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A NOTE ON LEBESGUE SPACES 

Sam B. Nadler, Jr. and Thelma West 

L~t (X,d) be a metric space. A Lebesgue number for an 

open cover lj of X is an E > 0 such that for each point 

p E X, the open,ball Bd(p,E) = {x E X: d(p,x) < E} is con

tained in at least one member of 0. A Lebesgue space 

(L-space)(is a metric space such that every open cover of 

the space has a Lebesgue number. It is known that the 

L-spaces are precisely those metric spaces for which every 

continuous real-valued function is uniformly continuous 

([6, p. 112], [1, p. 12]). In particular, every compact 

metric space is an L-space. We will show that there are 

L-spaces which are not even locally compact. Furthermore, 

in Theorem 1 we characterize those metric spaces which con

tain nonlocally compact L-subspaces. The proof of Theorem 1 

shows how to construct such subspaces in the most general 

possible setting. In Theorem 2 we show that any L-space 

must belocally compact "at most points. II In Theorem 3 we 

obtain a simple necessary and sufficient condition in order 

that a metric space be a locally compact L-space. This 

condition determines the structure of all such spaces. We 

will briefly discuss Theorem 3 in r~lation to results in 

[4] and [S]--see the Remark at the end of the paper. 

Recall tha~ a metric space (X,d) is said to be totally 

bounded provided that for each E > 0, there exist finitely 

many points Pl,P2,···,Pn of X such that X U{Bd(Pi,E): 

i = 1,2,···,n} [2, p. 22]. A subset A of a metric space 
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(X,d) is said to be unifopmly isolated provided that there 

exists a C > 0 such that d(x,x') ~ c for all x,x' E A such 

that x ~ x' [5, p. 153]. Clearly, a metric space fails to 

be totally bounded if and only if it contains an infinite 

uniformly isolated subset. 

For use later on, let us note the following lemma. It 

follows easily from Theorem 1 of [1]. 

Lemma 1. A metric space (X,d) is an L-space if and 

only if the set L of all limit points of X is compact and 

for each open subset U of X such that U .~ L, X - U is uni

fopmly isolated. 

The following theorem is our characterization of those 

metric spaces which contain nonlocally compact L-subspaces. 

Theorem 1. Let (M,D) be a metpic space. Then: Every 

L-subspace of M is locally compact if and only if every point 

of M has a totally-bounded neighbophood, i.e., if and only 

if the completion of M is locally compact. 

Ppoof. Assume that there is a point p E M such that 

no neighborhood of p is totally bounded. Then, as noted 

above, each neighborhood of p contains-an infinite uriiformly 

isolated subset. Let Xl be an infinite uniformly isolated 

subset of the ball B (p,2 -1 ) such that p ¢ Xl. Assumeo 

inductively that we have chosen infinite subsets Xi of 

BO(p,2-i ) - {p} for each i = 1,2,.··,n (n < 00) such that 

nUi=IX is uniformly isolated. Leti 
no = inf{d(p,x): x E ui=IXi } 

and note that c > O. Let E min{c/2,2-n- I }. Since E > 0, 
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there is an infinite uniformly isolated subset X 1 of 
n+ 

BD(p,£) such that p ¢ X +l . Note that u~:txi is uniformlyn

isolated. Thus, we have inductively defined X for each n 

n = 1,2,--- such that, for each k = 1,2,---, uk X is unin=l n 
formly isolated. Let 

X = {p} U (U:=lXn ) 

and let d denote the subspace metric for X obtained from D. 

We see that p is the only limit point of X and that if U is 

kany open subset of X such that p E U, then X - U c Un=lXn 

for some k < 00 and, thus, X - U is uniformly isolated. 

Hence, by Lemma 1, (X,d) is an L-space. Furthermore, as is 

easy to see, (X,d) is not locally compact at p. Therefore, 

we have proved half of Theorem 1. To prove the other half, 

assume that every point of M has a totally bounded neighbor

hood and let Y be an L-subspace of M. It follows easily 

from Lemma 1 that Y is complete (the fact that L-spaces are 

complete is also noted in [6, §8, p. 112]). Let y E Y. 

From our assumption about M, there is a totally bounded 

neighborhood N(y) of y. We assume without loss of gener

ality that N(y) is a closed subset of M. Then, N(y) n Y is 

a closed neighborhood of y in Y. Since Y is complete, 

N(y) n Y is complete. Thus, since N(y) n Y is totally 

bounded, N(y) n Y is compact [2, p. 22]. Hence; we have 

proved that each point of Y has a compact neighborhood in 

Y. Therefore, Y is locally compact. This completes the 

proof of Theorem 1. 

For metric linear topological vector spaces, Theorem 1. 

becomes the following result: 
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Corlllary. A metric linear topological vector space 

is finite dimensional if and ~nly if every subset which is 

an L-space is locally compact. 

Proof. The corollary follows immediately from Th~orem 

1 above and 7.8 of [3, p. 62]. 

The L-spaces constructed in the proof of Theorem 1 fail 

to be locally compact at only one point. The question 

arises as to whether there is an L-space which fails to be 

locally compact at every point of some nonempty open subset. 

The following result answers this question by showing that 

no such L-space exists. 

Theorem 2. If (X,d) is an L-space~ then X is locally 

compact at each point of a dense open subset of x. 

Proof. Let L = {x: x is a limit point of X} and let 

W = {x € X: X is locally compact at x}. Note that X - W c L. 

Thus, since L is compact (by Lemma 1), X - W can not contain 

any nonempty open subset of X. Hence, W is a dense subset 

of X. Clearly, W is an open subset of X. This completes 

the proof of Theorem 2. 

We have the following characterization of locally com

pact L-spaces: 

Theorem 3. A metric space (X,d) is a locally compact 

L-space if and only if X is the union of a compact subspace 

and a uniformly isolated subspace. 

Proof. Assume that (X,d) is a locally compact L-space. 

Let L denote the set of all limit points of X. By Lemma 1, 
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L is compact. Thus, since X is locally compact, L can be 

covered by finitely many open subsets of X whose closures 

are compact. Hence, there is an open subset U of X such 

that LeU and such that the closure IT of U is compact. By 

Lemma 1, X - U is uniformly isolated. Therefore, writing 

X = IT u (X - U), we see that we have proved half of Theorem 

3. Now, to prove the other half of Theorem 3, assume that 

(X,d) is a metric space such that X is the union of a compact 

subspace C and a uniformly isolated subspace E. We first 

show that X is locally compact. Note that E - C is a uni

formly isolated open subspace of X. Thus, for each point 

x E E - C, we see that {x} is an open subset of X. Hence, 

clearly, X is locally compact at each point of E - C. To 

show that X is locally compact at each point of C, it suf

fices (since C is compact) to show that C is an open subset 

of X. Suppose that C is not an open subset of X. Then there 

is a sequence {xn}~=l of points of X - C such that {xn}~=l 

converges to a point of C. Since {xn}~=l is a Cauchy 

sequence of points of E, we have a contradiction to the 

assumption that E is uniformly isolated. Thus, C is an 

open subspace of X. This completes the proof that X is 

locally compact. Next we show using Lemma 1 that (X,d) is 

an L-space. Let L denote the set of all limit points of X. 

It was shown above that for each x E E - C, {x} is an open 

subset of X. Hence, L ~ C. Thus, since L is a closed sub

set of X and since C is compact, we have that L is compact. 

Let U be an open subset of X such that U ~ L. We wish to 

show that X - Uis uniformly isolated (see Lemma 1). Note 

that 
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(*) X - U = (C - U) U (E - U) 

Since C - U is a closed subset of the compact set C, C - U 

is compact. Since U ~ L, C - U contains no limit point of 

X. Thus, C - U must be finite. Since E - U is a subset of 

the uniformly isolated space E, E - U is uniformly isolated. 

It now follows from (*) that X - U is uniformly isolated. 

Therefore, we can now use Lemma 1 to conclude that (X,d) 

is an L-space. This completes the proof of Theorem 3. 

Remark. Let E be a subset of a metric space (M,d). 

Consider the following two conditions on E: 

(1) every continuous real-valued function on E is uni

formly continuous; 

(2) E = E U E2 where E is compact and E2 is uniformlyl l 

isolated.
 

Recall from the beginning of this paper that (1) is equiva


lent to E being an L-space. Assume that (1) holds and that
 

(M,d) is locally compact. Since E is complete [5, Thro. 1],
 

E is a closed, therefore locally compact subspace of M.
 

Hence, by Theorem 3 above, (2) holds. With no restriction
 

on (M,d), we see from Theorem 3 that (2) implies (1). In
 

Theorem 4 of [5] it is shown that (1) implies (2) if closed
 

and bounded subsets of (M,d) are compact. However, as we
 

have just shown, (1) is equivalent to (2) in more general
 

spaces (M,d). Similar generalizations of some other results
 

in [5] are also possible to obtain by using our results. In
 

connection with this we note that condition (2), which
 

occurs frequently in results in [4] and [5], is really
 

equivalent to E being a locally compact L-space (by our
 

Theorem 3).
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