W n U ~. 
a a 

Proof. Let p be the projection from the free union 

X U Y to Z. Since X is a D-space, X is an Ml-space. There

fore X is monotonically normal. Let G be a monotone nor

ma1ity operator for X satisfying the properties in [7, 

Lemma 2.2]. Since X is aD-space, F has a uniformly ap

proachinganti-cover V = {VA: A E A} in X. In particular, 

since X is hereditarily paracompact, we may assume that V 

is locally finite in X -·F. For each U E lj, let 
a 

-1 -1
U· U{G(x,F -p (U )): x E p (U) } • Then U· is obviously

a a a a
 

{y (a) -1 (U.
open in X. For each a E A, let B = c A: ) 
p yea) 

is open in U~} , where U· U U p(U{V : A E yea)}). Let 

a 

yea) a A
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B = U{B : a E A}, and lj' = {US: B E B}. Then condition 
a
 

(E2) is obviously satisfied by lj', because for each open
 

subset V in Z with V n Y = U there is a set a
 

U' = U U p (U {VA E V: VA C 
p-l(V) n U~}) , for some B E B ,


B a a
 

such that 'U C Us C v. To prove (E3) , let W be an open
a 

subset in Y. Then it is easy to see that W' = W U 

p(U{G(X,F-p-l(W»: x E p-l(W)}) is an open subset of Z 

satisfying (E3). 

Finally, to prove (El) , let x ¢ ClzUS for all 

B E B' C B. Then we shall prove that x ¢ Clz(U{US: BE B'}). 

First, assume that x E Y and also that AI = {a E A: 

B n B I ~ ~}. Then x ¢ ClyU for a E AI. Since lj is closure 
a a
 

preserving in Y, x has a neighborhood W in Y such that
 

W n U = ~ for a E AI. By condition (E3), there is a 
a 

neighborhood WI of x in Z such that Wi n U
B 
I = ~ for B E B I . 

This proves that lj' is closure preserving at x E Y. Next, 

let x E Z - Y. Then since V is locally finite in X- F, it 

is easily verified that there is a neighborhood W of x such 

that W n Us = ~, for each S E B I . This proves that lj' is 

closure preserving at x E Z - Y. Thus (EI) is satisfied by 

lj'. This completes the proof. 

3. Construction of Z (X) 

Construction 3.1. Let X be a space. M(X) denotes
 

the full simplicial complex which has all points of X as
 

the set of vertices. Then there is a canonical bijection
 

i from the O-skeletonMOof M(X) onto X. Let ZI M(X) UiX
 

be the adjunction space and pi: M(X) U X ~ ZI the projec

tion. By the aid of pi, we identify X with pi (X) c ZI.
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Since the restriction of p' to M(X) is a bijection from 

M(X) onto Zl, by the abuse of language, a simplex 0 of 

M(X) is said to be contained in a subset U of Z' if p' (0) 

is contained in U. Z(X) denotes the space such that ZI is 

the underlying set of Z(X) and the topology of Z(X) has a 

base which consists of a collection of sets U, which is open 

in ZI, satisfying the following condition: 

(C) If 0 is a simplex of M(X) such that all vertices 

of 0 are contained in U n x, then 0 is contained in U. 

Let p: M(X) U X ~ Z(X) be the projection. Then p is 

obviously continuous. Let Mn be the n-ske1eton of M(X) and 

Zn = p (Mn U X) . 

Lemma 3.2. If X is an M1 -spaae, then Z(X) is also MI. 

Proof. For each n € N, let Y be the free union of all 

(n+l)-simp1exes of M(X), F the boundary of Y and f: F ~ Zn 

the map defined by f(x) = p(x) for x € F. Then the set 

Y U fzn is equal to the set zn+l. Let {U : a E A} be a 
a 

closure preserving open collection in Zn. Since Y is a 

metric space, Y is a D-space. Therefore the technique of 

proof of Lemma 2.2 yields that, for each a € A, there is a 

collection {US: S E B } of open subsets in zn+l satisfying
a 

(El), (E2) and (E3). (Note that this proof is slightly 

different from that of Lemma 2.2; i.e. if 0 is (n+1)-simp1ex 

and U contains all vertices of 0, then 0 is contained in 
U 

US' S € Ba ·) 

Now, let {U(u ): u € A} be a closure preserving openl l 

collection in X (= ZO). From the preceding paragraph we 

get that every U(a ) can be extended to open subsetsl 
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{U(U ,U ): u 2 E A(U l )} in zl in such a way that the collecl 2
tion {U(a

1 
,a ): 0. E A,a E A(a )} satisfies (E1), (E2) and

2 1 2 1 

(E3). Similarly, every U(a ,a ) can be extended to open
1 2 

subsets {U(a ,a 
2 

,a ): 0. E A(a ,a )} in z2 in such a way
1 3 3 1 2 

that the collection {U(a ,a ,a ): 0. E A,a E A(a ),
1 2 3 1 2 1 

0. E A (0. ,0. 2)} satisfies (E1), (E2) and (E3). Repeating
3 1 

this process, we get for each n E N a closure preserving 

open collection {U(a 1 ,---,a +1 ): 0. E A,a E A(a ),---,n 1 2 1 

a +1 E A(a 1 ,- - - ,an)} in zn. Let L = {(a1 ,a 2 ,a 3 ,- - -):n 

0. E A,a E A(a ),a E A(a
1 

,a ),---}. For each1 2 1 3 2

(0. 1 ,0. 2 ,---) EL, let u(a 1 ,a2,---) = u{u(a
1 
,---,a 

n 
): n EN}. 

Then U(a 1 ,a ,---) is open in Z(X), because, for each n E N,2

U(a 1 ,a ,---) n Zn = U(a 1 ,---,a + ) is open in Zn and2 n 1 

U(a 1 ,a 2 ,---) satisfies (C) by the construction of 

U(a1 ,---,a ). Next, we claim that U = {U(a1 ,a ,---):
n 2 

(0. 1 ,0. ,---) E L} is closure preserving in Z(X). Let
2 

XEZ
O 

(= X) and x ¢ C1 (X)U(u l ,u ,---) for all (u l ,u ,---) EZ 2 2 
lr C L. Then x ¢ C1xU(a1 ) for all 0. 1 E AI = {a1 : 

(a l ,a 2 ,··-) EEl}. Since {u(a ): a E AI} is closure pre1 l 

serving in x, x has an open neighborhood WI in X such that 

WI n U(a ) = ~ for each 0. E AI. Let W be an open extenl 1 2 

sion of WI to zl which satisfies (E3) • Namely, 

W n U(a
1

,a ) = ~ for all 0. E AI and 0. E A(a ). Repeat
2 2 1 2 l 

ing this process, we have for each n E N an open subset 

. Zn
W l.n • Let W = U{W : n EN}. Then W is an open

n + l n 

neighborhood of x in Z(X) such that W n U(a l ,a ,--·) = ~ 
2 

for all (a l ,a ,---) EEl. Thus U is closure preserving at2 

x E ZOe This remains valid for x E Zn with n >0 . 
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Finally, let {Un} is a a-closure preserving base for 

X. Then it is easily verified that the extensions {ljl} of 
n 

{U } to Z(X), by the same method above, is a a-closure n 

preserving base at each point of X. Furthermore, since 

M(X) is an M -space by [4, Theorem 8.3] and the open sub
1

space Z(X) -x is homeomorphic to an open subspace of M(X), 

there exists a a-closure preserving base {V } at each pointn 

of Z(X)- X. Thus {U~} U {V } is a a-closure preservingn 

base for Z(X). This completes the proof. 

Remark 3.3. It was shown in [3] that, if X is strati

fiab1e, Z(X) is also stratifiab1e. If X is normal (resp. 

paracompact), ZI in Construction 3.1 is normal (resp. 

paracompact). By using this fact, it is easy to see that 

Z(X) is normal (resp. paracompact). 

The following lemma was proved in [3, Lemma 1.2]. 

Lemma 3.4. Let X be a space. If Y is a stratifiable 

space, A a closed subset of Y and f: A ~ X a map, then there 

is a map F: Y ~ Z(X) with FIA = f. 

The following theorem is an immediate consequence of 

Lemma 3.2 and 3.4. 

Theorem 3.5. An M1-space X is an AR(m1 ) (resp. ANR(m1 ») 

if and only if X is a retract (resp. neighborhood retract) 

of Z(X). 

The following theorem is a direct consequence of 

Theorem 3.5 and Lemma 3.4. Note that whether the class m1 
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is weakly hereditary is a long-standing unsolved question 

first posed by Ceder [4]. 

Theorem 3.6. An Ml-spaae is an AE(ml ) (resp. ANE(m )) 

if and only if it is an AR(ml ) (resp. ANR(ml )). 

4.	 Near Maps, Small Homotopies and Connectivity 

Definition 4.1 ([5]). A space Y is equiaonneated if 

there is a map F: Y x Y x I ~ Y such that F(x,y,O) = x, 

F(x,y,l) y and F(x,x,t) = x for all (x,y) E Y x Y and 

t E I. The space Y is said to be loaally equiaonneated if 

F is defined only on U x I, for some neighborhood U of the 

diagonal of Y x Y. 

Definition 4.2 ([6]). Let f, g: Y ~ X be two maps. 

If X is covered by V = {U }' f and g are called V-near if 
u 

for each y E Y there is a U E lj such that f(y) E U ' 
u u 

g(y) E U • 
u 

Definition 4.3 ([6]). Let h : Y ~ X be a homotopy.
t 

If X is covered by U = {Uu}' h is called a U-homotopy ift 

for each y E Y there is a U E V such that ht(y) E U for 
u u 

all t E I. The space Y is said to dominate the space X if 

there are two maps f: X ~ Y and g: Y ~ X such that gof is 

homotopic to the identity map of X. If the homotopy is a 

V-homotopy for a covering V of X, Y is said to V-dominate X. 

Proposition 4.4. If an Ml-spaae Y is an ANR (m
l 
), then 

Y is loaally equiaonneated. 

Proof· Let A = Y x Y x {O,l} u !J. x I, where !J. is the 

diagonal of Y x Y. We define a function f: A ~ Y as 
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follows: f(x,y,O) = x, f(x,y,l) = y and f(x,x,t) = x for 

t € I. Then f is continuous. Since Y is an ANR(m ), byl 

Theorem 3.6 there is a neighborhood U of ~ in Y x Y and a 

map F: U x I ~ Y such that FIA = f. Therefore Y is 

locally equiconnected. 

Proposition 4.5. Let an Ml-space Y be an ANR(m ). Forl 

any open covering V of Y, there is an open covering V of Y, 

which is a refinement of V, such that for any space X any 

two V-near maps f,g: X ~ Yare V-homotopic by a homotopy 

which is constant on the set {x € X: f(x) = g(x)}. 

Proof. Since Y is locally equiconnected by Proposition 

4.4, there are a neighborhood U of the diagonal of Y x Y and 

a map F: U x I ~ Y such that F(x,y,O) = x, F(x,y,l) = y and 

F(x,x,t) = x for all (x,y) € U and t € I. For any y € Y, 

there is a neighborhood V of y such that V x V c U and y y y 

F(V x V x I) c U for some U € V. Let V = {V : y € y}.
a. a. y 

Then if two maps f,g: X ~ Yare V-near, we can define a 

map h: X x I ~ Y by h(x,t) = F(f(x),g(x),t). By this 

homotopy, it is easy to see that f and g are V-homotopic, 

and if f(x) = g(x), then h(x,t) = f(x) for all t € I. This 

completes the proof. 

Y Y 

The following theorem 4.6, 4.7 and 4.8 can be proved 

by the methods used in the proofs of Theorem 1.5, 1.6 and 

1.8 of [3], respectively. For the definition of V-fine, 

see [3] p. 136 "petite d'ordre V." For the definition of 

(locally) 'hyperconnected, see [10] or [1]. 
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Theorem 4.6. Let an M1-space X be an ANR(m1 ). For
 

any open covering U of X~ there is a simplicial complex
 

with the Whitehead topology which U-dominate X.
 

Theorem 4.7. Let an M1-space X be an ANR(m ). For1 

any	 open covering U of X~ there is an open covering V of 

X such that~ if L is a subcomplex of a simplicial complex 

K and contains all vertices of K~ then every V-fine map 

from L into X is extended to a U-fine map from K into X. 

Theorem 4.8. An M1-space is an AR(m ) (resp. ANR(m1 ))1 

if	 and on~y if it is (resp. locally) hyperconnected. 

Corollary 4.9. If an M1-space Y is an AR(m1)~ for any 

space X the function space xY with the pointwise conver

gence topology is an AE(S). 

This corollary is proved by Theorem 4.8 [2, Theorem
 

2.2] and [1, Theorem 4.1].
 

Added in proof. Some results of Section 3 have been 

announced in Retraction and extension of mappings of 

M1-spaces, Proc. Japan Acad. 58 (1982). 
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