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HOMOGENEITY AND GROUPS OF 

HOMEOMORPHISMS 

Judy Kennedy Phelps 

1.	 Introduction 

This paper begins what the author hopes is a very 

thorough study of the nature of groups of homeomorphisms 

of homogeneous continua, since it seems that understanding 

these groups is crucial to determining exactly what homo­

geneity properties a continuum has, and what effect the 

homogeneity properties have on other properties. 

It has been known for some time that the group of 

homeomorphisms of a compact metric space is a separable 

complete metric topological group. Witb Gerald Ungar's 

application of what has come to be known as Effros's 

theorem [E] to solve several old problems in homogeneity 

[Ul, U2], the study of homogeneity was revitalized. Since 

then, a number of authors have used this theorem: see for 

example [A], [R]. Efros's theorem is a valuable tool. 

What Gerald Un~ar first noticed and made use of was 

that if X is a homogeneous continuum and H(X) is its space 

of homeomorphisms, (H(X),X) is a polish topological trans­

formation group, and H(X) is transitive on Xi so that by 

Effros' theorem for each x E X, the map T : H(X) + X x 

defined by Tx(h) = hex) is open and onto. (For definitions 

and theorem, see next section.) Now locally compact topo­

logical groups have been widely s~udied, as have topologi­

cal transformation groups: the problem is that in nearly 
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all the literature the groups studied have been locally 

compact. Unfortunately, at least in this aspect, it is the 

case that if X is a homogeneous continuum, H(X) is not 

locally compact, as we shall see later. Also these groups 

very much fail to be abelian. 

2.	 Definitions, Notation, Background Theorems 

In this paper a continuum is a compact, connected, 

metric space. A topological space X is homogeneous means 

that if x and yare points of X, then there is a homeo­

morphism h from X onto itself such that hex) = y. N 

denotes the positive integers. If A is a collection of 

sets, A* denotes the union of the members of A. 

If X is a topological space, H(X) denotes the set of 

all homeomorphisms from X onto itself. If X is a continuum, 

then H(X) is a complete separable metric topological group. 

The metric that we will use is the familiar "sup" metric; 

i.e., if d is a metric on X (compatible with its topology), 

and hand f are in H(X), then Pd(h,f) lub{d(h(x),f(x» I 
x E X}. When no confusion arises, P will just be p. Thed
 

sup metric (p) induces on H(X) the con~act-open topology.
 

To say that (G,X) (where G is a topological group and 

X is a topological space) is a topo~ogica~ transformation 

group means (1) there is a continuous map ~: G x X ~ X such 

that if h,g are in G, x is in x, and I is the identity in 

G, then ~(gh,x) = ~(g,~(h,x» and ~(l,x) = x. A trans­

formation group is po~ish if both G and X are polish, that 

is, they are both separable and metrizable by a complete 

metric. If x E X, we will use G to denote the stabi~izer x 
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subgroup of G with respect to x, i.e., G x {g E Glg(x) x}, 

and G(x) will denote the orbit under G of x in X, i.e., 

G(x) = {y E xl there is some h in G -such that h(x) = y}. If 

A ~ G, x E X, A(x) = {y E xl there is some h in A such that 

h(x) y}. We will say that (G,X) is transitive, or that 

G is transitive on X, if whenever x and yare points of X, 

there is some h in G such that ~(h,x) = y. 

The following is a somewhat simplified statement of 

Effros 's theorem [U2]: 

Effros's Theorem. Suppose (G,X) is a polish topologi­

cal transformation group. Then the following are equiva­

lent: 

(1) For each x in X, the map ~x: G/G ~ G(x) defined x 

by ~x(gGx) = g(x) (where 9 E G) is a homeomorphism from 

G/G on to G(x) . x 

(2) Each orbit is a Go set in X. 

(3) Each orbit is second category in itself. 

G. Ungar observed in [U2] that the following is equiya­

lent to each of the 3 statements above in the theorem 

(with, of course, the same hypothesis): For each x in X, 

the map T : G ~ G(x) defined by Tx(g) = g(x) is an openx 

map of G onto G(x). Note that if X is a homogeneous con­

tinuum then H(X) (x) = X for x E X. 

A couple of years ago, F. D. Ancel [A] proved a slightly 

different version of Effros'stheorem, which is at times 

applicable where the original version was not (and vice 

versa). This version follows. 
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Ancel's Version of Effros's Theorem. Suppose the com­

plete separable metric topological group G acts transitively 

on a metric space X. Then G acts micro-transitively on X 

if and only if X has a complete metric. (The action of G 

on"X is micro-transitive if for every x in X and every 

neighborhood u of 1 in G, u(x) is 'a neighborhood of x in X.) 

If n E N, Fn(x) denotes the nth configuration space 

of X, that is, Fn(X) {(xl ,x2 ,---,x ) IX E X for each n i 

i < n, and x. = x. iff i = j}. The space X is n-homogeneous 
- 1 J 

(strongly n-homogeneous) means that if {xl ,x2 ,---,x } and n 

{Yl'Y2'---'Yn} are both n-element subsets of X, then there 

is an h in H(X) such that h{xl ,x2 ,---,x } = {yl ,y2 ,---,y }n n 

(h(xl ,x2 ,---,x ) = (Yl'Y2'---'Y ). Ungar [U2] has shownn n

that for a homogeneous continuum which is not the circle, 

n-homogeneity and strong n-homogeneity are equivalent. 

A topological space is Galois if for each x in X and 

open u containing x there exists a homeomorphism h in H(X) 

with h(x) ~ x and ht(X-u) = id _ • X is an isotopy Galoisx u 
space if for each x in X and open u containing x, there 

exists an isotopy F: X x [0,1] ~ X with F id (i.e., 1),o x 
Fl(X) ~ x, and Ftt(X-U) = id(X_u) for each t in [0,1]. X 

is homeotopically homogeneous if for every x and y in X, 

there exists an isotopy F: X x [O,ll ~ X with F idx,o 

Fl(X) = y. X is isotopically reprepentable if for every 

x in X and u open in X such that x E u, there is an open 

set v in X with the following properties: (1) x E v ~ U; 

(2)	 if y E v, there is an isotopy F: X x I ~ X such that 

idX' (b) Fl(X) = y, and (c) for every t in [0,1] 
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and z ~ v, Ft(Z) = z. X is peppesentab~e if for every x in 

X and u open in X with x E u, there is an open set v in X 

with the following property: if y E v, there is an h in 

H(X) such that h(x) = y and h(z) = z for z ~ v. 

A separable space X is said to be aountab~e dense homo­

geneous if whenever A and B are countable dense subsets of 

X, there is some h in H(X) such that h(A) = B. If X is a 

continuum, then representable • countable dense homogeneous 

• n-homogeneous • (n-l)-homogeneous (n E N, n > 2), [BN, 

BT and Ul]. 

The following will be needed [F]: Let h be a homeo­

morphism on a compact metric space X into a compact metric 

space Y, and let n be a positive integer. We define 

n(h,n) = 2-ninf{d' (h(x),h(y» Ix,y E X and d(~,y) ~ ~}. 

(d denotes a metric on X compatible with its topology, and 

d' denotes a metric on Y compatible with its topology.) 

Fopt's Lemma. If hl ,h2,··· is a sequenae of homeo­

mopphisms of X onto itse~f suah that p(hn,h +l ) < n(hn,n)n

fop eaah n~ then the sequenae aonvepges unifopm~y to a 

homeomorphism h of X to itseZf. (p denotes the sup metria 

in H(X) with pespeat to d.) 

A homeomorphism h in H(X) is ppimitive~y stab~e if histhE 

identity on some nonempty open set in X. A homeomorphism 

is stab~e if it is a composition of primitively stable 

homeomorphisms. 

Suppose that R denotes the real numbers and {h la E R}a 

is a subcollection of H(X) with the following properties: 
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(I) For all a, 6 E R, h +6 = h h • (2 ) If r: R x X -+ Xis a a 6 
defined by r(a,x) = h (x), then r is continuous. Then the a
 

subcollection H= {h la E R} will be called a flow in X.
 
a 

If x E X, {h (x) Ih E H} is the orbit of x under H, or H(x).a a 

The set of all points x of X with the property that 

ha(x) = x for a E R will be called the invariant set of H. 
The following result is by A. Beck [B]. It was given 

in the form below by James Keesling [K]: 

Theorem (Beck). Let X be a metric space a~d F: R x X 

be a fZow on X with invariant set 8. Then for any cZosed 

set 8' containing 8 one can construct a new fZow 

F': R x X -+ X whose invariant set is 8'. Moreover, for 

any x E X - 8' with orbit O(x) under F, the orbit of x 

under F' is just the set of points which can be joined to 

x by an arc in O(x) - 8'. Note that one may take the 

invariant set 8 to be the empty set. 

If G is a topological group and T is a continuous
 

homomorphism of the reals into G, then T (R) is a one
 

parameter subgroup of G. The following is well known.
 

This form of it is due to J. Keesling [K]:
 

Lemma. If G is a nontriviaZ connected ZocaZZy com­

pact topoZogicaZ group, then G has a nontriviaZ one
 

parameter subgroup.
 

3. Some Basic Results 

Unless otherwise stated, X will denote a homogeneous
 

continuum, d will denote a metric on X compatible with
 



377 TOPOLOGY PROCEEDINGS Volume 6 1981 

its topology, and p will denote the associated sup metric 

on H(X). If £ > 0, k E H(X), N£ (k) = {h E H(X) I p (h, k) < £}. 

Theorem 1. H(X) is not ZoaaZZy aompaat. 

Proof. Assume H(X) is locally compact and u is an 

open subset of H(X) such that 1 E Ui U is compact in H(X)i 

and u(x) ~ X for some x E X. From a theorem of James 

Keesling [K], it follows that H(X) is zero-dimensional. 

Then there is some point q belonging to the boundary of 

u (x) . There is a sequence ql' q2' • •• of u (x) such that 

ql,q2'··· converges to q. For each i there is some hi in u 

such that hi(x) = qi. Since hl ,h2 ,··· has some limit point 

h in u, some subsequence h ,h , ••• of h ,h2 ,··· convergeslPI P2 

to h. Then h (x),h (x) , ••• converges to h(x) and since 
PI P2 

converges to q, h(x) = 1.qPl,qP2' 

This is a contradiction. 

Theorem 2. If x is a point in X~ then H = H(X)x is x 

an unaountabZe~ aZosed subgroup of H(X) . (Note that it 

then follows that H is complete and dense in itself.)x 
Ppoof. It is well known that H is a closed subgroupx 

of H(X). We need to prove that it is uncountable. 

Suppose first that there is some point x in X such 

that H is discrete. Now 1 E H ' and 1 is not a limit x x 
point of H , so there is £ > 0 such that N (1) n (H - {I})x £ x 

= ~. 

Suppose that xl ,x2 ,··· is a sequence of points of X 

which converges to x, and £1'£2'··· is a decreasing sequence 

of positive numbers which converges to 0 such that for each 
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i, N (1) contains a homeomorphism in H - {I}.
£i xi 

Now N£/16(1) (x) is open in X, and there is some M in 

N such that if m > M, N£ (1) (x ) ~ N£/16(1) (x) and £M < £/16.mm 

For each m > M, there is some h in N£ (1) such that m m 

hm(x ) = x ' but h ~ 1; and there is some k in N£/16(1)m m m m 

such that km(x) = xmo Then k~lhmkm E N£/4(1)o This is a 

contradiction, so there are no such sequences. 

There is some a > 0 such that if zEN (1) (x), ~ a a 

contains no homeomorphism in Hz - {I}. Then T tN / (1) is 
x a 2 

a homeomorphism from N / (1) onto N / (1) (x), since it is a 2 a 2 

both open and one-to-one. 

Using translations of H(X), one easily sees that H(X) 

is locally homeomorphic to X. But then H(X) must be locally 

compact, a contradiction, so H is not discrete, and it 
x 

must be infinite. But it must contain a limit point of 

itself, too, and so each point of H is a limit point of x 

H ' and, since it is closed, it must be uncountable. x 

The preceding theorem improves somewhat the result of 

G. Ungar [U2] and William Barit and Peter Renaud [BR] that 

there are no uniquely homogeneous continua. (A nondegen­

erate continuum is uniqueZy homogeneous if for each x and y 

in X, there is exactly one h in H(X) such that h(x) y.) 

To see this, note that if x and yare in X, then there is 

some h in H(X) such that h(x) = y, and hH = {k E H(X) Ik(x)
x 

y}. Thus this set is uncountable and dense in itself. 

Remark. Suppose that H is a complete subgroup of 

H(X) with the property that H is transitive on X. Although 
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(H,X) is a polish topological transformation group with H 

transitive on X, it may well be the case that, with respect 

to H, X is uniquely homogeneous, i.e., it may be the case 

that if x, yare in X, there is exactly one h in H such that 

h(x) = y. However this would be the case if and only if X 

were itself a compact metric topological group (not neces­

sarily a continuum). In fact, in that case X is homeomorphic 

to H. 

Theorem 3. Suppose X is an infinite compact metric 

space, and D is a complete infinite subgroup of H(X). If 

x E X such that D(x) is closed in X, and x' E D(x), then if 

Proof. Suppose that there is x' in D(x) such that 

D ' ~D. Let A= {D ID CfD and z E D(x)} U {D}. Now x r x Z Z x x 

{D "D } is a monotonic subcollection of A, so there is a 
x x 

maximal monotonic subcollection B of A that contains 

{DX"DX}· 

Since B is a collection of closed sets, F = {D - D I 
Z 

DEB} is a collection of open sets, and some countable 
Z 

subcollection E of B, which will be denoted by {D ,D ••• }
zl z2' , 

has the property that {D - D Ii E N}* = F*. The sequencez. 
1 

D· ,D , ••• has a subsequence D ,D, that is maximal 
zl z2 Yl Y2 

with respect to the property that D ~f D ~ Now if 
Yl Y2 f 

this subsequence is finite, a contradiction is reached 

immediately: There is some n in'N such that D ,D , ••• 
Yl Y2 

D ,D ,···,D ,anditfollowsthatnB=D There is 
Yl Y2 Yn Yn 
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some i in D such that i(y ) = x. Then i-ID i = D and n Yx n 

i-ID i = D where s is the point of D(x) such thatx' s 

i(s) = x'. But then Ox' ~ Ox implies that i-lOx,i ~ i-lOxi 

and D cD, which is a contradiction to the maximality
s f Yn 

of B. 

Thus, assume that D ,D , is an infinite sequence. 
YI Y2 

The same problem arises: Since X is compact, YI'Y2'··· 

must have a convergent subsequence Y ,y, Call the 
PI P2 

limit of the subsequence y. Note y E D(x), and that 

Ancel's version of Effros'stheorem can be applied to 

(D, D (x) ) • 

Now if for some J in N, DA cD, there is some h in
Y f Y

pJ 

DA - D There is a sequence h ,h2 ,··· of homeomorphisms1Y YpJ 

of D which converges to h such that for each j in N, 

h. (y) = Y . There is another sequence k l ,k2 ,··· of 
J Pj 

homeomorphisms in D which converges to 1 such that for each 

j in N, k. (y ) = y. Then for each j, h.k.{y )
J Pj J J Pj 

and h l k l ,h2k 2 ,··· converges to h. 

But there is an open set u in D such that h E u and 

u n D = ~, which means that if j' > J, h.,k., E D C 
J J YpjYpJ 

D , so hJ,kh ~ u. This can't be. Then DA C 0 for 
YpJ Y Yp

J 

j E N, and nB = OA, and, again, we have a contradiction. 
Y 
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Theorem 4. Suppose X is a homogeneous aompaat metria 

spaae. Suppose that D is a aomplete subgroup of H(X) that 

is transitive on X, and that x E X. Let C {z E XID = D }.x x z 

Then E = {hC Ih E D} is a partition of X into alosed homeo­x 

morphia sets and, further, if y E X and h E D suah that 

h(x) = y, hC = C. Also, Cx' aonsidered as a subspaae ofx y 

X, is homogeneous (with respeat to D as well as H(X»). 

Let G' = {h E Dlh(C ) = C }\and G = {htC Ih E G'}. Then 
x x t x 

G' is a alosed subgroup of D, G is a aompaat subgroup of 

H(C )' G is homeomorphia to Cx' and C is uniquely homo­x x 

geneous with respeat to G. 

Proof. For convenience, let C C. C is closed in x 

X. 

(1) Suppose h is in D such that h(C) n C ~~. Then 

there is some c in C such that h(c) is in C. Let h(c) c' . 

-Now hD h = hD h-1 Suppose z E C. Letc 
-1 = Dc' c' = Dc· 

h(z) = z' . Since D D hD h-1 = hD h-1 
z = Dc' c c z = Dz' · 

Thus h(C) c: C. Likewise h-1 (C) ~ C, and so h(C) = C.-
(2) If hand k are in D such that h(C) n k(C) ~ ~, then 

h(G) = k(C): Since h(C) n k(C) ~~, k-1h(C) n C ~~, and 

k-1h(C) = C, or h(C) = k(C). Thus E = {h(C) Ih E o} is a 

partition of X into homeomorphic closed sets. 

(3) Suppose y E X and h E D such that h(x) y. Then 

1 1
hDxh- D ' If z E ex' D = hDzh- = Dh(z)' and soy y 

h(z) E C. Then hC c: C. Similarly, h-lcy c: C , and so y x-y -x 

hC = C . 
x Y 

(4) It is easy to see that G' is a closed subgroup of 

D, and it is also easy to see that G is a subgroup of H(C ).x 
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Suppose c and c' are in C C. By the definition of C,x 

e = ltc is the only element of G which maps c to c (or anyx 

point c to itself). Then there is exactly one homeomorphism 

g in G such that g(c) = ct.

(5) Choose c E C. Define R : H(C) ~ C ~y Rc(f) = fCc)c 

for f E H(C). Then R tG is a homeomorphism from G onto C: 
c 

From Effros's theorem we know that R is an open map
c 

from H(C) onto C. It is clear that R IG is a one-to-one c 

map from G onto C. But is it an open map? 

Suppose 0 is an open subset of G. If Rc(o) is not 

open, then there is some d in Rc(O) which is not in its 

interior, i.e., there is a sequence d 1 ,d2 ,··· of X which 

converges to d such that for each i, d ~ Rc(o). (Note:i 

o and Rc(o) must-be uncountable.) Since d E Rc(O), there 

is some f in 0 such that fCc) = d. Now f = f'tC for some 

f' in D. For each i there is unique f in G such thati 

f. (c) = d., and there is some f! in D such that f!tC f .• 
~ ~ ~ ~ ~ 

Now fi(c),fi(c), ••• converges to f' (c) = d, so there is a 

sequence h1 ,h2 ,··· of D which converges to f' such that for 

each i, hi{c) = fi(c) d. Then fi te = hite = f i (since 

f i unique), and f 1 ,f2 ,··· converges to f. But then 

eventually f i E 0 and fi(c) = d i E Rc(o). 

Thus, R (0) is open, and R tG is an open map from G c c 

onto C. si~~e R tG is both open and one-to-one, R tG is a c c 

homeomorphism from G onto C. 

Then the proof is finished, since it now follows that 

G and C are homeomorphic, and G is compact. 
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An application of Theorem 4 might be something like 

the following: Suppose X and Yare compact homogeneous 

metric spaces. Suppose further that Y is a topological 

group. Then X x Y is a compact homogeneous metric space, 

and H(X x Y) admits a complete sUbgroup D which is (A) 

transitive on X x Y, and (B) algebraically and topologically 

equivalent to H(X) x Y. If (x,y) E X x Y, C( ) = {x} x Yx,y
 

and thus E {{x} x Ylx EX}.
 

Theorem 4 also gives the following corollary. 

Corollary 5. Suppose X is a homogeneous continuum,
 

and x E X. Then the C of Theorem 4 is a nowhere dense
 x 

-compact subset of X, where D = H(X). 

Proof· C cannot have interior unless C "X. But x x
 

C X implies X is uniquely homogeneous.
x 

Corollary 5 is really not very satisfying, because it 

seems to this author that one should be able to do much 

better. It seems that, in the case of (H(X),X) with X a 

homogeneous continuum, C should be degenerate. But we x 

have been unable to prove that that is so. Also, one should 

note here that if it does turn out that for every homogeneous 

continuum X, C is degenerate, then Corollary 5 and Theorem x
 
9 (which appears later) become trivial. One might consider
 

the following question: 

Question. Suppose that X is a nondegenerate homogene­

ous continuum. If x and yare points of X, is there an h 

in H(X) such that h(x) = x, but h(y) ~ y? 
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Remark. If X is a homogeneous continuum, H(X) does 

not admit "small" open subgroups. This is a consequence 

of the following even more important fact, which is very 

easy to prove: Suppose ° is a symmetric open subset of 

H(X) which contains 1. Then 0 {f E H(X) I for some n in o 

N, f=fn-fn_l---f where for each i ~ n, f E o} is thel i 

closed-open subgroup of H(X) generated by 0, and Do(X) X 

for x E X. (This also follows from results in [M].) 

Thus if u is an open subset of H(X) which contains Do, 

there are limits on just how small u can be, since u(x) X. 

Theorem 6. If x betongs to a homogeneous continuum 

X~ there is a dense Go subset Ex of X such that if y E Ex~ 

H(X)x(y) is uncountabte and dense in itsetf. 

Proof. Again, for convenience, let H = H(X) and 

H H(X)x. Suppose that 0 1 ,02 ,--- is a basis of symmetric
X 

open sets for 1,. with 0i ~ 0i+l for i E N. Then Do ,00 ,--­
I 2 

is a nested sequence of closed-open subgroups of H(X) with 

the property that Do. is transitive on X for each i. For 
]. 

each i E N, apply the results of Theorem 4 to (0 ,X).
o. 
~ 

Let C. denote the C associated with (0 ,X). Then C. is 
1. X O. 1. 

~ 

either nowhere dense, or C has interior and is X. But nowi 

C = X means that C is uniquely homeomorphic with respecti i 

to Do. This cannot be since H n 0 is uncountable. 
i x °i 

Then Ci is nowhere dense and Ex = X - U~=lCi is a dense Go 

subset of X. 

Suppose y E Ex. For each i there is h. E o. such that 
1. ~ 

hi(y) ~ Y and hi (x) = x. (Otherwise kED and k(x) = x o. 
~ 



TOPOLOGY PROCEEDINGS 1981 385 

implies key) = y.) Then Hx(y) is at least infinite. Since 

H is transitive on Hx(y) and y is a limit point of Hx(y),x 

every point of Hx(y) is a limit point of Hx(y). 

Suppose Hx(y) is countably infinite. List the ele­

ments of Hx(y): Yo y'y1'y2'···. For each i, let Ai = 

{h E Hxlh(y) = Yi}. Then U~=OAi H ' which is an uncounta­x 

ble complete metric space. Then H is second category in x 

itself and some Ai is second category in H . (See [KK] for x 
a discussion of this.) 

Now A. is closed in Hand hA = A. where h is some 
~ x 0 ~ 

element of H such that hey) = Yi. Then A has interior in x o 

H ' and, likewise, so does each A . For each i, letx j 

B. = A~. But A is a group, so it is both closed and open 
~ ~ 0 

in IIxi and the Ai'S divide H up into a countable number ofx 

mutually exclusive open sets. In fact, it must be the case 

that Bi = Ai for each i, and, specifically, A ~ on n H o x 

for some n. But this is a contradiction. Hx(y) is uncounta­

ble. 

Remark. If x and yare points of a homogeneous con­

tinuum, then H (defined as in Theorem 6) need not act micro­x 
transitively on Hx(y). For example, the dyadic solenoid L 

is a compact, connected abelian group containing a continu­

ous homomorph D of the reals as a dense sUbgroup ([HR], p. 

114). Then Beck's theorem (Section II) gives that if x and 

yare 2 points of D, Hx(y) must be dense in L, and since it 

is a dense Fa set in L it does not have a complete metric, 

and thus Ancel's version of Effros'stheorem gives that H x 

does not act micro-transitively on Hx(y). 
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However, Hx(y) does at least have to be a Borel subset 

of X, for X compact metric. (See [KK, E].) 

If X is a homogeneous conti~uum, is there, in general, 

a class of subgroups of H(X) such that if G is one of those 

subgroups, and x E X, then G acts micro-transitively on 

G(x)? One possible candidate might be the set of all closed, 

normal subgroups of H(X). This author doesn't know whether 

a closed, normal subgroup of X would have such a property 

or not, but does have the following: 

Theorem 7. Suppose X is a homogeneous, compact metric 

space, H is a complete subgroup of H(X) which is transitive 

on X, and C is a normal subgroup of H. Then C= {C(x) Ix E X} 

is a partition of X into homeomorphic sets. Further, 

o = {C(x) Ix E X} continuously partitions X into closed, 

homeomorphic	 sets. 

Proof. Suppose first that C is a normal subgroup of 

H. Now if x E X, h E H, hC(x) Ch(x) since C is normal. 

Suppose C(x) n C(y) ~ ~ for x, y in X. There is some 1 in 

H such that ~(x) = y, and thus C(y) C(i(x» iC(x). 

Then C(x) n C(~(x» #~. There are k and k' in C such that
 

k(x) k'~(x), and k,-lk(x) = ~(x). Then y E C(x), and
 

C(y) c C(x). Likewise, C(x) ~ C(y), and so C(x) = C(y).
 

We are done with the first part.
 

It is also the case that U = {C(x) Ix E X} is a parti ­

tion of X into closed homeomorphic sets: 

If z E C(x), C(z) =C(x). Then C(x) is a union of 

sets from C. Suppose z E X such that C(x) n CTZr # ~. 

If Y E c(x) n C(z), C(y) =C(x) n C(z). 
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Suppose C(y) f C(x). Let 0 = {C(r) Ir E x}. Since 

{C(y),C(x)} is a monotone subcollection, there is a maxi­

mal monotone subcol1ection 8 of 0 which contains {C(y),C(x)}. 

so CTtf = C(i(x» = iC(x). Then C(i(y» iC(y) f iC(x) 

But nc(s)
8 

~ ~, so there is some point t E nC(s)
8 

and 

C(t) c nC(s).
-8 

There is some i in H such that i(x) = t and 

= 

C(i(x» = C(t). However, this contradicts the maxima1ity 

of B. 

Well, then C(y) = C(x). Likewise C(y) = C(z), and 

C(z) = C(x). We have a partition 0 of X into homeomorphic 

closed sets. 

From Theorem 4 of [R] it follows that 0 continuously 

partitions, or decomposes X. 

Theorem 8. Suppose X is a homogeneous compact metric 

space, H is a complete subgroup of H(X) which acts transi­

tively on X, and C is a collection of subsets of X such that 

(1) if C, DEC and h E H, then hC n D ~ ~ implies hC = D, 

(2) C* = X. (In other words, C is a partition of X into 

homeomorphic sets which H respects.) If x E X, let C(x) 

denote the eZement of C which contains x, and Zet 

R = {h E Hlh(x) E C(x)}. Then if x,y E X, R is a sub­x x 

group of Hand Rand R are conjugate, i.e., there is h x y 

in H such that R = h-1R h. Further, if the elements of x y 

C are closed subsets of X, then for x E X, R is closed x 

in H. 

Proof. Of course, Cdefines an equivalence relation 

on X. Fix x E X. Now 1 E R . If h E Hand z E X, then 
x 
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since h(z) E hC(z) n C(h(z», hC(z) C(h(z». If h E R ' x 

C(x) = hC(x) = C(h(x», and h-1C(x) h-l(hC(x» C(x), so 

h-l(x) E C(x) and h-1 E R. If g hER, h- l E Rand 
x ' x ·x 

gh-l(x) E gh-1C(x) = gC(x) C(x). Thus, R is a subgroup.
x 

Suppose x,y are in X. There is h in H such that 

hex) y. Then h-1R h is a subgroup of H, and further' 
y 

h-1Ryh = Rx If ~ E R y ' ~(y) E C(y). Then h-l~h(x) E 

h-lihC(x) h-liCh(x) = h-liC(y) = h-1C(i(y» = h-1C(y) 

1 -1 -1C(h- (y» C(x) and h ih E R . Likewise, hRxh cR. x Y 
Then h-1R heR means R c hR h- l and R hR h- l 

Y x Y x' Y x·
 

Suppose x E X and C(x) is closed in X. If h ,h2 ,···
l 

is a sequence of homeomorphisms in R which converges to h,x 

then hl(x) ,h2 (x) ••• converges to hex) in X and since 

hi(x) E C(x) for each i, hex) E C(x). Thus h E R ' and R x x 

is closed. 

Note. It is not possible to improve the preceding to 

get that the Rx's are normal. For example, take H(X) to 

be H, and Cto be the trivial partition of X, i.e., 

C= {{x}lx E x}. Then R = H(X)x which is not normal in 
x 

H (X) • 

For more information on partitions of homogeneous con­

tinua, one might read [R], noting in particular Theorem 4 

from that paper. 

Suppose that X is a homogeneous continuum. Below we 

list some of the more obvious normal subgroups of H(X) 

that one might want to consider: 
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(1) The Center C = {h E H(X) 1 if f E H(X), hf = fh}. 

Is C always degenerate? It is quite easy to check that it 

is if X is 2-homogeneous, has the fixed point property, or 

has property *. [To say that X has property * means that 

if M is a subcontinuum of X, p, q are points of M, and 

s > 0, there exists a homeomorphism h E H(X) such that 

h(p) = q and h(z) = z for each z outside the s-neighborhood 

of M. Wayne Lewis [Ll] showed that the pseudo-arc has 

property *. Clearly any representable continuum has this 

property.] This author doesn't know the answer to the 

general question, but does have the theorem below. Cis, 

at most, a compact, abelian, totally disconnected, nowhere 

dense subgroup of H(X). Thus, we have a certain basis for 

the claim that H(X) must very much fail to be abelian. 

(2) The commutator Q = {aba-lb-l/a,b E H(X)}. If 

x E X, is it always the case that Q(x) = X? If X is 

2-homogeneous or has the fixed point property then it is 

easy to check that Q(x) = X. This particular subgroup 

proved to be rather useful in [PI]. 

{g E H(X) Ig is stable}. 

+-g-'-E H (X) I9 is a finite composition or homeo­

morphisms, each of which leaves some point of X fixed}. 

(5) G3 the component of the identity. 

(6) G4 the arc-component of the identity. 

(7) G5 {g E H (X) I there is a continuum C from 1 to 

in H (X) }.9 

(8) G = niD o . where (1) 01'02.'··· is a basis of sym­
l. 

metric open sets for 1, with 0i ~ 0i+l for i E N, (2) Do. 
l. 
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is the closed-open subgroup generated by 0i (see Theorem 6). 

If x E X, is G(x) = X? Must G at least be nondegenerate? 

Theorem 9. If X is a homogeneous continuum and C 

denotes the center of H(X), C is a compact, totaZZy dis­

connected, nowhere dense subgroup of H(X). 

Proof. If f E C and x € X, then f-lH. f = H H(X)x.
x x 

But also f-lH f H 1 . Define F = {z E XIH H 1 
x f- (x) x x z 

and G {f E H(X) If(F ) = Fxl. From Corollary 5, F is a x x x 

nowhere dense compact subset of X. Now C ~ G ' for f E C x 

implies H = Hf(x) and f(x) E F . Then f(F ) n F ~ ~ x x x x 

and f(F ) = F . C is by def~nition abelian and since G x x x 

is nowhere dense in H(X), C is nowhere dense. Also, C is 

closed in H(X). 

Note that C c G for each y in X. Define D = {ftF I y x x 

f E Gxl. In theorem 4, we proved that D is homeomorphicx 

to F . Now C is homeomorphic to a subgroup of D : Define x x 

~: C ~ D as follows: ~(f) = flF for f E C. ~ is clearlyx x 

continuous. ~ is also one-to-one: Suppose f,g E C. If 

~(f) = ~(g), then z E F implies fez) = g(z), and specifi­x 

cally, f(x) = g(x). Suppose y is a point in X. There is 

some a in H(X) such that a(x) = y. Then af(x) = ag(x) 

fa(x) = fey) = ga(x) = g(y), and f = g. ~ is also 

reversibly continuous: Suppose f tF ,f2 tF '··· is al x x 

sequence in ~(C) which converges to ftF in ~(C). Then x 

f (x),f (x), ••• converges to f(x). Suppose y E X, andl 2 

Yl'Y2'··· converges to y. There is a sequence a l ,a2 ,··· 

of homeomorphisms of H(X) which converges to a homeomorphism 

U of H(X) such that ui(x) = Yi for each i and a(x) = y. 
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Then u l f l (x),u 2f 2 (x),--- converges to uf(x) and since 

uifi(x) = fiai~~l' for each i and uf(x) = fa(x), we have that
I 

f l (Yl),f 2 (Y2)'--- bonverges to f(y). Then f ,f2 ,--- con­l 

verges to f. So C and ~(C) are homeomorphic. Also' ~(C) is 

a group. Since C is complete, ~(C) is complete (considered 

as space), which means that ~(C) ~(C). Then ~(C) is 

compact, and so is C. Also C(x) C(x) for x E X. 

Let C= {C(x) Ix EX}. Cis a partition of X into 

closed homeomorphic sets with the property that if 

k, h E H(X), Y E X, hC(y) n kC(y) ~ ~ means hC(y) kC(y). 

We must show that C is totally disconnected. Suppose 

not; suppose C contains a nondegenerate connected set. Let 

Co denote the component of 1 in C. From one of the lemmas 

in Section 2, we know then that C has a non-trivial one 

parameter $ubgroup f: R ~ Co (where R denotes the reals, 

f is a continuous homomorphism from R in Co). Then 

y: R x X ~ X defined by y(t,x) f(t) (x) is continuous and 

is a non-trivial flow in X. Now the invariant set S of 

y is~: There is some t such that f(t) ~ 1 and since if 

x E X, f(t) moves everything in C(x), f(t) moves everything 

in x. 

Fix x E X, pick f E Co - {l}. Then suppose 0 is an 

open set in X such that (1) x E 0, (2) f(x) ~ o. There is 

a new flow y': R x X ~ X with invariant set S' = X - 0 and 

the property that if A is an arc in 0 such that A c M where 

M = {Yt(x) It E R} - S', and z E A - {x}, there is t E R such 

that Yt(x) = z. But then fyt(x) f(z) and ytf(x) = f(x). 

This is a contradiction: fyt(x) ytf(x) but x ~ z 
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implies f(x) ~ f(z). 

C does not contain a nondegenerate connected set. 

4. Results Involving Stronger Homogeneity Properties 

Again, unless otherwise stated, X will denote a homo­

geneous continuum, d will denote a metric on X compatible 

with its topology, and p will denote the as~ociated sup 

metric on H(X). If E > 0, k E H(X), NE(k) = {h E H(X)I 

p(h,k) < E}. 

Next we extend a result that appeared in [Pl]. There 

it was proved that a product of homeotopically homogeneous 

continua is representable. 

First we need a lemma. 

Lemma 10. Suppose X is a homeotopically homogeneous 

continuum. Let A = {F: [0,1] -+ H(X) IF(O) = 1 and F is con­

tinuous}. Then (1) A is a complete, metric, separable, 

arcwise connected, locally arcwise connected group, and 

(2) if x E X and E > 0, there is some 0 > 0 such that if 

y e: Dc (x) = {z e: Xld(x,z) < <5 } , then thepe is a path F E A 

such that F 1, F (x) y, and d(Ft(Z),z) < E if for o l 

each (z, t) E X x [0,1] . 

Proof· Let A' = {F: [0,1] -+ H(X) IF is continuous}. 

Put on A' the usual sup metric p (i.e., if F, G E A', 

p(F,G) = lub{p(Ft,Gt ) It E [O,l]}). Now A' with this metric

is a complete separable metric space. (This is well 

known: see, for example [KK].) 

Now A ~ A', and A is closed in A'. Further A is a 

topological group under the composition operation. Thus A 

is a complete separable metric topological group. 
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A is arcwise connected: Suppose F E A. Define 

¢: [ 0 , 1 ] -+ A as follows: If t, t E [ 0 , 1], ¢ (t) t = Ft. t · 

Evidently ¢ is at least well-defined. Is ¢ continuous? 

Suppose t l ,t2 ,··· converges to t in [0,1]. Then if 

tl,tl ,··· converges to t in [0,1], t l t l ,t2t2 , converges to 

tt in [0,1], and F t , ••• converges to F . Thent tt1 2 

¢ (tl)t ,¢(t2)t , ••• converges to ¢(t)t and ¢(tl ),¢(t2),··· 
1 2 

converges to ¢(t). Then there is a path from lA to F 

(where lA is the identity for A), and there is an arc from 

lA to F. 

It then follows that A is locally arcwise connected 

by Theorem 3.7 of Ungar in [U2]. Then (A,X) is a polish 

topological transformation group when the action ¢ of A on 

X is defined by ¢(F,x) = Fl(X) for (F,x) E A xX. Further, 

A acts transitively on X, and thus Effros'stheorem can be 

applied. 

We need to prove (2). Suppose x E X and € > O. Let 

Ne: (1A) = {F E AI~ (F , 1A) < e:}, and Ne: (1A) (x) = {z E XIz = F1 (x) 

for F E Ne:(lA)}. There is some connected open subset 0 of 

A such that lA E 0 ~ N£(lA). Then x E o(x) (= {z E xl 
there is F E 0 such that Fl(X) = z}) which is open in X. 

Suppose z E o (x) . There is some G in 0 such that Gl(x) = z. 

Then G E Ne: (lA) · Then G is the desired path. 

Theorem 11. Suppose X and Yare homeotopically homo­

geneous continua. Then X x Y is isotopically representable. 

Proof. Let Ax = {F: [~l] -+ H(X) IF is continuous and 

F Ix} and A = {F: [0,1] -+ H(Y) IF is continuous and F lyleo o 
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Suppose (x,y) E X x Y and u = U x u is open in X x Y. 
x Y 

In this proof, we will abuse notation somewhat and let d 

denote both a metric on X compatible with its topology, and 

a metric on Y compatible with its topology. There is s > 0 

such that o-TXf c U and o-TYf c u (if z E X, a > 0,
S - x E- Y 

Da(Z) = {t E Xld(~,z) < a}). There is some positive number 

6 < s/8 such that if t E D~ (y), there is G: ,[0,1] -+ H(Y) in 

Ay such that Go 1, Gl(y) = t, d(Gt(w) ,w) < s/4 for 

(w,t) E Y x [0,1]. Pick y' E D6(y) - y. There is some 

open set V(2) such that y E V(2) ~ V(2) ~ (Dg(y) - y) n u •Y

There is some E > 0 such that DE(y) ~ v(2). There is 

G': [0,1] -+ H(Y) in Ay such that G~ = Iy' Gi(y) = y', 

d(G~(w),w) < s/4 for (w,t) E Y x [0,1]. 
t 

Now there is some positive number a < s/8 such that 

if zEDa (x) , there is an F: [0,1] -+ H(X) in AX such that 

F F (x) = z and d (F (w) ,w) < £/4 for (w, t) E X x [0,1] . o lx' l t 

Pick x' E Da (x) • There is an F': [0,1] -+ H (X) in Ax such 

that F' lX' Fi(x) = x' and d(Ft(W),w) < £/4 for (w,t) E o 

X x [0,1]. Define r: Y -+ [0,1] as follows: 

r(b) = E-min{d!y,b),E} for bEY. Define~: X x Y -+ X x Y 
£ 

as follows: If (a,b) E X x Y, ~(a,b) = (Ff(b) (a),b). Now 

if b ~ v(2), r(b) = 0 and ~(a,b) = (a,b). Also, ~(x,y) 

(Fi(x),y) = (x',y). Note that ~ is a homeomorphism. 

Then define n: X x Y x [0,1] -+ X x Y as follows: if 

(a , b , t) E X x Y x [ 0 , 1], n (a , b , t) (Ft r (b) (a) , b). Then 

n is a path of homeomorphisms in H(X x Y), and (1) no = lXXY' 

(2) n (x,y,l) = (Fr(y) (x) ,y) = (x: ,y). 

There is a positive number 8 < £/8 such that 

D8(X') ~ Da(x). Define S: X -+ [0,1] as follows: 
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8-min{d(a Xl) 8} .S(a) = *" for a E X. Def1ne K: X x Y ~ X x y 
o 

as fo llows : K(a , b) (a , GS(a) (b) ) for (a , b) E X x Y. K is 

a homeomorphism; if a ~ Dg(x ' ), S(a) = ° and K(a,b) = (a,b) 

for any bEY. Also, K(x',y) = (Xl,yl). 

Define K: X x Y x [0,1] ~ X x Y by K(a,b,t) 

(a,Gts(a) (b». Then K is a path of homeomorphisms such that 

(1) K = lXXY' (2) K(Xl ,y,l) (Xl ,yl).
O 

Define C: X x Y x [0,1] ~ X x Y as follows: if 

-1 -1(a,b,t) E X x Y x [0,1], C(a,b,t) = K n 0 K nt(a,b).t 0 t t 0 

Then C is a path of homeomorphisms such that (1) Co = lxxy; 

(2) C(x,y,l) = (xl,y), and (3) if (a,b) E X x Y such that 

(a,b) t D£(X) x D£(y), then C(a,b,t) = (a,b) for any t in 

[0,1] • 

Similarly, one can construct a path of homeomorphisms 

D: X x Y x [0,1] ~ X x Y such that (1) Do lXXY' 

(2) D1 (c I ,y) = (x I ,y I ), and (3 ) Dt (a, b) (a,b) for 

(a,b) E X x Y - u, and t E [0,1]. 

Then DoC: X x Y x [0,1] ~ X x Y is a path of homeo­

morphisms such that (1) Do Co = lXXY' (2) Dl Cl(x,y)0 0 

(Xl,yl); and (3) D Ct(a,b) = (a,b) for (a,b,t) Et 0 

(X x Y - u) x [0,1]. 

Note that it follows now that any finite or countably 

infinite product of homeotopically homogeneous continua 

is isotopically representable. One might wonder whether 

or not a homeotopically homogeneous continuum is isotopically 

representable. 

In general, stable homeomorphisms seem to be (A) a big 

help when working with homogeneity properties; and (B) rather 
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hard to come by, at least from the standpoint of proving 

that a member of a given class of homogeneous continua 

admits them, unless that is already obvious. However, 

when isotopies and products are involved, it is quite easy 

to get stable isotopies: One can quite easily prove, using 

much simplified techniques from the last proof, the fol­

lowing: 

(1) If X and Yare continua and X admits a non-trivial 

isotopy, then X x Y admits stable homeomorphisms, and, in 

fact, stable isotopies. 

(2) If X and Yare continua, X is homogeneous and 

admits a non-trivial isotopy, then X x Y is an isotopy 

Galois space. 

In fact, when spaces admit isotopies, homogeneity pro­

perties seem to actually get stronger with the taking of 

products. The best example of this is the Hilbert cube: 

it is a product of nonhomogeneous spaces which turns out 

not only to be homogeneous but to have nearly every nice 

homogeneity property imaginable. with spaces which do not 

admit isotopies, the reverse seems to be true: Take a 

product with one of these as a factor, and no matter how 

nice in respects other than the isotopy one it is, the 

product seems to lose most of those nice properties: An 

important example here would be a product involving the 

Menger universal curve M. W. and K. Kuperberg and W. R. R. 

Transue proved in [KKT] that M x M is not 2-homogeneous, 

and M x 5 is not 2-homogeneous (5 denotes the simple closed 

curve). Note that M is representable, and, thus, admits 

very nice stable homeomorphisms. 
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In [PI] it was shown that M x X is not 2-homogeneous, 

no matter what continuum X is. Note that M x Sis, how­

ever, at least isotopy Galois. Wayne Lewis [L2] has recently 

shown that if X is a continuum, and M x X is Galois, then 

X is isotopy Galois. One might wonder whether if X x Y 

has one of the "nicer" homogeneity properties, it must be 

the case that X or Y admits isotopies. Also one might note 

that H(M) is totally disconnected [BB]. 

The following is true, however, and quite easy to 

prove, although a little messy. 

Theopem 12. Suppose that n E N - {I} op n = wand 

2mEN - {I}. If X is a continuum such that x is 

m-homogeneous (countable dense homogeneous, representable) 

Xnthen is m-homogeneous (countable dense homogeneous, 

representable). 

2Ppoof. Suppose first that n E N - {I}. Now if x is 

2m-homogeneous (m ~ 2) then x is strongly m-homogeneous, 

2since x is not a simple closed curve [U2]. 

Suppose that m = 2, {a ,a } and {b ,b } are two
l 2 l 2 

2-point subsets of Xn (n E N - {1,2}), and {cl ,c2 } is a 

2-point subset of xn with the property that for each i, 

n c (i) ~ c 2 (i). (If x E x , denote x by (x(l) ,x(2), - - - ,x(n».)l
 

Now a l ~ a , so there is jl such that al(ji) ~ a 2 (jl).

2 

Let j2 be an element of {l,---n} other than jl. There is 

hI in H(X
2

) such that h l (al (jl),al (j2» = (c l (jl),cl (j2» 

n
and hl(a~(jl),a2(j2» = (c2 (jl),c2 (j2». For x E x , 

define hI: xn ~ Xn by hl(x) = z where (z(jl),z(j2» = 

h l (x(jl),x(j2» and for i ~ {jl,j2}' z(i) = x(i). Then 
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nA

hI E H(X). There is a least j3 ~ {jl,j2} and there is some 

h in H(X~) such that h 2 (c1 (jl),a1 (j3)) = (c1 (jl),c (j3))2 1
 
n
and h2 (c 2 (jl),a2 (j3)) = (c2 (jl),c2 (j3)). For x E x define 

n nh2 : x + x by h2 (x) = z where (z(jl),z(j3)) = h2 (x(jl),x(j3)) 

and x(i) = z(i) for i ¢ {jl,j3}. If n = 3, we are finished, 

for h2 0 hl (al ,a2) = (c l ,c2); otherwise continue the preced­

ing process n-l times until {hl ,h2,···h _l } has been found n

such that hn_lhn_2···h2hl(al) = c l ' and hn_lhn_2···hl(a2) =c2 • 
A A 

Let h = hn_l···hl . Likewise, there is a homeomorphism k 

from xn onto xn such that k(bl ,b2) = (c l ,c2). Then 

k-1h(al ,a2) = (b ,b2) and Xn is 2-homogeneous.l 
We use induction. Suppose that mEN - {1,2} such that 

x2 is m-homogeneous, and it is already known that xn is 

(m-l)-homogeneous. Then suppose that {al,···a } and m
n{bl,···b } arem-element subsets of x and {c l ,c2 ,···c } is m m

n an m-element subset of x such that for each i,{cl , (i) , ••• 

cm(i)} is an m-element subset of x. There is some h in xn 

such that h(al ,a2 ,···a _l ) = (c l ,c2,···c _l ). There are m m

integers jl,j2 such that {1T .. (c l ),1T· . (c 2),···,1T· . (c 1)'
J1 J 2 J 1 J 2 J1 J 2 m­

1T. . (h (a ).)} is an m-element subset of x2 • (If i, j are 
J1 J 2 m 

positive integers less than or equal to n, then 1T .. (x) = 
J.J 

(x (i) , x ( j )) for x E x n .) 

Then kl can be chosen from H(X2) such that 

kl(1Tj1j2(C1),1Tjlj2(C2)),~··1Tjlj2(Cm-l),1Tj1j2(h(am)))= 

n(1T .. (cl ),,··,1T .. (c 1),1T .. (c )). For x E x , define
J1J2 J l J 2 m- J l J 2 m 

k1 E H(Xn ) by k1 (X) = z where (z(j1),z(j2)) k1 (x(j1),x(j2)) 

and for i ~ {jl,j2}' z(i) = x(i). Thus, k1 (C j ) = C j for 
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j <	 m. There is least j3 ~ {jl,j2}. Now 

{7T. . (c1) ,7T. . (c 2) , - - - 7T. . (c 1)'7T. • (klh (a »}
m- m 

2 
J l J 3 J l J 3 J l J 3 J l J 3 

is an m-element subset of X. (Note that 
A 

klh(a ) (j2) = m
2 c (j2).) There is some k in H(X ) such that k (7T· • (c ),m	 2 2 lJ l J 3 

---7T	 .• (c l),rr .. (klh(a ») = (7T .• (cl),---,rr .. (c ».
J l J 3 J l J 3 J l J 3 J l J 3m- m m 

nDefine k 2 in H(Xn ) as follows: if x E x , k2 (X) = z where 

(z (jl)'z (j3» = k 2 (x(jl) ,x(j3» and if i 'I {jl,j3}' xCi) 

z(i). If n = 3, we are done; otherwise continue this 

process n - 1 times obtaining {k ,k ---,k _ } such that
l 2 n l 

k 0 - - - k k (a a, - - - a ) = (c 1 ' c 2 ' - - - c ). Letn-l 2 1 l' 2 m m

k = kn_1---kl . Likewise there is some ~ in H(Xn ) such that 

~(bi) = c for each i < m. Then ~-lk is the desiredi 

homeomorphism. 

The first part is proved for n E N - {I}. Suppose 

2. h	 2 d .n = W and X 1S m- omogeneous, m > • Suppose 1S a 

2metric on X with d(x,y) < 1 for (x,y) E x . Suppose e is 

the following metric on X
w

: e(x,y) I Jt d(x(i),y(i». 
i=l 2 

It is well known that e is a metric on X
W 

compatible with 

its topology. Also let p denote the sup metric on H(X
w

) 

with respect to e. Suppose m ~ 2, and {a1 ,a2 ,---a } and m
W{bl,---b } are m-element subsets of X. There are m-l m

positive integers jl,j2,---jm-l such that {s(al ),s(a2 ), 

---,seam)} is an m-element subset of xm
- l (where 

s = 7T .. ---. ). Suppose that {cl,---c } is an m-element mJlJ2 Jm-l 

subset of Xm- l such that for i < m-l, {cl(i),---cm(i)} is 

an m-element subset of X. Then there is some h in H(X
m

- l ) 

such that h(s(ai » = c for each i < m. Define h E H(X
w

)i 
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as before (or rather analogously). 

We will use Fort's lemma. Suppose ~l is the first 

integer not in {jl,···jm-l}. Then {TI. ~ (h(al )),···
Jl 1 

TI. n (h(a ))} is an m-element subset of x2 . There is some 
JlNl m 

w
{cll ' c 2l ,· • • c ml }, an m-element subset of TI. ~ (X ) (~X2) 

J1 1 

with the following properties: 

(1) for i = jl or ~l' {cll(i),···cml(i)} is an m-element 
A 

subset of Xi and (2) (cll,···,cml ) E TI. ~ (N l / 2 (1) (h(al )··· 
Jl 1 

h(a »). There is k l E H(XID) such that P~(kl,lXID) < 1/2m

such that k l (TI. ~ (h (a l ) ) , • • • TI. ~ (h (a ))) = (cll ,··· cml ) . 
Jl 1 Jl 1 m 

W 
Define k

A 

as before--so that k
A 

E H(X ). There is leastl l 

~2 , {jl""jm-l'~l}' Then {n~1~2 (klh(al),···n~1~2(klh(am»} 

is an m-element subset of TI~ ~ (X
W
). There is some m-element 

1 2 
w

subset (c12,c22,···cm2} of n~1~2 (x ) with the following 

properties: (1) for i = ~l or ~2' {c (i), ••• c (i)} is an12 m2 

m-element subset of X, and (2) (c12 ,··· ,cm2 ) E 

n~l ~2 (N£2 (1) (klh(al ),·· .klh(am») where £2 < nd~lh,l). 

(n is taken with respect to H(Xw).) Define k 2 as before. 

There is least R,3 ~ {j1,j2,···,jm-l,R,1,R,2}. Then 

{TIn n (k2k h(a ) ,···TI n R, (k2k h(a ))} is an m-element sub­l l lN2 N3 N2 3 m
 
2
set of x • Continue this process. 

Define k = •••• k.k. l···kh. By Fort's lemma k E H(Xw).
J J ­

(Note that p(k ••• k h,k ···k h) = p(k ,1) < n(k ••• n+l 1 n 1 n+l n 

klh,l).) Also, by construction, k(a ) (j) ~ k(aR,) (j) fori 

i,R, ~ m, j E N. Likewise there is some k' in H(Xw) such 



TOPOLOGY PROCEEDINGS Volume 6 1981 401 

that k' (bi ) (j) ~ k' (b~) (j) for i,~ 2 m, j E N. For each 

odd j E N, there is some p. E H(X2 ) such that p.(k(a.) (j),
J J 1 

k(a i ) (j+l)) = (k' (bi ) (j) ,k' (bi ) (j+l)) for each i 2 m. Then 

w p = Pl x P2 x··· E H(X ) and p(k(ai )) = k' (bi ) for each 

i 2 m, and k' -1pk(ai ) = b i for each i < m. Thus, X2 is 

m-homogeneous implies Xn is m-homogeneous for m > 2, mEN 

and n E N or n = w, n > 2. 

2Suppose x2 is countable dense homogeneous. Then x is 

strongly m-homogeneous for each m in N and thus Xn is 

strongly m-homogeneous for each m E N, n in N U {w} - {l}. 

Then Xn is countable dense homogeneous [Ul]. 

2Suppose x is representable. Then x2 admits a non­

identity stable homeomorphism, and thus, so does Xn for 

Xn n E N - {l}. Also, is 2-homogeneous. Then, by a result 

in [Pl],Xn is representable. 

The following fact has been independently observed by 

Wayne Lewis: 

Theorem 13. Suppose that X and Yare continua such 

that X x Y is 2-homogeneous. Then there are 2 distinct 

non-constant continuous functions f and g from X to itseZf 

such that f is homotopic to g. (In fact, if E > 0, f and 

g can be found such that p(f,lx) < E, and p(g,lx) < E.) 

Further, if X x Y is representabZe, then if x E X, u is open 

in X such that x E u and if y E u, there is a homotopy 

F: X x [0,1] ~ X such that F 
o 

(z,t) E (X - u) x [0,1]. 

Proof. Suppose that X x Y is 2-homogeneous and E > O. 

Suppose (x,y) E X x Y. Now ~ x Y is locally connected [U2] 
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and Y is locally connected. Consider N / 4 (lxxy) (x,y).
E 

There is some y' in Y such that (1) y' ~ y, (2) there is 

an arc A~ [0,1] + Y from y to y' (A = y,A = y') such that o l 

(x,A ) E N / 4 (lXXY) (x,y) for t E [0,1]. Choose x' sucht E 

that x' ~ x and there is h E N / 4 (lxxy) such that
E 

h( (x,y), (x,y'» «x,y), (x' ,y'». 

Then TIxhtx x A([O,l]) is a map from X x A[O,l] to x. 

Define k: X x [0,1] + X as follows: k(x,t) = TIxh(X,A ).t 

Then k is a homotopy, ko(x) = x, kl(X) = x', dx(kt(z) ,z) < E 

for (z,t) E X x [0,1]. (Define dXXy(a,b) = dx(ax,b ) + x 

dy(ay,by > for (a,b) E X x y, where d ' dy are metrics on x 

X,Y, respectively, compatible with the respective topologies. 

Also, define p on H(X x Y) with respect to d XXY .) 

Suppose X x y is representable, x E X and u is open 

such that x E u. Pick Y E Y. (Take d ' dy ' P as inx d XXY ' 

the first part.) Suppose Vel) is open in X, V(2) is open 

in y such that (1) (x, y) E V (1) x V ( 2 ) c u x y; and (2) if 

(r,s) E Vel) x V(2), there is some h E H(X x Y) such that 

h(x,y) = (r,s) and h(z) = z for z ~ Vel) x V(2). Suppose 

y' E V(2), y' ~ y, such that there is an arc A: [0,1] + Y 

from y = A to y' in V (2) . Then suppose 0 is open in o = Al 

X x Y such that (1) (x,y) E o c V (1) x V (2) ; (2) (X x {y' }) 

= "n o (3) if (r, s) E 0 there is some k in H(X x Y)and 

such that k(x,y) = (r, s) and k (z) = z for z ~ o. 

There are D (1) open in X, D(2) open in Y such that 

(x,y) E D(l) x D(2) c o. Suppose x' E D(l). There is a 

homeomorphism ~ in H(X x y) such that 1(x,y) = (x',y) and 

1(z) = z for z ¢ o. Then consider TIx~lx x A([O,l]): 

X x A«[O,l]) + x. Define~: X x [0,1] + X by 
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A 

i(z,t) TIxi(z,A ) for (z,t) E X x [0,1]. Then i is at 

homotopy with t 1 = lx' to(x) Xl and it(z) = z for 

(z,t)	 E (X-u) x [0,1]. Thus the second part is proved 

(with	 names scrambled). 
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